

Artificial intelligence library for html5 based games:
DignityAI

Berkan Uslu1, Doç. Dr. Ecir Uğur Küçüksille2*

21.04.2016 Geliş/Received, 08.08.2016 Kabul/Accepted

doi: 10.16984/saufenbilder. 22281

ABSTRACT

Today, acceleration of internet and common use of web pages, revealed the necessity of work with any browser smoothly
for each application without of requirement of any plug-in. Generally, HTML5 is a new body of standards which is formed
with the combination of CSS and JavaScript. In this context, by analysing game engines developed for HTML5, their
features and advantages are investigated. Although, these game engines are close to catch up with the level of popular
game engines, it is seen that none of artificial intelligence library was developed for HTML5 based games up to now. In
this study, DignityAI artificial intelligence library is developed to fill this deficiency. Developed library has ability to be
integrated to all HTML5 games independently from game engine and to add artificial intelligence dynamics to these
games.

Keywords: HTML5, WebGL, Artificial Intelligence Library, DignityAI, Computer Games.

Html5 tabanlı oyunlar için yapay zeka kütüphanesi: DignityAI

ÖZ

Günümüzde internetin hızlanması ve web sayfalarının yaygınlaşması, her uygulamanın her tarayıcıda herhangi bir eklenti
gerektirmeden sorunsuzca çalışması gerekliliğini ortaya çıkarmıştır. HTML5 genel olarak, CSS ve Javascript'in birleşimi
ile oluşan yeni bir standartlar bütünüdür. Bu noktada, HTML5 için geliştirilen oyun motorları incelenerek; özellikleri ve
sundukları olanaklar araştırılmıştır. Bu oyun motorları; popüler oyun motorlarının seviyesini yakalamaya yakın
olmalarına rağmen, herhangi bir yapay zekâ kütüphanesinin şimdiye kadar HTML5 tabanlı oyunlar için geliştirilmemiş
olduğu görülmüştür. Bu çalışmada, söz konusu eksikliği gidermek amacı ile DignityAI yapay zekâ kütüphanesi
geliştirilmiştir. Geliştirilen kütüphane, oyun motorundan bağımsız olarak tüm HTML5 oyunlarına entegre edilebilen ve
bu oyunlara yapay zekâ dinamiklerini katabilme yeteneğine sahip bir kütüphanedir.

Anahtar kelimeler: HTML5, WebGL, Yapay Zeka Kütüphanesi, DignityAI, Bilgisayar Oyunları.

1 Süleyman Demirel Üni., Mühendislik Fak., Bilgisayar Müh., ISPARTA – berkan.uslu@gmail.com
2 Süleyman Demirel Üni., Mühendislik Fak., Bilgisayar Müh., ISPARTA – ecirkucuksille@gmail.com
* Sorumlu Yazar / Corresponding Author

1. INTRODUCTION

HTML5 and WebGL are among the most popular and
latest technologies which are especially focused by the
World in recent years. Also, with each research on game
developing field, which became stronger by accelerating,
increases its invaluable position. Besides, the topic of
artificial intelligence, which the large technology
companies interested in, perhaps can be shown in the first
place in addition to the rising popularity of this valuable
research subjects. This situation has gained even more
importance by the help of personal assistant with artificial
intelligence published by three technology giants such as
Apple, Microsoft, and Google.

In this research, first of all, the development of artificial
intelligence systems in games and current artificial
intelligence libraries are described by considering the
history of artificial intelligence in computer games.
During the research, all games that can be integrated with
the artificial intelligence engine library were analyzed
independent of any game engine. However, it was
observed that there was no such library that can be used
for games based on HTML5. In this point, developed
DignityAI library have the feature of being first of its kind.
Furthermore, it was observed that each developed artificial
intelligence library focuses on a particular type. In this
context, the investigations are carried out on the
relationship between artificial intelligence and game types.
It is centered upon the action (FPS, TPS), role-playing
game (RPG), real- time strategy (RTS), adventure,
platform, sports and racing from game types. The use of
methods of finite state Machine(FSM), hierarchical
artificial intelligence, fuzzy state machines (FuSM),
behavior trees, path- finding, data driven systems and
fuzzy logic artificial intelligence has seen and some
information is given.

Subsequently, information about the development of
HTML5 and WebGL is given. Then, HTML game engines
are examined, the stable and current most popular game
engines, which can develop both 2D and 3D games, are
handled. Investigated game engines include Construct 2,
ImpactJS, PixiJS, PlayCanvas, Three.js, Phaser, Kiwi.js
and enchant.js. The sample game in this study is
developed by using PlayCanvas game engine.

Finally, information about general structure and all classes
of DignityAI artificial intelligence library within the scope
of such study is given. In addition, a small game developed
by using this library is presented at the end of the study.

2. LITERATURE REVIEW

Wexler, in his work, firstly made an introduction to the
history of computer games and examined the development
of the artificial intelligence in the computer games.
Although the main scrutinized issue was artificial

intelligence in computer games, he studied the artificial
intelligence system of Black and White, Lionhead Studios’
game, and where can the artificial intelligence come in
games [1].

Middleton, in his work, observed the history of artificial
intelligence in computer games and development of
artificial intelligence systems in the last 25 years of
history. In the study, he made detailed examination and
comparison from chess artificial intelligence designed by
Alan Turing in 1950’s to Deep Blue computer that
defeated Garry Kasparov, from the famous RPG game
Dungeons&Dragons to another legendary RTS game
Dune II, from Age of Empires series to artificial
intelligence systems of Valve’s most popular game in the
FPS genre Half Life [2].

Stall, in his work, proceed through a very natural example
experienced by him to explain the finite state machines and
described the finite state machines in a very clear manner
[3].

Schwab, in his work, made a very detailed investigation on
the s details of developing AI (artificial intelligence) game
engine from simple components like navigation, decision-
making and inputs to detailed research of game genres and
components, from the detailed method analysis such as
finite state machines, fuzzy state machines, messaging
systems to complete AI game development. Some
advanced issues such as genetic algorithms, neural
networks, fuzzy logic, behavior trees were described
particularly in his book [4].

Lubbers et al., in his work, elaborated on details of HTML
programming from HTML and XML which is the basic
components of HTML5 to presently JavaScript and CSS
that comprise HTML5. He also searched intimately all API
libraries of HTML5 which was widely used and had not
been examined yet, besides with such review it was given
useful examples to learn what browsers are supported by
which API [5].

Freeman, in his work, scrutinized JavaScript and CSS that
constituent the HTML5 and revealed the detailed guide to
use the full power of HTML5 by using such technologies.
Focusing on HTML programming he mentioned the
methods of forms and form verification and after referred
the detailed CSS resource [6].

Parisi, in his work, opened the doors of the world’s of
WebGL and described the formation and history of the
WebGL up to today. Primarily making an introduction to
WebGL and then by using Three.js game engine he
developed a simple WebGL application. He referred the
use of WebGL with graphics, animations, 2D and 3D
environments for promotion and developed the sample
WebGL game [7].

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 2

Rabin, in his work, expressed the artificial intelligence
method that depends on the level of detail (LOD) which is
a new artificial intelligence approach in RPG games. He
mentioned it was an effective technique that speeded up
the artificial intelligence system together with the
adaptation to artificial intelligence of such technique in
graphic programming and that helping to reduce the CPU
load [8].

Compton et al., in his work, studied on procedural section
design, which is one of the most difficult artificial
intelligence subjects, in the platform games and developed
the new algorithm for section design improving four-level
method [9].

Beirne, in his work, handled the artificial intelligence in
the racing games and explained the development of tuning
and car modification artificial intelligent with their most
used models [10].

Moreover, some projects on github.com has been added
within the works in this field by referring some parts of
artificial intelligence in HTML5 games.
Gordon, in his work, presents us a framework called
Javascript State Machine and focused on finite state
machines (FSM) [11].

Cowart, in his work, described behavior trees creating with
Machine.js project focused on finite state machines (FSM)
similarly [12].

Xu, in his work, just focused on path-finding and studied
Pathfinding.js project which is one of the best projects that
is specialized in this area by hosting several search
algorithms [13].

3. ARTIFICIAL INTELLIGENCE IN COMPUTER
GAMES

3.1. History of Artficial Intelligence in Games

Computer games arose with the game named “Tennis for
Two” in 1958 which was developed by William
Higinbotham, who was a researcher in Brookhaven
National Laboratory. This first game developed by
William, was only possible to be played with an
oscilloscope. The first game that can be played on
computer was “Spacewar” developed by Steve Russell
from MIT. In 1970s, Nolan Bushnell and Ted Dabney,
who will later be the founder of Atari, developed the game
named “Computer Space” which would be the first video
arcade game. In 1980’s, the first 3D game Battlezone was
developed by US government for use of military training
and 4 years later namely in 1984, Nintendo game console
provided computer games to commercially enter to houses
by hitting the market. Afterwards, it became a huge
industry together with the acquisition of PlayStation by

Sony and spread of computer games in personal computers
[1].

When looking the history of artificial intelligence in
computer games, it can be said it was revealed firstly on
board game genres. The artificial intelligence for chess
game in 1950s developed by Alan Turing and Claude
Shannon, who are the fathers of artificial intelligence, is
shown as the first example of it. In 1952, the checker game
“The Samuel Checkers-playing Program” developed by
Arthur Samuel from IBM is known as the first game to be
self-learning and considered within the earliest examples
of artificial intelligence [2].

In 1990s, the fictionalizing period of more intelligent
systems began with the use of artificial intelligence in
computer games and developing processor technology.
Many games in “Turn-base Strategy / TBS” genres (Chess,
Checker, Go etc.) are considered as the first game genre
which the artificial intelligence was used and “Role-
Playing Games /RPG” genre follow it. In 1992, with Dune
II’s, which is developed by Westwood Studios and known
as the first example of the “Real-Time Strategy /RTS”
genre, the working requirement of new and faster
algorithms on artificial intelligence real-time calculations
and decision-making structures appeared.

In 1998, Half-Life game in “First-person shooter /FPS”
genre developed by Valve is varied as the one of the
innovative games in artificial intelligence. One of the
major innovations on Half-Life game is the use of new
genre called “schedule-driven state machine” instead of
behavior model that is named finite state machine used on
artificial intelligent games and composed of limited
numbered states, transition between states, actions.

In 1999, the improving requirement of more intelligent
“non- player characters” (NPCs) of developed artificial
intelligence in RPG, RTS and FPS game genres was
noticed, revealing the games such as Age of Empires II and
Unreal Tournament and it began the process of coming up
today the use of very high level features.

Nowadays, we are moving forward to a system where the
navigation algorithms are risen to next levels, where act
and tracking sensors responds faster and the game
characters that act and think like humans can be
programmed. In a computer game to be created in future,
it will be possible to create games with super intelligent
NPCs in which the artificial intelligent characters take over
the game and all of the humanity struggles to beat the
artificial intelligent characters in the game.

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 3

3.2. Artificial Intelligence Libraries Used in Games

Many different artificial intelligence libraries have been
used in games and until now most of them were integrated
to game engines and not functional without using the game
engine. The main point to study is the artificial
intelligence libraries that work independent from game
engines. DignityAI developed in this study is designed
with completely independent structure from the game
engine and can be applied to all game engines.

Kythera artificial intelligence library is a library which is
well known in present days and started to be used in large
games. Star Citizen is the leading of these games. It gets
ahead of other libraries with respect to both usual
functions, such as detection, target selection, hiding, group
coordination, and dynamic navigation and behavior trees.
Kytera, was designed to be a system based on C++ that
supports Windows, Mac and Linux with 32-bit and 64-bit
processor architecture and to be integrated to all game
engines. However, it cannot be integrated with the
HTML5.

Havok AI artificial intelligence library is a library that
focuses on the main navigation functions like path-finding
and path-following. One of its most significant features is
to create automatic navigation mesh. In spite of the fact
that Havok AI was developed by using C++, it can still
give support to all leader platforms. However, there is no
integration with the HTML5.

Rain artificial intelligence library is developed for Unity
game engine but it is sold and distributed independent of
it. It consists of the advanced navigation features like
automatic navigation meshing, path-following and path
finding. However, it has no HTML5 support. WebGL
export option was improved with Unity 5 but it doesn’t
give native HTML5 output.

Kynapse artificial intelligence library is a large artificial
intelligence library which is developed by Autodesk
Company and nowadays separated to two products named
Gameware Navigation and Gameware Cognition.
Gameware navigation is the artificial intelligence library
searching for options to the requirements of usual path-
finding and navigation. Gameware Cognition is a tool that
helps to create behavior trees supporting the visual
programming platform.

PathEngine artificial intelligence library is the artificial
intelligent library that focuces on the best path-finding
algorithms that is improved until now. PathEngine which
has a very well designed action model with the features of
dynamic navigation mesh creation, obstacle recognition,
crush monitoring proved itself by being used by many big
projects.

Masa Life artificial intelligence library is an artificial
intelligent library that focuses on decision-making. Masa
Life which is developed with C++ that works on Windows
and is a small integration of Unity Windows integration,
approaches mostly to subjects such as decision-making
mechanisms, behavior trees and navigation. In addition to
this, it has the working fields like reasoning, information
provision and processing.

Cyntient artificial intelligence library is an artificial
intelligent library developed for the game industry. It is a
system that provides virtual characters’ to analyze by
learning each other’s behaviors and to take action. The aim
of Cyntient is to develop an open world space game named
Galak-Z through providing a realistic experience by
creating intelligent and emotional characters.

As it mentioned above, there are many artificial
intelligence libraries and additional to these there are
integrated artificial intelligence modules inside the game
engines. But, because none of these systems can be
integrated to technologies such as HTML5 and WebGL at
one point they are platform dependent and require
advanced systems to improve. In this manner, improved
DignityAI library contains many classic artificial
intelligent items such as path-finding, decision-making,
behavior and task managing that focuses on HTML5 and
WebGL.

Dignity AI is completely open source coded and with this
aspect it differs from other artificial intelligence libraries.
Besides, it is aimed to be use in all browser based systems
with the power of HTLM5 and designed in architectural
structure to be used for nearly all game genres with
powerful basis.

3.3. Artificial Intelligence Relationship with Game

Genres

Most of game engines designed until now carried out their
works following the way based on to develop games
belong to specific a genre and to fulfill certain functions
within these games. One of the major factors in the issue
being specific to genre can be summarized with that the
games are very complex compared with the other systems
and game and/or game engine developers focuses on the
ways to solve the problems by dividing them into pieces.

Game genres customized the artificial intelligence libraries
while shaping the game engines. Such an extent that there
are unique different mechanics of each game. In following
each paragraph, the relationship between artificial
intelligence and game genres are described.

Action (FPS, TPS) games are generally developed in game
genres of First Person Shooter (FPS) and Third Person
Shooter (TPS). The path finding property is one of the
main mechanics of action games. The other property is

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 4

EnemyAI term it can be called enemy artificial
intelligence. In this type of action games, there usually is
an enemy that can act differently in certain intelligence
levels. Behavior trees must be present for these behaviors.
They must know what kind of response they should give
against which kind of events and their decision-making
mechanism must have been developed. Since the action
games were designed for single player, all other items
except the player must have artificial intelligence. It is one
of the most widely used game genres of artificial
intelligence with this aspect.

Role-playing games (RPGs) is emerged as the game genres
that have existed since the first release of computers. RPG
games can be described as which is played with huge maps
and the level reaching of the player by performing certain
duties. However, although this game style is defined as
simple as this, it evolved into very complex games and by
including many mechanics and moving to online side as
well it created MMORPG (Massively Multiplayer Online
Role Playing Games). The artificial intelligence in RPG
games begins with the path-finding of controlled character
and going from one place to another. Inventory list of the
character exists, many various types of materials can be
found in this inventory list such as weapons, foods,
clothes. The character learns with trial which weapon to be
used when facing against the enemy to be killed, and also
enemy can have weapons and spell power. However, these
characters can generally manage the basic actions like
using weapons and detection by hosting simple behavior
trees. The main feature that separates RPG type games
from the other types is the multitude of interactive objects.

One of the artificial intelligence techniques used in RPG
games is a method named artificial intelligence according
to level of detail (LOD) and used inside the games that
occurs on huge maps like Baldur’s Gate series. CPU
overuse can be hindered by using this applied technique
preventing the operation of the artificial intelligence of the
objects away from the character. Thus, faster and more
stable artificial intelligence systems can be designed [8].

Real-time strategy games (RTS) is perhaps one of the
game types where the artificial intelligence used most
widely. While any army, city etc. that is managed by
strategy is controlled by player, items such as the army,
city are managed by artificial intelligence. RTS games are
one of the most difficult games to develop with regards to
artificial intelligence. Because CPU must graphically
process the items like characters that are moving and
buildings that are formed while it is busy with the artificial
intelligence. Additional to optimization difficulties, it is
very detailed in terms of diversity of artificial intelligent
items. In this game genre, the finite state machines is
frequently used for static tasked units. It profits from
behavior trees and path-finding abilities. Nevertheless, the
structure named Fuzzy State Machine (FuSM) was used in
modeling of strategic units. Fussy state machines have the

configuration that make a decision by calculating various
situations inside the system. Another case that is used in
RTS game genre is the structure named the Hierarchical
AI. This structure can be illustrated as follows: when
attacking to somewhere it is necessary to fight other
enemies that is faced even if they are not the main target.
In this case, the new task will be taken hierarchically and
it is proceeded to the main target after sorting out.

Adventure games is type that is still kept alive today with
Walking Death series and played much despite being a
very old kind. In action games, it is not desired players to
follow a certain flow, it is required to explore the field and
to reach next level by gathering or finding the hidden
objects around the field. Adventure games involve the
general enemy artificial intelligence, detection systems
and classical behavior trees.

Platform games are the game genres that stand the test of
time since the earlier times of computer games and has
again come up with the developed mobile technologies.
Platform games generally do not have an item as path-
finding. It is the simplest and least complicated game type
with regard to artificial intelligence.

The most complicated artificial intelligence used in
platform games is found in map designs of games.
Procedurally the creating of stages in platform games is
usually done by artificial intelligence. Moreover, the
process is even more difficult from the design of stages in
strategy games and RPG. Since because changes are so
few, a clever artificial intelligent algorithm required in
order to design the objects that does not repeat each other
and to eliminate the monotony [9].

Sport games are one of areas that the artificial intelligent
used most heavily. Artificial intelligence is very complex
in sport games; it consists of set of rules and team
calculations about applied sport branch. A complex
artificial intelligence based on sensors, detection and
certain behavior trees is found in sport games.
Furthermore, it is required to contain the tactical artificial
intelligence for situations such as changes to be done with
the progress of the game and the shifting of the tactic
system, etc. Additional to use of finite-state machine
fuzzy-state machines and data-driven systems are used
frequently. The reason is that the data will change during
the games and the parameters like performance of player
and condition will be monitored and processed by state
machines.

Racing games have their own type of artificial intelligence
mechanics. The artificial intelligence in racing games can
be classified as track display, control and detection the
lines of other racers, the control of artificial intelligent
character’s race car (engine, car, plane, etc.). Moreover,
the innovations with artificial intelligence-controlled car
modification and tuning can be seen in this area [10].

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 5

3.4. HTML5 and WEBGL

HTML is one of the oldest text editing languages, whose
roots almost goes back to internet and used since 1993.
HTML used 2.0, 3.0 and 4.0 versions until 1999 and lastly
4.0.1 version in 1999. These HTML versions were
developed by World Wide Web Consortium (W3C)
organization’s group called the HTML Working Group.
Later, stopping their works on HTML, the group diverged
to another web standard XML and then XHTML
accordingly. Afterwards, a small group of people that
wanted a new web standard, gathered under the name of
Web Hypertext Application Working Group (WHATWH)
in 2004 and published the HTML5 specifications [5].

After these researches, W3C began to work about HTML5
in 2006 and the first operational version was released by
them in 2008. HTML5 is a new body of standards which
is formed with combination of HTML5, CSS and
JavaScript. HTML5 is used with tags and new elements,
CSS is used with the visual parts of these tags and
elements, JavaScript is used to process the content of all
structure and to response the actions of user and to utilize
programmatic advantages of HTML5 [6].

HTML5 was published as a standard by W3C on
September 28th, 2014. HTML5 brings some new features
like Canvas (2D and 3D), Cross Document Messaging,
Geolocation Audio and Videos, Forms, SVG, WebSocket
API, Local Storage, Offline Web Apps, Drag and Drop,
Web Workers, Servers-Sent Events, XMLHttpRequest
Level, Local Storage, Offline Web Apps, Drag and Drop,
Web Workers, Server-Sent Events, XMLHttpRequest
Level 2.

System has become even stronger by developing several
API on HTML5. The most important one of these is
display of 3D visual through WebGL without requirement
of any plug-in installation on browser side. WebGL is
essentially OpenGL’s portion adapted to HTML5. So,
HTML5 can create 3D objects with JavaScript without the
necessity of use of any other programming language or can
perform animation by importing a character model.

Developers can use all hardware graphic processing power
of computer via any browser with WebGL. Before the
WebGL developers was able to use hardware graphic
processing and other features with games they developed
by making users to install a plug-in (such as Adobe Flash
Player) or providing them to download and install the
application special to own operating system (exe, app, deb,
apk, etc.) to their devices [7].

Khronos Group was developed the WebGL similar to other
HTML5 APIs by building it on OpenGL ES 2.0. 3D
graphic applications became able to use in the regular html
elements and low-level DOM interface through this API.
Additional to this, 3D web applications can be created just

as upper-level computer games can be developed. The
other yield of integration of WebGL on OpenGL ES is to
operate on low-power devices and mobile platforms
(iPhone, iPad, Android Devices, etc.) with the correct
resource management in all leader mobile operation
systems by virtue of the fact that OpenGL ES is adapted
for embedded systems. However, WebGL is a very low-
level library like OpenGL. The use this library requires
expertise and is as complex as OpenGL but the use of
WebGL has become simpler through some game engines.
The best example of this case can be given as PlayCanvas,
Three.js and Babylon.js. By these engines, 3D games can
be developed just like modern game engines Unity, Unreal
Engine, CryEngine and all processes can be performed via
an internet browser.

3.5. HTML5 Game Engines

There are two options about game developing with
HTML5. The first is Canvas where 2d games can be
developed, the second is WebGL where the 3D games are
developed. Both 2D and 3D games can be developed under
the same platform via game engines. HTML game engines
are briefly described in the following paragraphs.

Construct2 game engine developed originally as hobby by
a group of student in 2007 and emerged with the name of
Construct Classic. Construct 2 was released HTML5-
driven in 2011 and many radical changes made on this
game engine. It embodies very important features such as
multi-platform support, easy learning and visual
programming [14]. Construct 2 was designed for
development of 2D games and it was mentioned the users
can develop game without any knowledge of
programming. SDK Template file offered by Construct
must be downloaded in order to use DignityAI library
inside Construct 2. It can be possible to easily add artificial
intelligence features to elements in the game engine
through the codes to be transferred into this template.

ImpactJS is one of the popular and paid game engines that
was begun to develop by Dominic Szablewski in 2010.
One of the biggest advantages of this game engine has
Entity structure. It effects the whole by calling update and
draw methods in all Entity structures that are connected to
draw() and update() methods, which located in the engine..
/libs/game/entities/ directory can be found inside the
project, which the Dignity AI will be used. When
DignityAI 1.0.0 version is added to this directory at
https://github.com/berkanuslu/dignityai/releases/downloa
d/v1.0.0/dignityai.v1.0.0.min.js address, artificial
intelligence features can be added to intended objects by
using <script src="libs/dignityai.v1.0.0.min.js"></script>
in index.html page [15].

PixiJS is a game engine which is built by Good Boy
Digital, build on Node.js and distributed free of charge
through Github. Contrary to other 2D game engines, PixiJs

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 6

renders the game with the WebGL to increase the
performance if the browser has WebGL support. However,
it carries on the operation via Canvas with the browsers
which have no WebGL support. PixiJS is showed as a tool
in render parts of most game engines like ImpactJS,
Phaser, PandaJS. By creating a /libs/ folder in the project
where the DignityAI will be used and when DignityAI
1.0.0 version is added into this folder at
https://github.com/berkanuslu/dignityai/releases/downloa
d/v1.0.0/dignityai.v1.0.0.min.js address, artificial
intelligence features can be to intended objects added by
using <script src="libs/dignityai.v1.0.0.min.js"></script>
in index.html page.

PlayCanvas differently from other game engines allows
developing the game with a Cloud account on web. Codes
can be modified by the help of the editor named
PlayCanvas Code Editor. One of the most important
properties of PlayCanvas is that it has its own level editor.
This editor helps to design the 3D scene and to edit the
materials just as big game engines (Unity, Unreal Engine
etc.). Another feature that makes PlayCanvas different
from other game engines is that the users can use all public
projects inside their own project repository by forking.
Installation process is completed when DignityAI 1.0.0
version file, which is located in
https://github.com/berkanuslu/dignityai/releases/downloa
d/v1.0.0/dignityai.v1.0.0.min.js address, is downloaded
and when this file is linked to an Entity. By this means
artificial intelligence features can be added to intended
objects.

Three.js might be an engine distributed free of charge and
focused on WebGL and took the first step for developing
3D applications with WebGL. Many renderers can be
found in Three.js such as WebGL, Canvas, SVG, CSS3D,
DOM. It allows many items such as stage, camera,
animation, lighting, material and shader. >An editor
design is making in Three.js like PlayCanvas and it is
planned to realize 3D scenes with the help of this editor.
By creating a /libs/ folder in the project where the
DignityAI will be used and when DignityAI 1.0.0 version
is added into this folder at
https://github.com/berkanuslu/dignityai/releases/downloa
d/v1.0.0/dignityai.v1.0.0.min.js address, artificial
intelligence features can be added to intended objects by
using <script src="libs/dignityai.v1.0.0.min.js"></script>
in index.html page.

Phaser is a HTML5 game engine which is distributed free
of charge and published as open source. Phaser is
concentrated on 2D game developing side. Phaser, which
uses PixilS on render side, allows to develop 3D
applications by supporting the HTML5 and WebGL. It
includes many features such as preloader, physical system,
sprite, animation, particle, input, sound, tilemaps, scaling
to devices, mobile browser support [16]. There is plug-in
logic in Phaser. All features added to application is

developed with the help of these plug-ins. The sample
plug-in file that can be found in the
https://github.com/photonstorm/phaser-
plugins/blob/master/SamplePlugin/SamplePlugin.js
address is already similar with the DignityAI developing
structure. By creating a project inside phaser plug-ins and
then transferring DignityAI files into this folder,
DignityAI will be suitable for this game engine as well.

Kiwi.js is an open source game engine which was designed
to develop mobile and desktop game on HTML5. It has
WebGL support for 2D and 3D design features. It benefits
from CocoonJS platform to publish the games [17]. It
supports the plug-in system similarly to most of games
engines like Phaser. By creating a /libs/ folder in the
project where the DignityAI will be used and when
DignityAI 1.0.0 version is added into this folder at
https://github.com/berkanuslu/dignityai/releases/downloa
d/v1.0.0/dignityai.v1.0.0.min.js address, artificial
intelligence features can be added to intended objects by
using <script src="libs/dignityai.v1.0.0.min.js"></script>
in index.html page.

Enchant.js is a considerably simple JavaScript library. It is
used to develop game and application. It is developed by
researchers Akihabara Research Center, Tokyo, at first in
2011 and shared as open source with the license of MIT.
Because of its simple and plain framework, beside game
developing it is frequently used for application developing.
It supports all design methods like Canvas, DOM and
WebGL. By creating a /libs/ folder in the project where the
DignityAI will be used and when DignityAI 1.0.0 version
is added into this folder at
https://github.com/berkanuslu/dignityai/releases/downloa
d/v1.0.0/dignityai.v1.0.0.min.js address, artificial
intelligence features can be added to intended objects by
using <script src="libs/dignityai.v1.0.0.min.js"></script>
in index.html page [18].

Many more HTML5 game engines are being developed
and added to this list everyday. Several game engines such
as Babylon.js, GameMaker, Turbulenz, Cocos2d-X,
Isogenic Engine, Panda.js, Crafty, voxel.js, MelonJS,
stage.js has been designed for the ones that want to develop
games with HTML5. When looked into these game
engines and APIs, it can be seen that lots of items like
graphic, audio, video, physics are thought and they can
already be used in HTML5 based games. However, it is
known there is no game engine or API which hosts any
library about artificial intelligence. DignityAI is developed
in order to complete the missing parts at this point.

4. DEVELOPED LIBRARY: DignityAI

4.1. General Class Structure of DignityAI

Class diagram of the developed library is given in Figure
1. DignityObject is placed at the top when looked at the

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 7

DignityAI general class structure. All the other classes are
fundamentally inherited from this class. If we are to give a
short information about the classes, what are the
functionalities of all the classes and what they are used for
will be seen in general terms.

4.2. DignityPath

DignityPath class is the class that handles the basic path-
finding. It is specifically designed as to cover the
navigation functions both for 2D and 3D games.

All the items inherited from DignityAIBase type has sets
of DignityPath by the name of a paths. This sets the paths
which the artificial intelligence character will follow in
relation with its tasks. More than one path can be defined
within the tasks. Defining of the DignityPath class in the
DignityAIBase, provides that it can reach previous paths
through any task on DignityMission. Thus, any task
transforms into a more flexible structure.

Structure is developed in this way by flexible design. For
the path given in the DignityPath class, together with the
start and finish locations other sub paths which will be
used to move to those start and finish locations can be
defined. Also, whether the given path will or will not
repeat from end to start and move on a random location
can also be determined through the same class.
Statements defined by this class are actually used by a
move() method for DignityAIBase class and classes
inherited from this class. This method provides the object
to get into act to follow the path designated in the task
definition by reading the paths on the artificial intelligent
object. Fundamentally it is mandatory to determine and to
fill the finish point; at the end the object is moved towards
the finish point. However, some basic algorithms are used
for the object to calculate the path it will take and draw a
route according to the obstacles on the way. There are
many different search algorithms such as A*, IDA*, MA*,
Breadth-First-Search, Best-First-Search, Dijkstra, Jump
Point Search and many more within these algorithms.
From these algorithms, DignityAI uses the most used and
most common A* algorithm. However, all the other
algorithms or a library such as Pathfinding.js which has a
HTML5 library containing all these algorithms can also be
easily integrated into DignityAI.

Figure 1: DignityAI Class Diagram

4.3. DignityAction

DignityAction is actually a process part of the DignityAI.
All the actions are defined within DignityAction.
DignityAction has move(), sense(), destroy(), create(),
upgrade() and custom() main functions.

With move() function; the pathList member defined in the
DignityAIBase follows the path which is defined on the
DignityPath class’ object. It finds the shortest path for this
process and creates an action. Here the basic condition is;
to provide the object, which will be moved with the
moveObj property defined in the DignityAction class, to
trigger the move method defined in DignityAIBase.

With sense() function; detection according to enemy lists
(enemyList) and friends lists (friendList) defined in
DignityAIBase is done and main processes are performed
according to these detections. This method also provides
the object, given to senseObj property and detection to be
done, to trigger the sense method defined in
DignityAIBase.

With destroy() function; object pointed as target, which is
defined with destroyObj property and is from
DignityAIBase class or from another class inherited from
this, gets damaged. This damage, reduces life feature by
the value of destroyLevel for the objects inherited from
DignityAIBase class.

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 8

With create() function, any object defined with createObj
property are created on stage. Also, with the function
defined in DignityAction named createObjPos position
where the object will be created is given.

upgrade() function is used to increase all the values of the
object defined with upgradeObj property. In any way
processes, such as level upgrade, health increase are done
by this function. For this, name of the object to be
upgraded in upgradeObjPropName is given in String. With
the upgradeObjIncVal property, information of how much
the property, which is defined with upgradeObjPropName,
will be increased is given. Thus, given increase value adds
to that value. In case a negative value is given, it means
that parameter’s value is decreased. However, in case a
value assignment to be done directly but not as
increase/decrease the value of the variable,
upgradeObjIncVal property shall be given 0 (zero) and
new value of the variable is given to upgradeObjNewVal.
An object’s value assignment to another can be done by
this way.

In the basic custom() function makes required functions of
all the objects’, which are not defined in DignityAction
class, run as actions. It means in case another action apart
from move, sense, destroy, create and upgrade actions,
custom() function shall be used. This function calls the
method, which is given with customActionObjName, of
the object’ which is given with customActionObj, as
action.

4.4. DignityMission

DignityMission class is a class provides the mission
managing and can assign mission to each artificial
intelligent character. Elementarily is has a structure where
missions can be defined as lists, actions for the missions
can be defined by DignityAction and these actions can be
run as synchronously or asynchronously.

Essentially DignityMission consist of description and
action definitions. While description is defined for the
cases in which the mission will be shown to users, action
is defined by an object assignment in DignityAction class.
For this actionStart, actionEnd and actionTime properties
are defined in DignityMission class. By means of these
properties a start action, end action and a timing action
which can be run in any time can be defined. Methods to
be used by actions are decided by DignityAction class
method names (move, sense, create, destroy, upgrade and
custom) which are defined in actionStart, actionEnd and
actionTime properties. Also, whether the action will run
synchronously or asynchronously is determined by a
property named async.

Control of the mission’s end in the DignityMission is
provided with finishTime variable. If finishTime variable
is given 0 (zero) it means the mission will be provided by

temporary actions. If any value is given to this variable,
mission has a time to live in terms of seconds. actionEnd
action runs at the end of this time and comes the next
mission. Another parameter from the mission transition is
async variable. By means of this variable, it is decided
whether the mission will be synchronous or asynchronous.
All the asynchronous missions are run at the same time.
But in case the first mission is synchronous, second and
third missions are asynchronous, then the first mission
runs primarily and then second and third missions are run
at the same time after the first mission is finished.

4.5. DignityAIBase

DignityAIBase class is the basic class of the artificial
intelligent objects. All the artificial intelligence characters
are characters inherited from this class. Classes such as
DignityStructure, DigntiyHuman, DignityVehicle and
DignityAnimal are the classes to be used for the artificial
intelligent characters customized on DignityAIBase and
artificial intelligent characters inherited from this class.
Also, as much as customization can be done by adding
objects inherited from DignityAIBase.

All the previous classes are classes used to improve the
DignityAI basic mechanics and to develop the basic
properties to be used in DignityAIBase. Basic use area of
these classes is DignityAIBase and classes inherited from
it.

Properties named speed, life, value and level are defined
in DignityAIBase class. These are the common properties
of all the artificial intelligent objects. Together with them
artificial intelligent objects must have a mission list
(missionList). This mission list starts to run respectively
(asynchronous ones are at the same time) to run the
mission list. In any case if it comes to a synchronous
mission, finish of this synchronous mission is to be waited
before running the other asynchronous missions.

Also, there are properties name friendList, obstacleList
and collectableList. With these properties detection
processes in the sense() method, which is within the
DignityAction classes’ main methods, are done. sense()
function realizes the defined detection processes of the
user by looking at these lists and as a result of the detection
process detectedFriend(), detectedEnemy(),
detectedCollectable() and detectedObstacle() methods are
called. Besides, unwanted objects detection can be
determined with the ignoreList property. Objects in the
ignoreList are not subject to object detection process in
any way.

Also, pathList array in the DignityAIBase class, by
holding the object in DignityPath type it provides the use
of these paths. If there are no path lists added to this
artificial intelligent character, it provides it not to be
moved to a newly added path on the system. By this way,

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 9

access to a single source through all the other classes is
provided.

executeMission() method is defined in order to run any
existing mission in DignityAIBase. Also nextMission()
and prevMission() methods are defined in order to
navigate between missions. Likewise for navigation
processes in pathList property nextPath() and prevPath()
methods exist in order to use in move() method.

There is move() method in DignityAIBase, which uses the
DignityPath class for moving the artificial intelligent
objects and in order to regulate the objects movements to
coordinate points within the existing path. This method
respectively provides the movement of the object to all the
points in the calculated shortest way of the path data and
when the movement process is finished (when reached to
final point) to end the action or to move forward to next
point if exist.
For detection processes of the artificial intelligence
objects, sense() method is defined. In this method,
essentially rays are sent from the objects position to the
positions in the scanning area by using classic Ray Cast
method. cast() method is defined for sending ray process.
Objects that hit with the ray (in order to object to detect
this hit process object need collision component) falls into
findHit() method as the result. And in this method, by
looking that the object is not in ignoreList but in which one
of the friendList, enemyList, obstacleList, collectableList
that list’s detection methods triggered. If the found method
is in ignoreList then other lists are not checked.

Also, for the other objects, which are inherited from
DignityAIBase class, to interpret the detection statuses in
different ways, when an object, which does not fall into
any of the lists above, is detected detectedOther() method
is defined in order to be able to reach these objects and to
establish a flexible structure at the detection point. This
method is called if the detected object is neighter in the
ignoreList nor in any of the other lists. Customizations can
be done for the objects inherited from DignityAIBase class
and override this method.

Last defined method is the shoot() method. According to
the detection result, desired objects can be fired at. Objects
to be fired (bullet, cannon, bomb, arrow, etc.) are stored in
file named bullets.js. Different weapons can be determined
according to each object.

4.6. DignityStructure

It is designed to add artificial intelligent features to fixed
objects such as building, structure which are inherited
from the DignityAIBase. By this class mission and action
can be given to a structure. Normally objects such as
buildings and structures do not move; but still to moving
feature can be added to these structures by using move()
action.

There are some customized properties within the
DignityStructure. First of these properties is to define the
structure to be collapsible, destroyable. Second property is
the capacity of the structure. This capacity indicates the
object capacity which it can hold, hide inside. If wanted,
this capacity can be increased by multiplying with the level
feature in DignityAIBase class. Most important property
of the structures is them to have a mechanism which gives
an output in a given time. By this means they can produce
defined objects in given periods and store the outputs if
required.

4.7. DignityVehicle

It is developed to create a vehicle model with artificial
intelligence. There is a drive() function within this class,
which uses the move action of DignityAction class
however managing the movement situation specific to the
class. By means of this method vehicle’s speed is found by
calculating the engine condition and driving speed. When
the engine condition goes bad, speed reduces
automatically. When the vehicle crashes with another
vehicle, engineLife property gets reduced by the valu of
the crash’ intensity and speed is calculated again according
to this. crashVehicle() method controls the status of crash.
There is a repairEngine() method for improving the
engineLife value when received an object such as repair
kit. Lastly there is a stopEngine() method to stop the
vehicle on demand.

4.8. DignityHuman

It is defined to create an artificial intelligence human
model. It additionally contains features such as detecting
the enemy, to search hiding spots for warrior characters
and move towards this spot, getting scared level from
enemies.

4.9. DignityAnimal

It is a class designed just as DignityHuman and customized
according to animalistic properties and able to create
animal objects. DignityAnimal class additionally has the
information of animal types, whether it will hunt down the
humans or not, whether it will hunt down its own kind or
not and whether it lives in packs or not. In the light of these
information; detecting humans and hunt them, detecting its
own kind and hunt them and also detecting its own kind
and go next to them situations are built.

5. A SAMPLE GAME DEVELOPED BY USING
DignityAI

When programming a sample game by using DignityAI
rather than a visually complete prepared and production
oriented structure, a structure which uses the basic
mechanics of DignityAI, and completes missions on a

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 10

simple map and operates necessary actions as required by
using the DignityAIBase and DignityAnimal,
DignityStructure, DignityVehicle classes inherited from
DignityAIBase was built. Also, while developing the
sample game boundaries of the DignityAI library and extra
properties, which can be developed, are set to be included
in the later studies.

Game to be developed shall define the paths and obstacles
on a randomly created 48x48 grid map. Afterwards, a
simple tank model is controlled by DignityVehicle class
and all the properties such as finding path, detection,
mission managing, action managing are handled. Besides
that, there is a DignityStructure object named
RandomModelCreator which inserts objects that can
gather at random points on the map. Lastly there are
RedCreator and BlueCreator objects which are
DignityStructure objects and produce Red and Blue teams.
These objects create tanks on stage periodically and
provide these tanks to follow the determined path by
assigning coordinates on the random map and meanwhile
making them to show different acts against the enemies
and collectible objects that they detect.

Figure 2. Created random map

As can be seen in Figure 2 the map will be created randomly
every time the page is refreshed. After the map is created, object
named RandomModelCreateor is created and first mission
definitions are made in order to create objects that can gather on
random points on the map.

addRandomModelCreator: function() {
//create random model creator
var _action = new DignityAction();
_action.customActionObj = this;
_action.customActionName = 'createRandomModel';
var _mission = new DignityMission();
_mission.async = true;
_mission.continuous = true;
_mission.actionTime = _action;
_mission.actionTimeName = 'custom';
_mission.time = 10000; //create every 10 seconds
var _creator = new DignityStructure();
_creator.missionList.push(_mission);
_creator.start();
},
createRandomModel: function() {
var model = this.getRandomModel();
model.setPosition(this.getRandomPosition());
},

By means of addRandomModelCreator() method, firstly a
DignityAction object is defined. createRandomModel()
method is defined to this object’s customActionObj and
customActionName properties, which are in the same
script. After the action definition, a DignityMission object
is created to manage how this action will work. This object
contains a mission, which works asynch and continues
constantly. It calls the DignityAction‘s custom() method
in every 10 seconds. And this method also calls the above
described relevant method and the model is created in a
random point. Figure 3 shows models randomly created on
the map.

Figure 3. Models randomly created on the map

Together with these one of the 4 models will be randomly
added on the map in every ten seconds. After finish the
creation of these random creations, it is continued to create
tanks one each for red and blue team and to define the
artificial intelligence objects and their functions. Process
of creating a tank for the red team is as follows.

addRedTankCreator: function() {
 //create red tank creator
 var _action = new DignityAction();
 _action.customActionObj = this;
 _action.customActionName = 'createRedTankModel';

 var _mission = new DignityMission();
 _mission.async = true;
 _mission.continuous = false;
 _mission.actionTime = _action;
 _mission.actionTimeName = 'custom';
 _mission.time = 10000; //create every 10 seconds

 var _creator = new DignityStructure();
 _creator.missionList.push(_mission);
 _creator.start();
 },
 createRedTankModel: function() {
 var tankName = 'tank_' + new Date().getTime();
 var newTank = this.tank.clone();
 newTank.setName(tankName);
 newTank.enabled = true;
 newTank.setPosition(this.getRandomPositionRange(2, 10, 2,
10)); //left bottom
 newTank.addComponent('collision', { type: 'box', halfExtents:
new pc.Vec3(0.5, 0.5, 0.5) });
 this.tanks.addChild(newTank);
 var ourPath = new DignityPath();
 ourPath.map = this.map.script.createmap.map;
 var mapX = Math.round((47.5 - newTank.getPosition().z) / 1.0);
 var mapY = Math.round((newTank.getPosition().x - 0.5) / 1.0);

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 11

 while(ourPath.movementPath.length == 0) {
 ourPath.from =[mapX,mapY];
 ourPath.randomable = true;
 ourPath.findPath();
 }

 console.log('red path: ' + ourPath.movementPath);

 var vehicle = new DignityVehicle();
 vehicle.appContext = app;
 vehicle.enemyList.push('tank');
 vehicle.enemyList.push('damage');
 vehicle.enemyList.push('repair');
 vehicle.enemyList.push('shield');
 vehicle.enemyList.push('default');
 vehicle.ignoreList.push('wall');
 vehicle.pathList.push(ourPath);
 vehicle.parentObject = newTank;

 newTank.script.tank.setHP(10);
 newTank.script.tank.ai = vehicle;
 newTank.script.tank.hidden(false);
 newTank.script.tank.setTankName('red1');

 var firstAction = new DignityAction();
 firstAction.moveObj = vehicle;

 var firstMission = new DignityMission();
 firstMission.async = true;
 firstMission.actionStart = firstAction;
 firstMission.actionStartName = 'move';

 var secondAction = new DignityAction();
 secondAction.senseObj = vehicle;
 secondAction.senseRadius = 10;

 var secondMission = new DignityMission();
 secondMission.async = true;
 secondMission.actionStart = secondAction;
 secondMission.actionStartName = 'sense';

 vehicle.missionList.push(firstMission);
 vehicle.missionList.push(secondMission);
 vehicle.start();
 },
 addBlueTankCreator: function() {
 //create blue tank creator
 var _action = new DignityAction();
 _action.customActionObj = this;
 _action.customActionName = 'createBlueTankModel';

 var _mission = new DignityMission();
 _mission.async = true;
 _mission.continuous = false;
 _mission.actionTime = _action;
 _mission.actionTimeName = 'custom';
 _mission.time = 10000; //create every 10 seconds

 var _creator = new DignityStructure();
 _creator.missionList.push(_mission);
 _creator.start();
 },

 createBlueTankModel: function() {
 var tankName = 'tank_' + new Date().getTime();
 var newTank = this.tank.clone();
 newTank.setName(tankName);
 newTank.enabled = true;
 newTank.setPosition(this.getRandomPositionRange(37, 45, 2,
10)); //right top
 newTank.addComponent('collision', { type: 'box', halfExtents:
new pc.Vec3(0.5, 0.5, 0.5) });
 this.tanks.addChild(newTank);

 var ourPath = new DignityPath();
 ourPath.map = this.map.script.createmap.map;

 var mapX = Math.round((47.5 -
newTank.script.tank.entity.getPosition().z) / 1.0);
 var mapY =
Math.round((newTank.script.tank.entity.getPosition().x - 0.5) / 1.0);

 while(ourPath.movementPath.length == 0) {
 ourPath.from =[mapX,mapY];
 ourPath.randomable = true;
 ourPath.findPath();
 }

 console.log('blue path: ' + ourPath.movementPath);
 var vehicle = new DignityVehicle();
 vehicle.appContext = app;
 vehicle.enemyList.push('tank');
 vehicle.enemyList.push('damage');
 vehicle.enemyList.push('repair');
 vehicle.enemyList.push('shield');
 vehicle.enemyList.push('default');
 vehicle.ignoreList.push('wall');
 vehicle.pathList.push(ourPath);
 vehicle.parentObject = newTank;

 newTank.script.tank.setHP(10);
 newTank.script.tank.ai = vehicle;
 newTank.script.tank.hidden(false);
 newTank.script.tank.setTankName('blue1');

 var firstAction = new DignityAction();
 firstAction.moveObj = vehicle;

 var firstMission = new DignityMission();
 firstMission.async = true;
 firstMission.actionStart = firstAction;
 firstMission.actionStartName = 'move';

 var secondAction = new DignityAction();
 secondAction.senseObj = vehicle;
 secondAction.senseRadius = 10;

 var secondMission = new DignityMission();
 secondMission.async = true;
 secondMission.actionStart = secondAction;
 secondMission.actionStartName = 'sense';

 vehicle.missionList.push(firstMission);
 vehicle.missionList.push(secondMission);
 vehicle.start();
 },

When looked into the process blog above
addRedTankCreator() and addBlueTankCreator(), which
firstly definitions of DignityAction, DignityMission are
made, can be seen. Here also a customAction definition is
made, a mission definition which will work after 10
seconds but won’t repeat is made with DignityMission too.
10 seconds waiting after the opening,
createRedTankModel() method is called and artificial
intelligence tank character is added to scene as shown in
Figure 4.

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 12

Figure 4. Read and blue tank models

When looked into createRedTankModel method, firstly a
tank cloning process is completed. Collision component is
described for tank model too. movementPath property gets
created by means of findPath() method by linking this
object to the created map.

DignityVehicle class is used in order to give artificial
intelligence features to tank model. With the help of this
class, tank’s enemy (enemyList) and friend (friendList)
lists are defined. Meanwhile a wall model is added into
ignoreList in order to not to detect the wall. Afterwards,
previously created DignityPath object is given to pathList
as well. Here, parentObject and appContext properties are
used to access to game engines’s sources.

After the cloning of the tank model, which was created in
the game engine and does not have artificial intelligence
feature, created DignityVehicle object can use the game
engine functions with the ai property in this object.

There are two action and two mission definitions for the
tank. First of them is the move action. This action is set to
work as asynchronously at the beginning. Second action is
the detection function. Here, it is provided for tank to scan
a 10-unit area by giving a senseRadius. By adding all these
properties to DignityVehicle’s missionList, start() method
of the DignityVehicle object is called. This allows the
activation of the artificial intelligence by running these
missions.

After all these processes, two tanks for two different teams
detect the enemies and fire at them with the shoot() method
as in Figure 5 while moving on randomly given paths.

Figure 5. Tank detects and shoot

6. CONCLUSION AND RECOMMENDATIONS

While having an object, which can be used in HTML5
game engines, object oriented structure, the developed
artificial intelligence library also contains the necessary
items in a HTML5 based artificial intelligence library
together with action management and navigation
functions.
With a flexible structure, DignityMission class carries out
the operation of missions, switching between missions and
mission management.

While DignityAction class is able to manage the basic
actions by means of move(), sense(), create(), destroy()
and upgrade() methods, it can be customized with
custom() method and this provides the flexible operation
of the system by supporting the actions which can be
defined apart from these five actions.

Among the existing methods on small and middle sized
maps, with A* algorithm and three basic distance
calculation methods, Manhattan and Diagonal and
Euclidean, DignityPath class is the one that works simplest
and most consistent. However, DignityPath class will be
more powerful by adding other algorithms and also
different calculation methods.

DignityAIBase class manages the basic artificial
intelligence functions as well as being the basic class of
the customized classes. With this aspect, it is in the
backbone of the system. DignityVehicle, DignityHuman,
DignityAnimal and Dignity Structure classes, which are
inherited from DignityAIBase, get more powerful and
more inclusionary when customized within themselves.

Also, by being open source, developing of DignityAI will
move even faster by adapting it to other popular game
engines. It will take its place in the literature by being a
complete artificial intelligence library, which can carry out
all the functions such as situation management, navigation,
mission management and action management.

In this regard, first development was made on PlayCanvas
game engine. Most important reason to choose PlayCanvas

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 13

game engine is because time to start developing game on
this one is fairly short and its game engine infrastructure is
quite powerful. Also with the help of PlayCanvas’ online
editor, stage design and 3D game design can be done
easily. In addition to all these there are open source games
and ready game models in PlayCanvas. These open source
games can be forked from the main project as required and
keep on developing at its own side. Thus, making it
possible to spare more time to DignityAI’s own dynamics
and powerful structure rather than struggling with the
game engine’s and game’s components.

In the next phase of DignityAI, the target is; to develop the
system by adapting it to all artificial engine dynamics and
HTML5 game methods and even by moving out of the
HTML5 boundaries and contribute to HTML5’s
development and adapting it to Unity, Unreal Engine and
CryEngine game engines, which are more global game
engines. For this DignityAI is published as fully open
source at social code sharing site Github [19]. Also, the
sample application made with DignityAI is published
through Github [20].

It is foreseen that the next model of the DigntyAI will be a
model which can think, add its own missions by itself and
choose its own actions and learn.

REFERENCES

[1] J. Wexler, «Artificial Intelligence in Games: A
look at the smarts behind Lionhead Studio’s
“Black and White” and where it can and will go
in the future,» 2002. [Çevrimiçi]. Available:
http://www.cs.rochester.edu/~brown/242/assts/t
ermprojs/games.pdf. [%1 tarihinde
erişilmiştir19 April 2016].

[2] Z. Middleton, «Case History: The Evolution of
Artificial Intelligence in Computer Games,»
2002. [Çevrimiçi]. Available:
http://web.stanford.edu/group/htgg/sts145paper
s/zmiddleton_2002_1.pdf. [Accessed 19 04
2016].

[3] M. Stall, «My baby, the finite state machine,»
2006. [Çevrimiçi]. Available:
http://blogs.msdn.com/b/jmstall/archive/2006/0
9/13/baby-state-machine.aspx. [Accessed 21 04
2016].

[4] B. Schwab, AI game engine programming,
Boston, Massachusetts: Cengage Learning,
2009.

[5] P. Lubbers, B. Albers ve F. Salim, Pro HTML5
programming, New York: Apress, 2011.

[6] A. Freeman, The Definitive Guide to HTML5,
New York: Apress, 2011.

[7] T. Parisi, WebGL: up and running, California:
O'Reilly Media, 2012.

[8] S. Rabin, AI Game Programming Wisdom,
Newton Centre: Charles River Media, 2002.

[9] K. Compton and M. Mateas, "Procedural Level
Design for Platform Games," in In Proceedings
Of The Second Artificial Intelligence And
Interactive Digital Entertainment Conference,
California, 2006.

[10] D. Beirne, "Racing Game AI: An Investigation
into AI Techniques for Motorsport Simulation
Games," 2007. [Online]. Available:
http://www.mygamedemos.com/Abertay/David
%20Beirne%20CS%201130A%20Artificial%2
0Intelligence%20for%20Games%20-
%20Racing%20Game%20AI.pdf. [Accessed 21
04 2016].

[11] J. Gordon, «A finite state machine javascript
micro framework. Github Repository,» 2011.
[Çevrimiçi]. Available:
https://github.com/jakesgordon/javascript-state-
machine. [Accessed 21 04 2016].

[12] J. Cowart, «js ex machina - finite state machines
in JavaScript. Github Repository,» 2012.
[Çevrimiçi]. Available:
https://github.com/ifandelse/machina.js.
[Accessed 21 04 2016].

[13] X. Xu, «A comprehensive path-finding library
for grid based games. Github Repository,»
2011. [Çevrimiçi]. Available:
https://github.com/qiao/PathFinding.js.
[Accessed 21 04 2016].

[14] A. Subagio, Learning Construct 2: Design and
create your own engaging, extensible and
addictive game using Construct 2, Birmingham:
Packt Publishing, 2014.

[15] D. Cielen ve A. Meysman, HTML5 Game
Development with ImpactJS: A step-by-step
guide to developing your own 2D games,
Birmingham: Packt Publishing, 2013.

[16] B. Bibat, "HTML 5 Shoot’em Up in an
Afternoon: Learn (or teach) the basics of Game
Programming with this free Phaser tutorial,"
2014. [Online]. Available:
https://leanpub.com/html5shootemupinanaftern
oon/read. [Accessed 21 04 2016].

[17] P. Kashyap, «Investigation into the use of
HTML 5 game engines to create a responsive
social educational game for children,» 2015.
[Çevrimiçi]. Available:
https://espace.cdu.edu.au/eserv/cdu:46185/Thes
is_CDU_46185_Kashyap_P.pdf. [Accessed 21
04 2016].

[18] B. McInnis, R. Shimizu, H. Furukawa, R.
Fushimi, R. Tanaka ve K. Kratzer, HTML5

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 14

Game Programming with enchant.js, New York:
Apress, 2013.

[19] B. Uslu, «DignityAI - AI Library for HTML5
Games. Github Repository,» 2015. [Çevrimiçi].
Available:
https://github.com/berkanuslu/dignityai.
[Accessed 21 04 2016].

[20] B. Uslu, «DignityAI Demo 1: Tanx AI. Github
Repository,» 2015. [Çevrimiçi]. Available:
https://github.com/berkanuslu/dignity_tank.
[Accessed 21 04 2016].

B. Uslu, E.U. Küçüksille / Artificial intelligence library for html5 based games: DignityAI

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 1-15 15

