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Abstract
Let G be a bounded Jordan domain in the complex plane C. In this work under some
restrictions of G the near best approximation property of complex interpolation and Pois-
son polynomials based on the Faber polynomials of G in the weighted variable exponent
Smirnov classes Ep(·)

ω (G) are proved.
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1. Introduction
LetG ⊂ C be a bounded Jordan domain in the complex plane C, bounded by a rectifiable

Jordan curve Γ and let G−:= Ext Γ. Let also T:= {w ∈ C : |w| = 1}, D := Int T and
D−:= Ext T.

The weighted variable exponent Lebesgue spaces Lp(·)
ω (Γ) for a given weight ω and

Lebesgue measurable variable exponent p(·) ≥ 1 on Γ, we define as the set of Lebesgue
measurable functions f , such that

∫
Γ |f(z)ω (z)|p(z) |dz| < ∞. If ess supz∈Γ p (z) < ∞,

then L
p(·)
ω (Γ) is a Banach space equipped with the norm

‖f‖
L

p(·)
ω (Γ) := inf

λ > 0 :
∫
Γ

|f(z)ω (z) /λ|p(z) |dz| ≤ 1

 < ∞.

If p(·) ≡ p, it is the classical weighted Lebesgue space Lp
ω (Γ). In the case of ω(·) ≡ 1, it

turns to variable exponent Lebesgue spaces Lp(·)(Γ) endowed with the norm ‖‖Lp(·)(Γ) :=
‖‖

L
p(·)
1 (Γ), investigated in [20]. For real variable exponents p(·) detailed information about

the variable exponent Lebesgue spaces can be found in the monographs [4, 10,28].
By Ep (G) we denote the Smirnov class of analytic functions in G. As is known if

f ∈ Ep (G), then there exists a sequence (γn) of the rectifiable Jordan curves γn ⊂ G, n =
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1, 2, ..., tending to Γ in the sense that γn eventually surrounds each compact subdomain
of G such that ∫

γn

|f (z)|p |dz| ≤ M < ∞, 1 ≤ p < ∞.

Each function f ∈ Ep (G) has [8, pp. 419-438] non-tangential boundary values almost
everywhere (a.e) on Γ and the boundary function belongs to Lp(Γ). The set

Ep(·)
ω (G) :=

{
f ∈ E1(G) : f ∈ Lp(·)

ω (Γ)
}

is called the weighted variable exponent Smirnov class of analytic functions in G. If ω ≡ 1,
then it turns to variable exponent Smirnov class Ep(·)(G), considered by us in [18]. Under
the condition 1 ≤ ess supz∈Γ p (z) < ∞, Ep(·)

ω (G) becomes a Banach space with the norm
‖f‖

E
p(·)
ω (G) := ‖f‖

L
p(·)
ω (Γ) .

Let E be the segment [0, 2π] or a Jordan rectifiable curve Γ and let p (·) : E → R+ :=
(0,∞) be a Lebesgue measurable function on E such that

1 < p− := ess inf
z∈E

p(z) ≤ ess sup
z∈E

p(z) =: p+ < ∞. (1.1)

Definition 1.1. We say that p (·) ∈ P0(E), if p (·) satisfies the conditions (1.1) and the
inequality

|p(z1) − p(z2)| ln (|E| / |z1 − z2|) ≤ c(p), ∀z1, z2 ∈ E, z1 6= z2
with a positive constant c(p) , where |E| is the Lebesgue measure of E.

Let g be a continuous real variable function and let
ω (g, t) := sup

|t1−t2|≤t
|g (t1) − g (t2)| , t1, t2 ∈ (0,∞), t > 0,

be its modulus of continuity, defined on [0,∞).

Definition 1.2. If
sup
Bj

|Bj ∩ Γ|−1
∥∥∥ωχBj

∥∥∥
Lp(·)(Γ)

∥∥∥ω−1χBj

∥∥∥
Lq(·)(Γ)

< ∞, 1/p (·) + 1/q (·) = 1

for a given exponent p (·) defined on Γ, where the supremum is taken over all discs Bj

with the characteristic functions χBj , then we write ω ∈ Ap(·)(Γ).

Definition 1.3. Let Γ be a smooth Jordan curve and let θ (s) be the angle between the
tangent and the positive real axis expressed as a function of arclength s. If θ (s) has a
modulus of continuity ω (θ, t), satisfying the Dini-smooth condition:∫ δ

0
[ω (θ, t) /t] dt < ∞, δ > 0,

then we say that Γ is a Dini-smooth curve. The set of Dini-smooth curves we denote by
D.

Let Γ ∈ D. By ϕ we denote the conformal mapping of G− onto D−, normalized by the
conditions: ϕ (∞) = ∞, limz→∞ ϕ (z) /z > 0. Let ψ be the inverse mapping of ϕ. The
mappings ϕ and ψ have continuous extensions to Γ and T, respectively. Their derivatives
ϕ

′and ψ′ have definite nontangential boundary values a.e. on Γ and T, and the boundary
functions are Lebesgue integrable on Γ and T, respectively [8, p. 419-438].

For f ∈ L
p(·)
ω (Γ), p ∈ P0(Γ) and ω ∈ Ap(·)(Γ) we set f0 := f ◦ ψ, p0 := p ◦ ψ, and

ω0 := ω ◦ ψ. If Γ ∈ D, then by [33]

f ∈ Lp(·)
ω (Γ) ⇔ f0 ∈ Lp0(·)

ω0 (T) , p ∈ P0(Γ) ⇔ p0 ∈ P0(T) (1.2)
and ω ∈ Ap(·)(Γ) ⇔ ω0 ∈ Ap0(·)(T).
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Let Fk, k = 0, 1, 2, .., be the Faber polynomials of G, which can be defined by the series
representation [32]:

ψ′ (w)
ψ (w) − z

=
∞∑

k=0

Fk (z)
wk+1 , w ∈ D−, z ∈ G, (1.3)

i.e., as the coefficients of Laurent series expansion of ψ′ (w) / [ψ (w) − z] in a neighborhood
of ∞. Therefore, Fk has the integral representation

Fk (z) = 1
2πi

∫
T

wkψ′ (w)
ψ (w) − z

dw, z ∈ G. (1.4)

Using Cauchy’s integral representation

f(z) = 1
2πi

∫
Γ

f(ζ)
ζ − z

dζ = 1
2πi

∫
T

f0(w)ψ′ (w)
ψ (w) − z

dw, z ∈ G,

which holds for every f ∈ E
p(·)
ω (G) ⊂ E1(G), and (1.3) we have

f (z) ∼
∞∑

k=0
akFk (z) , z ∈ G, (1.5)

where ak (f), k = 0, 1, 2, .., are the Faber coefficients of f , defined by

ak = ak (f) : = 1
2πi

∫
T

f0 (w)
wk+1 dw. (1.6)

Let γ be an oriented rectifiable curve. For a given z ∈ γ and δ > 0, by s+ (z, δ)
(respectively by s− (z, δ) ) we denote the subarc of γ, in the positive (respectively negative)
orientation of γ, with the starting point z, such that arc length from z to each point less
than δ.

If γ is smooth and the equality

lim
δ→0


∫

s−(z,δ)

|dς arg (ς − z)| +
∫

s+(z,δ)

|dς arg (ς − z)|

 = 0

holds uniformly for z ∈ γ, then it is said [35] that γ is of vanishing rotation (V R). In [35]
L. Zhong and L. Zhu proved that there exists a smooth curve which is not of V R . On
the other hand, if γ ∈ D, then γ is V R (see, [35]).

Definition 1.4 ([6]). Let γ be a rectifiable Jordan curve with length L and let z =
z (t),t ∈ [0, L], be its parametric representation. If β (t) := arg z′ (t) can be defined on
[0, L] to become a function of bounded variation, then γ is called of bounded rotation
(BR) and

∫
Γ |dβ (t)| is called total rotation of γ.

If γ ∈ BR, then there are two half tangents at each point of γ.
The class of bounded rotation curves is sufficiently wide. For example, a curve which

is made up of finitely many convex arcs (corners are permitted) is bounded rotation [7].
Every V R curve and also a piecewise V R curve considered in [35] is BR curve. As
mentioned above, a BR curve may have cusps or corners. Moreover, there exists a BR
curve which is not a V R curve, for instance a rectangle in the plane.

Let Πn be the class of algebraic polynomials of degree not exceeding n and let

En (f)G,p(·),ω : = inf
{

‖f − Pn‖
L

p(·)
ω (Γ) : Pn ∈ Πn

}
, n = 1, 2, ...

be the best approximation numbers of f ∈ E
p(·)
ω (G) in Πn.
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Supposing that all of the zeros zk, k = 1, 2, ..., n, of the nth Faber polynomial Fn are
in G, we construct the (n− 1) th Lagrange interpolating polynomial Ln−1 (f, z) for f ∈
E

p(·)
ω (G), with the interpolation nodes zk, k = 1, 2, ..., n, having the integral representation

Ln−1 (f, z) = 1
2πi

∫
Γ

ω∗
n (t) − ω∗

n (z)
ω∗

n (t)
f (t)
t− z

dt,

where ω∗
n (z) := Πn

k=1(z − zk).
We also define the Poisson polynomial for a given function f ∈ E

p(·)
ω (G) as

Vn (f, z) :=
n∑

k=0
akFk (z) +

2n−1∑
k=n+1

(2 − k/n) akFk (z) , z ∈ G,

where ak, k = 0, 1, ..., are the Faber coefficients of f , defined by (1.6).
The Faber polynomials have different applications in complex analysis, especially in

approximation theory they can be used for construction of approximation polynomials in
the classical Smirnov classes. Detailed information about these polynomials and theirs
applications in approximation theory are given in the monographs [6, 31, 32]. Relatively
new results obtained in the different generalizations of Smirnov classes can be found in the
works: [13–17, 22–24]. They are important also in the case of variable exponent Smirnov
classes (see, for example: [18,19,33]).

In this work we prove the near best approximation property of complex interpolation
polynomials, constructed on the zeros of Faber polynomials, and also of Poisson polyno-
mials in the weighted variable exponent Smirnov classes Ep(·)

ω (G).
Let

MΓ (f) (z) := sup
r>0

1
|Γ (z, r)|

∫
Γ(z,r)

|f (ζ)| dζ

be the Hardy-Littlewood maximal function of f ∈ L
p(·)
ω (Γ), where

Γ (z, r) := {t ∈ Γ : |t− z| < r}
with the Lebesgue measure |Γ (z, r)| for z ∈ Γ and r > 0.

Definition 1.5. If the Hardy-Littlewood maximal operator MΓ : f → MΓ (f) is bounded
in L

p(·)
ω (Γ) then we write ω ∈ Ap(·) (Γ).

Our new results are following:

Theorem 1.6. Let Γ be a BR curve without cusps. If p (·) ∈ P0(Γ) and ω−p∗ ∈ A p(·)
p(·)−p∗

(Γ)
for some p∗ ∈ (1, p−), then there exists a positive constant c (p,Γ) such that for every
f ∈ E

p(·)
ω (G) and n = 1, 2, ... the inequality

‖f − Ln−1 (f)‖
L

p(·)
ω (Γ) ≤ c (p,Γ)En−1 (f)G,p(·),ω

holds.

Since the Hardy-Littlewood maximal operator MΓ : f → MΓ (f) is bounded in the
non-weighted Lebesgue space Lp(·)(Γ), in the case of ω ≡ 1 we have:

Corollary 1.7. Let Γ be a BR curve without cusps. If p (·) ∈ P0(Γ), then there exists a
positive constant c (p,Γ) such that for every f ∈ Ep(·)(G) and n = 1, 2, ... the inequality

‖f − Ln−1 (f)‖Lp(·)(Γ) ≤ c (p,Γ)En−1 (f)G,p(·)

holds.

The following theorem expresses the near best approximation property of Poisson poly-
nomials in E

p(·)
ω (G):
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Theorem 1.8. Let Γ ∈ D. If p (·) ∈ P0(Γ) and ω ∈ Ap(·)(Γ), then there exists a positive
constant c (p,Γ) such that for every f ∈ E

p(·)
ω (G) and n = 1, 2, ... the inequality

‖f − Vn (f)‖
L

p(·)
ω (Γ) ≤ c (p,Γ)En−1 (f)G,p(·),ω

holds.

In the classical Smirnov spaces these problems were investigated by many authors.
In particular, in [27] X. C. Shen and L. Zhong obtain a series of interpolation nodes
in G and show that in the case of Γ ∈ C (2, α) , 0 < α < 1, the interpolating and
best approximating polynomials have the same order of convergence in Ep(G), i.e., the
interpolating polynomials have near best approximation property in Ep(G). Later L. Y.
Zhu [36], choosing the interpolation nodes as the zeros of Faber polynomials of G, obtained
similar results under the condition of Γ ∈ C (1, α). Note that in these works Γ does not
admit corners. When Γ is a piecewise V R curve without cusps, in [35] L. Zhoung and L.
Zhu showed that the interpolating polynomials, based on the zeros of Faber polynomials
of G, converge in the Smirnov classes Ep(G), 1 < p < ∞. In the reflexive Smirnov-Orlicz
classes and weighted symmetric Smirnov classes similar problems, when Γ is a BR curve
without cusps, investigated in [1] and [3], respectively.

Relating to the Poisson polynomials it is worth noting that the near best approximation
property of these polynomials in the uniform norm and in the weighted Smirnov-Orlicz
classes was proved in [30] and [2], respectively.

Note that the quantities ‖f − Ln−1 (f)‖
L

p(·)
ω (Γ) and ‖f − Vn (f)‖

L
p(·)
ω (Γ), estimated in

Theorems 1.6 and 1.8 can be also estimated by the modulus of smoothness Ωr (f, δ)G,p(·),ω,
defined below.

Definition 1.9. For g ∈ L
p(·)
ω (T), p (·) ∈ P0(T) and ω ∈ Ap(·)(T), we set

∆r
tg (w) :=

r∑
s=0

(−1)r+s

(
r

s

)
g
(
weist

)
, r = 1, 2, 3, ..., t > 0

and

Ωr (g, δ)T,p(·),ω := sup
0<|h|≤δ

∥∥∥∥∥∥1
h

h∫
0

∆r
tg (w) dt

∥∥∥∥∥∥
L

p(·)
ω (T)

.

For a given function f ∈ L
p(·)
ω (Γ) we define the Cauchy type integral

f+
0 (w) := 1

2πi

∫
T

f0 (τ)
τ − w

dτ , w ∈ D, f0 := f ◦ ψ

which is analytic in D.
Motivating from (1.2) we can define the modulus of smoothness for f ∈ E

p(·)
ω (G) as

Ωr (f, δ)G,p(·),ω : = Ωr

(
f+

0 , δ
)
T,p0(·),ω0

, δ > 0. The following theorem in the case of r = 1
was proved in [33]. For r > 1 it can be proved using [34] by similar way.

Theorem 1.10. Let Γ ∈ D, p (·) ∈ P0(Γ), r = 1, 2, . . . , and ω ∈ Ap(·)(Γ). If f ∈ E
p(·)
ω (G),

then there is a positive constants c (p,Γ) such that the inequality

En (f)G,p(·),ω ≤ c (p,Γ) Ωr (f, 1/n)G,p(·),ω , n = 1, 2, 3, ...,

holds.

Now combining Theorems 1.6 and 1.8 respectively with Theorem 1.10, we have
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Theorem 1.11. Let Γ ∈D. If p (·) ∈ P0(Γ) and ω ∈ Ap(·)(Γ), then there exists a positive
constant c (p,Γ) such that for every f ∈ E

p(·)
ω (G) and n = 1, 2, ... the inequality

‖f − Ln−1 (f)‖
L

p(·)
ω (Γ) ≤ c (p,Γ) Ωr (f, 1/n)G,p(·),ω

holds.

Theorem 1.12. Let Γ ∈ D. If f ∈ E
p(·)
ω (G), p (·) ∈ P0(Γ) and ω ∈ Ap(·)(Γ), then there

is a positive constant c (p,Γ) such that the inequality

‖f − Vn (f, z)‖
L

p(·)
ω (Γ) ≤ c (p,Γ) Ωr (f, 1/n)G,p(·),ω

holds.

Throughout this paper by c (·), c1 (·), c2 (·), and c (·, ·), c1 (·, ·), c2 (·, ·),..., we denote
the constants depending in general only on the parameters given in the corresponding
brackets.

2. Auxiliary results
Let Γ be a BR curve without cusps. Then (see, [26])

Fn (z) = 1
π

∫
Γ

[ϕ (ς)]n dς arg (ς − z) , z ∈ Γ,

where the jump of arg (ς − z) at ς = z is equal to exterior angle αzπ in z. Hence we have

0 ≤ max
z∈Γ

|αz − 1| < 1. (2.1)

Lemma 2.1 ([1], Lemma 4). Let Γ be a BR curve without cusps. Then for arbitrary
ε > 0, there exists a positive integer n0 such that the inequality

|Fn (z) − [ϕ (z)]n| < |αz − 1| + ε, z ∈ Γ,

holds for every n > n0.

Let
SΓ (f) (z) := lim

ε→0

1
2πi

∫
Γ\{ζ∈Γ: |ζ−z|<ε}

f (ζ)
ζ − z

dζ, z ∈ Γ

be the Cauchy singular integral of f ∈ L
p(·)
ω (Γ). By Privalov’s theorem the Cauchy type

integrals

f+ (z) : = 1
2πi

∫
Γ

f (ζ)
ζ − z

dζ, z ∈ G, f− (z) : = 1
2πi

∫
Γ

f (ζ)
ζ − z

dζ, z ∈ G−,

have the nontangential inside and outside limits f+ and f−, respectively a.e. on Γ.
Furthermore, the formulas

f+ (z) = SΓ (f) (z) + 1
2f (z) and f− (z) = SΓ (f) (z) − 1

2f (z)

are valid a.e. on Γ, which imply that

f (z) = f+ (z) − f− (z) (2.2)

a.e. on Γ.

Lemma 2.2 ([33], Lemma 5). Let Γ ∈ D and p (·) ∈ P0(Γ). If f ∈ L
p(·)
ω (Γ) and ω ∈

Ap(·)(Γ), then f+ ∈ E
p(·)
ω (G).
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For z ∈ Γ and ε > 0 let Γ (z, ε) := {t ∈ Γ : |t− z| < ε} with the Lebesgue mea-
sure |Γ (z, ε)|. We recall that a rectifiable Jordan curve Γ is called a Carleson curve if
supε>0 supz∈Γ |Γ (z, ε)| /ε < ∞. The class of Carleson curves is sufficiently wide. In par-
ticular, every BR curve and Dini-smooth curve is a Carleson curve. It is also known that if
Γ is a Carleson curve and ω belongs to classical Muckenhoupt class Ap(Γ), then Cauchy’s
singular operator SΓ : f → SΓ (f) is a bounded operator in the weighted space Lp

ω (Γ) ,
1 < p < ∞ (see [11, p.89] and [9]). In the case of Γ ∈ D, similar fact in Lp(·)

ω (Γ) was cited
in [33] based on Theorems 2.4 and 2.7 from [5].

Lemma 2.3 ([25], Theorem 4.21). Let Γ be a Carleson curve and p ∈ P0 (Γ). If ω−p∗ ∈
A p(·)

p(·)−p∗
(Γ) for some p∗ ∈ (1, p−), then the Cauchy singular operator SΓ is bounded in

L
p(·)
ω (Γ), i.e., there exists a constant c(p,Γ) such that for every f ∈ L

p(·)
ω (Γ) the inequality

‖SΓ (f)‖
L

p(·)
ω (Γ) ≤ c(p,Γ) ‖f‖

L
p(·)
ω (Γ) holds.

Let Sn (f) =
n∑

k=−n
cke

ikt, n ∈ N, be the nth partial sums of Fourier series of f ∈ L1 (T),

with the Fourier coefficients

ck := 1
2π

2π∫
0

f
(
eit
)
e−iktdt,

and let

σn (f)
(
eit
)

:= 1
n+ 1

n∑
k=0

Sk (f)

be its Fejér means. Then the inequality

‖σn (f)‖
L

p(·)
ω (T) ≤ c (p) ‖f‖

L
p(·)
ω (T) (2.3)

holds [21, Lemma 4] for every f ∈ L
p(·)
ω (T), p ∈ P0 (T) and ω ∈ Ap(·)(T), which in the

non-weighted case was also indicated in [29, Corollary 1].
Now let Tn be the class of trigonometric polynomials of degree not exceeding n and

let En (f)p(·),ω : = infTn∈Tn

{
‖f − Tn‖

L
p(·)
ω (T)

}
, n = 1, 2, ... be the best approximation

number of f ∈ L
p(·)
ω (T) in Tn .

The following lemma holds:

Lemma 2.4. Let f ∈ Lp(·) (T), p ∈ P0 (T) and ω ∈ Ap(·)(T). Then there exists a positive
constant c (p) such that

‖σn (f) − f‖
L

p(·)
ω (T) ≤ c (p)En (f)p(·),ω , n ∈ N.

Proof of Lemma 2.4. Let Tn, n = 1, 2, ..., be the trigonometric polynomials of the best
best approximation to f ∈ Lp(·) (T). Then by (2.3) we have

‖σn (f) − f‖
L

p(·)
ω (T) ≤ ‖σn (f) − Tn‖

L
p(·)
ω (T) + ‖Tn − f‖

L
p(·)
ω (T)

≤ ‖σn (f) − σn (Tn)‖
L

p(·)
ω (T) + ‖Tn − f‖

L
p(·)
ω (T)

= ‖σn (f − Tn)‖
L

p(·)
ω (T) + ‖Tn − f‖

L
p(·)
ω (T)

≤ c1 (p) ‖Tn − f‖
L

p(·)
ω (T) + ‖Tn − f‖

L
p(·)
ω (T)

= c (p)En (f)p(·),ω .

�
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For z ∈ G we consider the operator

T (f) (z) := 1
2πi

∫
T

f (w)ψ′ (w)
ψ (w) − z

dw, f ∈ Ep(·)
ω (D) .

Lemma 2.5 ([33], Theorem 9). Let Γ ∈ D, p(·) ∈ P0(Γ) and ω ∈ Ap(·)(Γ). The operator
T : Ep0(·)

ω0 (D) → E
p(·)
ω (G) is linear, bounded, one-to-one and onto. Moreover, T

(
f+

0

)
= f

for every f ∈ E
p(·)
ω (G).

Lemma 2.6 ([33], Lemma 6). Let Γ ∈ D, p(·) ∈ P0(Γ) and ω ∈ Ap(·)(Γ). If f ∈ E
p(·)
ω (G)

then there exist the positive constants ci(p,Γ), i = 2, 3, such that the following inequalities
hold:

En

(
f+

0

)
p0(·),ω0

≤ c2(p,Γ)En (f)G,p(·),ω ≤ c3(p,Γ)En

(
f+

0

)
p0(·),ω0

.

3. Proof of main results
Proof of Theorem 1.6. Let κ := maxz∈Γ |αz − 1|. Then by (2.1) we have 0 ≤ κ < 1.
Setting ε := (1 − κ) /2 in Lemma 2.1, for sufficiently large n we get

|Fn (z) − [ϕ (z)]n| < (1 + κ) /2, z ∈ Γ. (3.1)
Since Fn (z) − [ϕ (z)]n is analytic on CG := C\G, by maximum principle

|Fn (z) − [ϕ (z)]n| < (1 + κ) /2, z ∈ CG,
and therefore,

|Fn (z)| ≥ |[ϕ (z)]n| − (1 + κ) /2 ≥ (1 − κ) /2 > 0, z ∈ CG.
By choosing the interpolation nodes as the zeros of Faber polynomials, we have

f
(
z′)− Ln−1

(
f, z′) = Fn (z′)

2πi

∫
Γ

f (ς)
Fn (ς) (ς − z′)dς

= Fn
(
z′) [(f/Fn)+ (z′)] , z′ ∈ G.

Taking here the limit z′ → z ∈ Γ, along all nontangential paths inside of Γ, and using
(2.2) and Lemma 2.3 we get

‖f − Ln−1 (f)‖
L

p(·)
ω (Γ) =

∥∥∥∥Fn

[
SΓ (f/Fn) + 1

2f/Fn

]∥∥∥∥
L

p(·)
ω (Γ)

≤ ‖Fn [SΓ (f/Fn)]‖
L

p(·)
ω (Γ) + 1

2 ‖f‖
L

p(·)
ω (Γ)

≤
{

max
z∈Γ

|Fn (z)|
}

‖SΓ (f/Fn)‖
L

p(·)
ω (Γ) + 1

2 ‖f‖
L

p(·)
ω (Γ)

≤ c4 (p,Γ)
{

max
z,ς∈Γ

|Fn (z) /Fn (ς)|
}

‖f‖
L

p(·)
ω (Γ) + 1

2 ‖f‖
L

p(·)
ω (Γ) .

By (3.1), (1 − κ) /2 < |Fn (z)| < (3 + κ) /2, z ∈ Γ, and hence

‖f − Ln−1 (f, ·)‖
L

p(·)
ω (Γ) ≤

(
c4 (p,Γ) 3 + κ

1 − κ
+ 1

2

)
‖f‖

L
p(·)
ω (Γ) , z ∈ Γ.

Since
‖Ln−1 (f)‖

L
p(·)
ω (Γ) ≤ ‖f‖

L
p(·)
ω (Γ) + ‖f − Ln−1 (f, ·)‖

L
p(·)
ω (Γ)

≤
(
c4 (p,Γ) 3 + κ

1 − κ
+ 3

2

)
c5 (p,Γ) ‖f‖

L
p(·)
ω (Γ)

= c6 (p,Γ) ‖f‖
L

p(·)
ω (Γ) , (3.2)
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we obtain that for the large values of n, Ln−1 (f, z) is uniformly bounded in E
p(·)
ω (G).

Let Pn−1 be (n− 1) th best approximating polynomial to f in E
p(·)
ω (G). Since Ln−1 is

a linear interpolating polynomial operator, by (3.2) we have

‖f − Ln−1 (f)‖
L

p(·)
ω (Γ) ≤ ‖f − Pn−1‖

L
p(·)
ω (Γ) + ‖Pn−1 − Ln−1 (f)‖

L
p(·)
ω (Γ)

= ‖f − Pn−1‖
L

p(·)
ω (Γ) + ‖Ln−1 (Pn−1 − f)‖

L
p(·)
ω (Γ)

≤ (1 + ‖Ln−1‖) ‖f − Pn−1‖
L

p(·)
ω (Γ)

≤
(
1 + c6 (p,Γ) ‖f‖

L
p(·)
ω (Γ)

)
En−1 (f)G,p(·),ω

= c (p,Γ)En−1 (f)G,p(·),ω .

�

Proof of Theorem 1.8 . By simple calculations we have

Vn (f, z) : =
n∑

k=0
akFk (z) +

2n−1∑
k=n+1

(
2 − k

n

)
akFk (z)

=
2n−1∑
k=0

(
2 − k

n

)
akFk (z) −

n−1∑
k=0

(
1 − k

n

)
akFk (z)

= 2
2n−1∑
k=0

(
1 − k

2n

)
akFk (z) −

n−1∑
k=0

(
1 − k

n

)
akFk (z) .

Denoting by σn−1 (f,G) := 1
n

n−1∑
k=0

k∑
j=0

ajFj (z) the Fejér means for f , constructed via the

Faber polynomials Fj (z) of G, and taken the relations
n−1∑
k=0

(
1 − k

n

)
akFk (z) =

n−1∑
k=0

(
1 − k

n

)
akFk (z)

= a0F0 (z) +
n−1∑
k=1

n− k

n
akFk (z)

= 1
n

[
na0F0 (z) +

n−1∑
k=1

(n− k) akFk (z)
]

= 1
n

n−1∑
k=0

k∑
j=0

ajFj (z) =: σn−1 (f,G) ,

and
2n−1∑
k=0

(
1 − k

2n

)
akFk (z) = 1

2n

2n−1∑
k=0

k∑
j=0

ajFj (z) = σ2n−1 (f,G)

into account, we have

Vn (f, z) = 2σ2n−1 (f,G) − σn−1 (f,G) . (3.3)

If f ∈ E
p(·)
ω (G), p (·) ∈ P0(Γ) and ω ∈ Ap(·)(Γ), then by (1.2) and Lemma 2.2 we

have f+
0 ∈ E

p0(·)
ω0 (D) ⊂ E1 (D). Hence the boundary function of f+

0 belongs to Lp0(·)
ω0 (T).

On the other hand, f+
0 is analytic function on the unit disk D, it has the Taylor series

expansion:

f+
0 (w) =

∞∑
k=0

βk

(
f+

0

)
wk, w ∈ D.
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By Theorem 3.4 in [12, p. 38]

ck

(
f+

0

)
=
{
βk

(
f+

0

)
k ≥ 0

0 k < 0,

where ck

(
f+

0

)
, k ∈ Z, are the Fourier coefficients of the boundary function of f+

0 ∈

L
p0(·)
ω0 (T) ⊂ L1 (T), and then we have

f+
0 (w) =

∞∑
k=0

ck

(
f+

0

)
wk. (3.4)

On the other hand, by (2.2), f0 = f+
0 − f−

0 on T with f+
0 ∈ E

p0(·)
ω0 (D) and f−

0 ∈
E

p0(·)
ω0 (D−). Then

ak (f) = 1
2πi

∫
T

f+
0 (w)
wk+1 dw − 1

2πi

∫
T

f−
0 (w)
wk+1 dw = 1

2πi

∫
T

f+
0 (w)
wk+1 dw = βk

(
f+

0

)
,

i.e., the Faber coefficients ak (f), k = 0, 1, 2, ..., of f ∈ E
p(·)
ω (G) are the Taylor coefficients

of f+
0 ∈ E

p0(·)
ω0 (D). If

∞∑
k=0

ak (f)Fk (z) is the Faber series expansion of f ∈ E
p(·)
ω (G), then

by (3.4), (1.5) and by definition of the operator T (f), we have that T
(

n∑
k=0

ck

(
f+

0

)
wk

)
=

n∑
k=0

ak (f)Fk (z) and T
(
σn

(
f+

0

))
= σn (f,G).

Now, using the decreasing property of the sequence
{
En

(
f+

0

)
p0(·),ω0

}∞

n=1
and also (3.3),

Lemmas 2.5, 2.4 and 2.6 we get

‖f − Vn (f, z)‖
L

p(·)
ω (Γ) ≤ 2 ‖f − σ2n−1(f,G)‖

L
p(·)
ω (Γ)

+ ‖f − σn−1(f,G)‖
L

p(·)
ω (Γ)

= 2
∥∥∥T (f+

0

)
− T

(
σ2n−1

(
f+

0

))∥∥∥
L

p(·)
ω (Γ)

+
∥∥∥T (f+

0

)
− T

(
σn−1

(
f+

0

))∥∥∥
L

p(·)
ω (Γ)

= 2
∥∥∥T (f+

0 − σ2n−1
(
f+

0

))∥∥∥
L

p(·)
ω (Γ)

+
∥∥∥T (f+

0 − σn−1
(
f+

0

))∥∥∥
L

p(·)
ω (Γ))

≤ c7 (p,Γ)
∥∥∥f+

0 − σ2n−1
(
f+

0

)∥∥∥
L

p0(·)
ω0 (T)

+c8 (p,Γ)
∥∥∥f+

0 − σn−1
(
f+

0

)∥∥∥
L

p0(·)
ω0 (T)

≤ c9 (p,Γ)E2n−1
(
f+

0

)
p0(·),ω0

+c10 (p,Γ)En−1
(
f+

0

)
p0(·),ω0

≤ c11 (p,Γ)En−1
(
f+

0

)
p0(·),ω0

≤ c (p,Γ)En−1 (f)G,p(·),ω .

�
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