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Abstract

This paper analyses a discrete-time Michaelis-Menten type harvested fishery model in the
presence of toxicity. Boundary and interior (positive) fixed points are examined. Using
an iteration scheme and the comparison principle of difference equations, we determined
the sufficient condition for global stability of the interior fixed point. It is shown that the
sufficient criterion for Neimark-Sacker bifurcation and flip bifurcation can be established.
It is observed that the system behaves in a chaotic manner when a specific set of system
parameters is selected, which are controlled by a hybrid control method. Examples are cited
to illustrate our conclusions.

1. Introduction

In ecological modelling, harvesting is considered as a crucial factor that creates the attention among researchers due to its importance
in resource management from the biological and economic point of views. The effect of harvesting on population is a basic problem in
fishery theory. How harvesting influences population dynamics depends not only stock structure and ecological parameters but also on
fishing strategies. The over-exploitation weakens the conservation of populations and also creates problem for fishery. So optimal harvesting
problem should be taken into account within the models describing population dynamics. Optimal harvesting and mathematical models are
investigated in [1]. Our main concern on fishery model as fish are one of the most valuable source of protein and many people depend on it
and it is one of the most renewable resources in ecological system [2, 3]. Fish populations facing extinction not only for over fishing, but also
on other factors such as competition and toxic materials. Industrial waste is a form of toxicity in aquatic ecosystems. In case of open access
fishery, harvest by fishermen are unregulated. Under these conditions, there may be possibility of extinction of species. Different types
of interactions are observed in fisheries systems. For the objectives of bioeconomic modelling, the most important are biological, harvest
and market interactions [4]. In particular, the biological interactions indicate predator-prey, competition between them. The interactions
between the fish populations is also significant. However, the impact of toxicity among the fish species emitted by each of them and emerge
from factories, agricultural land etc. become problems of major environmental concern. On this issue, several works are done through
mathematical models [5–10]. All these studies are mainly confined into one or two species without considering aquatic environment. It
creates among researchers to examine the effects of toxicant released by the marine biological species. The toxin emitted by one species not
only affects that species, but also affect the growth of the other species.
Maynard-Smith [11] considered the impact of toxic material in a two species Lotka-Volterra system, taking into account that each species
produce a chemical toxic to the other but only when the other is present. Kar and Chaudhuri [6] modified the system studied in [11] to a two
competing fish species which are commercially exploited. They proposed and analysed the following model:

dx
dt

= x(k1−α1x−β12y− γ1xy−q1E),

dy
dt

= y(k2−α2y−β21x− γ2xy−q2E) (1.1)

where x(t),y(t) are the densities of two competing fish species at time t, and k1,k2 are intrinsic growth rates, α1,α2 are the intra specific
competition rates respectively. The constants β12,β21 are the relative rate of inter specific competition. γ1,γ2 are the coefficients of toxicity.
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E denotes the harvesting effort. q1,q2 are the catchability coefficients of the two species. Similar type of system (1.1) is investigated in [12].
In studying harvesting phenomena, non-linear Michaelis-Menten harvesting is more realistic in fisheries modelling from the biological
and economic point of views. The conventional catch-per-unit effort harvesting faces different unrealistic and insignificant characteristics.
It is customary to take catch-per-unit effort harvesting h in the form h = qEx where q stands for the catchability coefficient of harvested
population x and E denotes the harvesting effort used during the farming process. It is clear that when harvesting effort E is constant,
harvesting activity h→ ∞ as harvested population x→ ∞ or when harvested population x is constant and fixed, harvesting activity h→ ∞ as
the harvesting effort E→ ∞. This hypothesis is unrealistic in case of random fishing due to unbounded linear increase of h with E and x [13].
In fact, Michaelis-Menten harvesting can eliminate this unrealistic situation by considering the harvesting term in the form qEx

d1E+d2x . It can be
noted that for fixed effort E, h→ q

d1
when x→ ∞ or for fixed harvested population x, h→ qx

d1
when E→ ∞.

The above studies address into continuous capture system. Though, we know that fish distribution is inhomogeneous and it is more appropriate
to consider the discrete system’s capture which in turn maintains the ecological balance and save time and produce more economic revenue
for fishermen. The dynamical behaviour of discrete time system is more complex than those obtained in continuous systems [14–16]. Even
discrete time models can show chaotic dynamics [14, 15]. Hening [17] analysed the long-term behaviour of interacting populations in a
discrete time stochastic system that can be controlled through harvesting. Ding et al. [18] investigated discrete time harvesting model of fish
populations and they derived the necessary and sufficient conditions and the characterizations of the harvesting strategies.
The main aim of this work is to investigate the discrete version of system (1.1) as well as selective non-linear harvesting qEx

d1E+d2x in the first
equation of system (1.1) where q is the catchability coefficient of the first species and d1,d2 are the degree of competition in the harvesting
business and handling time respectively. As we consider selective harvesting so q2Ey = 0.
In this paper, we propose a discrete-time two competing fish species where each species release chemical toxic to another. We study the
existence and stability of different fixed points. After then, we identify the system parameters that give Neimark-Sacker and flip bifurcation.
Chaos control of the system will be examined. Finally, we examine the global stability of the interior fixed point of the method of iteration
scheme.
The paper is formatted as follows. In Section 2, we present a discrete version of system (1.1). The dynamical behaviour of different fixed
points is described in Section 3. Chaos control is shown in Section 4. Global stability criterion of interior fixed point is presented in Section 5.
In Section 6, the dynamical behaviour of the system is demonstrated when values of parameters are changed. A brief discussion is given in
Section 7.

2. Discrete Model

Now, we present the following discrete version of system (1.1):

xn+1 = xnexp(k1−α1xn−β12yn− γ1xnyn−
qE

d1E +d2xn
),

yn+1 = ynexp(k2−α2yn−β21xn− γ2xnyn) (2.1)

where xn and yn represent population densities of two competing fish species at n-generation respectively.

3. Fixed Points and Their Nature

In this section, we determine the fixed points and their dynamics. Evidently, system (1.1) has at most four non-negative fixed points
E0 = (0,0). If q < k1d1 then the fixed point E1 = (x̄,0) exists uniquely where

x̄ =
k1d2−α1d1 +

√
(k1d2−α1d1)2 +4α1d2E(k1d1−q)

2α1d2
.

If q > k1d1,k1d2 > α1d1 and (k1d2−α1d1)
2 +4α1d2E(k1d1−q)> 0 then multiple fixed points exist E1± = (x±,0) where

x± =
k1d2−α1d1±

√
(k1d2−α1d1)2 +4α1d2E(k1d1−q)

2α1d2
and E2 = (0,

k2

α2
).

There exists interior fixed point E∗ = (x∗,y∗) where x∗ is a positive root of the equation

a0x3 +3a1x2 +3a2x+a3 = 0 (3.1)

with

a0 = d2 (γ1β21−α1γ2) ,

a1 =
1
3
[d1E(γ1β21−α1γ2)+d2(k1γ2−α1α2 +β12β21− γ1k2)],

a2 =
1
3
[d1E(k1γ2−α1α2 +β12β21− γ1k2)−d2β12k2−qEγ2 +d2k1α2],

a3 = E(d1k1α2−d1β12k2−qα2) (3.2)

and y∗ = k2−β21x∗
α2

provided k2 > β21x∗. Define

G = a2
0a3−3a0a1a2 +2a3

1,H = a0a2−a2
1.
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Structure of the interior fixed points

Theorem 3.1. Eq. (3.1) has

(a) a unique positive root x∗ if G2 +H3 > 0,a0 and a3 are of opposite signs.
(b) two positive roots x∗1,x

∗
2 if G2 +H3 < 0,a0 and a3 are of the same signs and a1 and a2 are of opposite signs.

(c) three positive roots x∗11,x
∗
12,x

∗
13 if G2 +H3 < 0,a0,a2 > 0 (or < 0) and a1,a3 < 0 (or > 0).

Proof. The positive fixed point of system (2.1) satisfies the equations

k1−α1x−β12y− γ1xy− qE
d1E +d2x

= 0, (3.3)

k2−α2y−β21x− γ2xy = 0. (3.4)

From the Eq. (3.4), we get y = k2−β21x
α2+γ2x . Substituting the value of y to the equation (3.3) is precisely equation (3.1).

(a) Assumptions of the theorem implies that (3.1) has one real root and two imaginary roots. Since a0 and a3 are of opposite signs so (3.1)
has a unique positive root.
(b)Assumptions of the theorem implies that (3.1) has three real roots and one of them is negative. Consequently, (3.1) has two positive roots.
(c) Assumptions of the theorem implies that (3.1) has three real roots and there is no negative roots. Consequently, (3.1) has three positive
roots. This completes the proof.
To determine the nature of the fixed points, we compute the Jacobian matrix at each fixed point. The Jacobian matrix at an arbitrary fixed
point (x,y) is given by

J(x,y) =
(

m11 m12
m21 m22

)
(3.5)

where

m11 = {1− (α1 + γ1y− d2qE
(d1E +d2x)2 )x}exp(k1−α1x−β12y− γ1xy− qE

d1E +d2x
),

m12 = −(β12 + γ1x)xexp(k1−α1x−β12y− γ1xy− qE
d1E +d2x

),

m21 = −(β21 + γ2y)yexp(k2−α2y−β21x− γ2xy),

m22 = {1− (α2 + γ2x)y}exp(k2−α2y−β21x− γ2xy).

We first present the results which will be required to investigate the nature of fixed points.

Lemma 3.2. ( [19]) Let the characteristic equation of J is F(λ ) = λ 2 + pλ +q = 0. Suppose λ1 and λ2 are two roots of F(λ ) = 0. Then
there are the following definitions.

1. If |λ1|< 1 and |λ2|< 1 then the fixed point is called a sink and is locally asymptotically stable.
2. If |λ1|> 1 and |λ2|> 1 then the fixed point is called a source and unstable.
3. If |λ1|> 1 and |λ2|< 1 then the fixed point is called a saddle.
4. If |λ1|= 1 or |λ2|= 1 then the fixed point is called non-hyperbolic.

Lemma 3.3. ( [19]) Let F(λ ) = λ 2 + pλ +q where p and q are constants. Suppose F(1)> 0 and λ1 and λ2 are two roots of F(λ ) = 0.
Then

1. |λ1|< 1 and |λ2|< 1 if and only if F(−1)> 0 and q < 1,
2. |λ1|> 1 and |λ2|> 1 if and only if F(−1)> 0 and q > 1,
3. |λ1|< 1 and |λ2|> 1 if and only if F(−1)< 0,
4. λ1 =−1 and |λ2| 6= 1 if and only if F(−1) = 0 and p 6= 0,2,
5. λ1 and λ2 are the conjugate complex roots and |λ1|= |λ2|= 1 if and only if p2−4q < 0 and q = 1.

Theorem 3.4. For all positive parameters, system (2.1) has the fixed point E0 = (0,0) then E0 is:

1. source if k1 >
q
d1

and hence unstable.
2. saddle if k1 <

q
d1

.
3. non-hyperbolic if k1 =

q
d1
.

Proof. The Jacobian matrix of system (2.1) at E0 is

J(E0) =

(
exp(k1− q

d1
) 0

0 expk2

)
(3.6)

Here the eigenvalues of J(E0) are λ1 = exp(k1− q
d1
)> 1 if k1 >

q
d1

and λ1 < 1 if k1 <
q
d1
. If k1 =

q
d1

then λ1 = 1 and λ2 = exp > 1 since
k2 > 0. Hence E0 is a source when k1 >

q
d1

and hence unstable. E0 is a saddle when k1 <
q
d1
. Lastly, E0 is non-hyperbolic when k1 =

q
d1
.

This completes the proof.

Theorem 3.5. Assume that q < k1d1. The fixed point E1 = (x̄,0). E1 is

1. sink if d2qEx̄
(d1E+d2 x̄)2 < α1x̄ < q+ d2qEx̄

(d1E+d2 x̄)2 and k2 < β21x̄.
2. saddle if one of the following conditions hold:
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(a) α1x̄ > q+ d2qEx̄
(d1E+d2 x̄)2 and k2 < β21x̄.

(b) d2qEx̄
(d1E+d2 x̄)2 < α1x̄ < q+ d2qEx̄

(d1E+d2 x̄)2 and k2 > β21x̄.

3. source if α1x̄ > q+ d2qEx̄
(d1E+d2 x̄)2 and k2 > β21x̄, then E1 is unstable.

4. non-hyperbolic if 1+ d2qEx̄
(d1E+d2 x̄)2 = α1x̄ or k2 = β21x̄.

Proof. The Jacobian matrix of system (2.1) at E1 is

J(E1) =

(
1− (α1− d2qEx̄

(d1E+d2 x̄)2 )x̄ −(β12 + γ1x̄)x̄
0 exp(k2−β21x̄)

)
(3.7)

The eigenvalues of J(E1) are λ1 = 1− (α1− d2qEx̄
(d1E+d2 x̄)2 )x̄,λ2 = exp(k2−β21x̄). Similar to the proof of Theorem 3.4, the above results can

be easily derived.
Remark. In case of multiple fixed points E±, we can obtain similar type of conditions as in Theorem 3.5, where x̄ is replaced by x± for
determining the nature of E1±.

Theorem 3.6. System (2.1) always has the fixed point E2 = (0, k2
α2
). E2 is

1. sink if k2 < 2 and k1 <
d1β12k2+qα2

α2d1
.

2. saddle if one of the following conditions hold:

(a) k2 > 2 and k1 <
d1β12k2+qα2

α2d1
.

(b) k2 < 2 and k1 >
d1β12k2+qα2

α2d1
.

3. source if k2 > 2 and k1 >
d1β12k2+qα2

α2d1
, then E1 is unstable.

4. non-hyperbolic if k2 = 2 or k1 =
d1β12k2+qα2

α2d1
.

Proof. The proof is similar to the proof of Theorem 3.4 and is omitted here.

Theorem 3.7. Assume that the conditions of Theorem 3.1 be hold and also suppose that a > 0. Then the fixed point E∗ is

1. sink if a < b≤ 2 or b > 2 and 2b−4 < a < b,
2. source if b≤ 2 and a > b or b > 2 and a > max{b,2b−4},
3. saddle if b > 2 and a < 2b−4,
4. non-hyperbolic if a < 2b−4, where

a = x∗y∗{(α1 + γ1y∗− d2qE
(d1E +d2x∗)2 )(α2 + γ2x∗)− (β12 + γ1x∗)(β21 + γ2y∗)} (3.8)

b = (α1 + γ1y∗− d2qE
(d1E +d2x∗)2 )x

∗+(α2 + γ2x∗)y∗ (3.9)

Proof. The Jacobian matrix at E∗ is

J(E∗) =

(
1− (α1 + γ1y∗− d2qE

(d1E+d2x∗)2 )x∗ −(β12 + γ1x∗)x∗

−(β21 + γ2y∗)y∗ 1− (α2 + γ2x∗)y∗

)
(3.10)

so the characteristic equation of the above matrix can be written as

F(λ ) = λ
2 + pλ +q = 0 (3.11)

where p =−2+b and q = 1−b+a. After simple calculation, we get

F(1) = 1+ p+q = a,

F(−1) = 1− p+q = 4−2b+a,

q−1 = a−b.

Now F(1) > 0 if a > 0. F(−1) > 0 if b ≤ 2 and a > 0 or b > 2 and a > 2b− 4, F(−1) < 0 if b > 2 and a < 2b− 4, q− 1 < 0 if a < b.
According to Lemma 3.2 and 3.3, E∗ is a sink and it is stable, if the conclusion (1) of Theorem 3.7 holds. Next, if the other conditions of
Theorem 3.7 hold separately, E∗ is a source, saddle and non-hyperbolic, respectively, at which E∗ is unstable. This completes the proof.

3.1. Bifurcation around the interior fixed point

System (2.1) has at most an unique fixed point E∗, hence the system does not admit fold bifurcation. So we are interested in examining the
Neimark-Sacker bifurcation and flip bifurcation.

Theorem 3.8. The fixed point E∗ changes from the stable state to Neimark-Sacker bifurcation if the following conditions are satisfied:
a = b and b < 4 where a and b are defined in (3.8) and (3.9).

Proof. If the Jacobian matrix J(E∗) has two complex conjugate eigenvalues with modulus 1, Neimark-Sacker bifurcation appears [20]. This
requires that det(J(E∗)) = q = 1 and −2 < tr(J(E∗)) =−p < 2. Replacing p and q, we have a = b and b < 4. This completes the proof.

Theorem 3.9. The fixed point E∗ changes from the stable state to flip bifurcation if the following conditions are satisfied:

a+4 = 2b.

Proof. System (1.1) admits flip bifurcation when a single eigenvalue −1. Thus the condition for flip bifurcation can be written in the form
1− p+q = 0. Replacing Replacing p and q, we have a+4 = 2b. This completes the proof.
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4. Chaos Control

In discrete dynamical system, one can observe chaotic behaviour for certain choices of the system parameters and controlling chaos is an
important issue. There are different methods for controlling chaos. We use mainly use hybrid control technique [21] to stabilize a chaotic
orbit at an unstable fixed point of system (2.1). Define the following controlled system with respect to (2.1):

xn+1 = ρxnexp(k1−α1xn−β12yn− γ1xnyn−
qE

d1E +d2xn
)+(1−ρ)xn,

yn+1 = ρynexp(k2−α2yn−β21xn− γ2xnyn)+(1−ρ)yn (4.1)

where 0 < ρ < 1 is taken as a control parameter. The Jacobian matrix of controlled system (4.1) evaluated at E∗ is given by

J(x∗,y∗) =

(
1−ρx∗(α1 + γ1y∗− qEd2

(d1E+d2x∗)2 ) −ρx∗(β12 + γ1x∗)
−ρy∗(β21 + γ2y∗) 1−ρy∗(α2 + γ2x∗)

)
(4.2)

The fixed point E∗ of the controlled system (4.1) is locally asymptotically stable if all the roots of the characteristic polynomial of (4.2) lie in
an unit open disk.

5. Global Stability

In this section, we will utilize the process of iteration scheme and the comparison principle of difference equation to investigate the global
stability of the positive fixed point of system (2.1). To establish global stability result, we require the following lemmas.

Lemma 5.1. ( [19]) Let f (u) = uexp(δ −ηu), where δ and η are positive constants. Then f (u) is nondecreasing for u ∈ (0, 1
η
].

Lemma 5.2. ( [19]) Assume that the sequence un satisfies un+1 = unexp(δ −ηun),n = 1,2,3, ... where δ and η are positive constants and
u0 > 0. Then;

1. If δ < 2, then limn→∞un =
δ

η
.

2. If δ ≤ 1, then un ≤ 1
η
,n = 2,3, ...

Lemma 5.3. ( [22]) Suppose that functions f ,g : Z+ × [0,∞) satisfy f (n,x) ≤ g(n,x) ( f (n,x) ≥ g(n,x)) for n ∈ Z+ and g(n,x) is
nondecreasing with respect to x. If un are the nonnegative solutions of the difference equations

xn+1 = f (n,xn),

un+1 = g(n,un)

respectively, and x0 ≤ u0 (x0 ≥ u0) then xn ≤ un (xn ≥ un) for all n≥ 0.

Theorem 5.4. Assume that k2d1(β12α1+γ1k1)+qα1α2
d1α1α2

< k1 ≤ 1 and k1(β21α2+γ2k2)
α1α2

< k2 ≤ 1 then the fixed point E∗(x∗,y∗) of system (2.1) is
globally asymptotically stable.

Proof. Assume that (xn,yn) is any solution of system (2.1) with initial values x0 > 0,y0 > 0. Let

U1 = limsupn→∞xn, V1 = liminfn→∞xn,

U2 = limsupn→∞yn, V2 = liminfn→∞yn.

In the following, we will prove that U1 =V1 = x∗,U2 =V2 = y∗.
First we show that U1 ≤Mx

1,U2 ≤My
1 . From the first equation of system (2.1), we get

xn+1 ≤ xnexp(k1−α1xn), n = 0,1,2, ...

Considering the auxiliary equation

un+1 = unexp(k1−α1un) (5.1)

by Lemma5.2 (ii), because of k1 ≤ 1, we get un ≤ 1
α1

for all n≥ 2. By Lemma 5.1, we obtain f (u) = uexp(k1−α1u) is nondecreasing for
u ∈ (0, 1

α1
]. Thus from Lemma 5.3, we get xn ≤ un for all n≥ 2, where un is the solution of Eq. (5.1) with initial value u2 = x2. By Lemma

5.2 (i), we get

U1 = limsupn→∞xn ≤ limn→∞un =
k1

α1
.

Hence, for any sufficiently small ε > 0, there exists a n1 > 2 such that if n≥ n1, then

xn ≤
k1

α1
+ ε = Mx

1.

Similarly, from the second equation of system (2.1), we obtain,

U2 = limsupn→∞yn ≤ limn→∞un =
k2

α2
as k2 ≤ 1.
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Hence, for any sufficiently small ε > 0, there exists a n2 > n1 such that if n≥ n2, then

yn ≤
k2

α2
+ ε = My

1.

Next we show that V1 ≥ Nx
1 and V2 ≥ Ny

1 . From the first equation of system (2.1), we have

xn+1 ≥ xnexp(k1−α1xn−β12My
1− γ1Mx

1My
1−

q
d1

)

Consider the auxiliary equation

un+1 = unexp(k1−
q
d1
−α1un−β12My

1− γ1Mx
1My

1). (5.2)

Since we have k1− q
d1
− β12My

1 − γ1Mx
1My

1 < 1, by Lemma 5.2 (ii), we have, un ≤ 1
α1

for n ≥ n2. By Lemma 5.1, we obtain f (u) =
uexp(k1− q

d1
−β12My

1− γ1Mx
1M1y−α1u) is nondecreasing for u ∈ (0, 1

α1
]. Thus from Lemma 5.3, we get xn ≥ un for all n≥ n2. By Lemma

5.2 (i), we get

V1 = liminfn→∞xn ≥ limn→∞un =
d1(k1−β12My

1− γ1Mx
1My

1)−q
d1α1

.

Hence for any sufficiently small ε > 0, there exists n3 > n2 such that for n≥ n3,

xn ≥
d1(k1−β12My

1− γ1Mx
1My

1)−q
d1α1

− ε = Nx
1 .

From the second equation of system (2.1), we have

yn+1 ≥ ynexp(k2−α2yn−β21Mx
1− γ2Mx

1My
1).

Since we have 0 < k2−β21Mx
1− γ2Mx

1My
1 < 1, a similar argument as above, we can get

V2 = liminfn→∞yn =
k2−β21Mx

1− γ2Mx
1My

1
α2

.

Hence for any sufficiently small ε > 0, there exists n4 > n3 such that for n≥ n4,

yn ≥
k2−β21Mx

1− γ2Mx
1My

1
α2

− ε = Ny
1 .

Now we show that U1 ≤Mx
2,U2 ≤My

2 where Mx
2 ≤Mx

1, My
2 ≤My

1 respectively. From the first equation of system (2.1) for n > n4, we get

xn+1 ≤ xnexp(k1−α1xn−β12Ny
1 − γ1Nx

1Ny
1 −

qE
d1E +d2Mx

1
).

Since Mx
1 > Nx

1 and My
1 > Ny

1 , we get

k1−
q
d1
−β12My

1− γ1Mx
1My

1 < k1−β12Ny
1 − γ1Nx

1Ny
1 −

qE
d1E +d2Mx

1
≤ k1 ≤ 1.

Using the similar argument as in above, we can get

U1 = limsupn→∞xn ≤
1

α1
[k1−β12Ny

1 − γ1Nx
1Ny

1 ].

Hence for any sufficiently small ε > 0, there exists n5 > n4 such that for n≥ n5,

xn ≤
1

α1
[k1−β12Ny

1 − γ1Nx
1Ny

1 −
qE

d1E +d2Mx
1
]+

ε

2
= Mx

2 ≤Mx
1.

Similarly, from the second equation of system (2.1) for n > n5, we get

yn+1 ≤ ynexp[k2−α2yn−β21Nx
1 − γ2Nx

1Ny
1 ],

since

k2−β21Mx
1− γ2Mx

2My
2 < k2−β21Nx

1 − γ2Nx
1Ny

1 ≤ k2 ≤ 1.

Using the similar argument as in above, we can get

U2 = limsupn→∞yn ≤
1

α2
[k2−β21Nx

1 − γ2Nx
1Ny

1 ],

Hence for any sufficiently small ε > 0, there exists n6 > n5 such that for n≥ n6,

yn ≤
1

α2
[k2−β21Nx

1 − γ2Nx
1Ny

1 ]+
ε

2
= My

2 ≤My
1.
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Now we show that V1 ≥ Nx
2 and V2 ≥ Ny

2 . Further, from the first of system (2.1) for n > n6, we get

xn+1 ≥ xnexp[k1−
qE

d1E +d2Nx
1
−α1xn−β12My

2− γ1Mx
2My

2].

Since My
1 ≥My

2,M
x
1 ≥Mx

2, we have

0 < k1−
q
d1
−β12My

1− γ1Mx
1My

1 < k1−
qE

d1E +d2Nx
1
−β12My

2− γ1Mx
2My

2.

Using a similar argument, we get

V1 = liminfn→∞xn ≥
1

α1
[k1−

qE
d1E +d2Nx

1
−β12My

2− γ1Mx
2My

2].

Hence for any sufficiently small ε > 0, there exists n7 > n6 such that for n≥ n7,

xn ≥
1

α1
[k1−

qE
d1E +d2Nx

1
−β12My

2− γ1Mx
2My

2]−
ε

2
= Nx

2 .

Similarly, from the second equation of system (2.1) for n > n7, we have

yn+1 ≥ ynexp[k2−α2yn−β21Mx
2− γ2Mx

2My
2].

Since

0 < k2−β21Mx
1− γ2Mx

1My
1 < k2−β21Mx

2− γ2Mx
2My

2 ≤ k2 ≤ 1

we have

V2 = liminfn→∞yn ≥
1

α2
[k2−β2Mx

2− γ2Mx
2My

2].

Hence for any sufficiently small ε > 0, there exists n8 > n7 such that for n≥ n8,

yn ≥
1

α2
[k2−β2Mx

2− γ2Mx
2My

2]−
ε

2
= Ny

2 .

Repeating the above process, we ultimately get four sequences {Mx
n},{M

y
n},{Nx

n},{N
y
n} such that for all n≥ 2,

Mx
n =

1
α1

[k1−β12Ny
n−1− γ1Nx

n−1Ny
n−1−

qE
d1E +d2Mx

n−1
]+

ε

n
,

My
n =

1
α2

[k2−β21Nx
n−1− γ2Nx

n−1Ny
n ]+

ε

n
,

Nx
n =

1
α1

[k1−β1My
n− γ1Mx

nMy
n−

qE
d1E +d2Nx

n−1
]− ε

n
,

Ny
n =

1
α2

[k2−β21Mx
n− γ2Mx

nMy
n]−

ε

n
. (5.3)

Clearly, we have for any integer n > 0, Nx
n ≤V1 ≤U1 ≤Mx

n and Ny
n ≤V2 ≤U2 ≤My

n.
In the following, we will prove that {Mx

n} and {My
n} are monotonically decreasing and {Nx

n} and {Ny
n} are monotonically increasing, with

the help of mathematical induction. Firstly, when n = 2, it is clear that

Mx
2 ≤Mx

1,M
y
2 ≤My

1,N
x
2 ≥ Nx

1 and Ny
2 ≥ Ny

1 .

For n = k(k ≥ 2), we assume that

Mx
k ≤Mx

k−1,M
y
k ≤My

k−1,N
x
k ≥ Nx

k−1 and Ny
k ≥ Ny

k−1.

Now

Mx
k+1−Mx

k =
1

α1
[k1−β12Ny

k − γ1Nx
k Ny

k −
qE

d1E +d2Mx
k
]+

ε

k+1
− 1

α1
[k1−β12Ny

k−1− γ1Nx
k−1Ny

k−1−
qE

d1E +d2Mx
k−1

]− ε

k

= −β12

α1
[Ny

k −Ny
k−1]−

γ1

α1
[Nx

k Ny
k −Nx

k−1Ny
k−1]+

qEd2(Mx
k −Mx

k−1)

α1(d1E +d2Mx
k )(d1E +d2Mx

k−1)
− ε

k(k+1)
≤ 0.

My
k+1−My

k =
1

α2
[k2−β21Nx

k − γ2Nx
k Ny

k ]+
ε

k+1
− 1

α2
[k2−β21Nx

k−1− γ2Nx
k−1Ny

k−1]−
ε

k

= −β21

α2
[Nx

k −Nx
k−1]−

γ2

α2
[Nx

k Ny
k −Nx

k−1Ny
k−1]−

ε

k(k+1)
≤ 0

Nx
k+1−Nx

k =
1

α1
[k1−β12My

k+1− γ1Mx
k+1My

k+1−
qE

d1E +d2Nx
k
]− ε

k+1
− 1

α1
[k1−β12My

k − γ1Mx
k My

k −
qE

d1E +d2Nx
k−1

]+
ε

k

= −β12

α1
[My

k+1−My
k ]−

γ1

α1
[Mx

k+1My
k+1−Mx

k My
k ]+

qEd2(Nx
k −Nx

k−1)

α1(d1E +d2Nx
k )(d1E +d2Nx

k−1)
+

ε

k(k+1)
≥ 0

Ny
k+1−Ny

k =
1

α2
[k2−β21Mx

k+1− γ2Mx
k+1My

k+1]−
ε

k+1
− 1

α2
[k2−β21Mx

k − γ2Mx
k My

k ]+
ε

k

= −β21

α2
[Mx

k+1−Mx
k ]−

γ2

α2
[Mx

k+1My
k+1−Mx

k My
k ]+

ε

k(k+1)
≥ 0.
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This shows that {Mx
n} and {My

n} are monotonically decreasing and {Nx
n} and {Ny

n} are monotonically increasing. Therefore, by the criterion
of monotonic bounded, we have established that every one of this four sequences has a limit.
Let limn→∞Mx

n = x1, limn→∞My
n = y1, limn→∞Nx

n = x2, limn→∞Ny
n = y2. Passing to the limit as n→ ∞ in (5.3), we get

x1 =
1

α1
[k1−β12y2− γ1x2y2−

qE
d1E +d2x1

],

y1 =
1

α2
[k2−β21x2− γ2x2y2],

x2 =
1

α1
[k1−β12y1− γ1x1y1−

qE
d1E +d2x2

],

y2 =
1

α2
[k2−β21x1− γ2x1y1]. (5.4)

It is clear that x1 = x2 and x2 = y2. Thus we obtain x1 = x2 = x∗,y = y2 = y∗ as a solution of (5.3). Hence, the global asymptotic stability of
E∗(x∗,y∗) is obtained. This completes the proof of the theorem.

6. Numerical Simulation

In this section, we present some numerical simulation to illustrate the usefulness of the obtained results as well as for giving direction to find
desirable bifurcations and chaos of the discrete time system (2.1).

Example 6.1. Suppose k1 = 0.8,k2 = 0.6,α1 = 1,α2 = 1,β12 = 0.1,β21 = 0.01,γ1 = 1,γ2 = 1,E = 4,q = 0.1,d1 = 1,d2 = 1. It follows
from Theorem 5.4 that the fixed point (0.478, 0.4027) is globally stable (see Figure 6.1a and 6.1b) for initial points (0.1,0.1) and (0.5,0.2)
respectively.

Example 6.2. Suppose k1 = 2,k2 = 2.8,α2 = 1.5,β12 = 1,β21 = 1.1,γ1 = 0.5,γ2 = 1.4,E = 1,q = 0.1,d1 = 1,d2 = 1 and the initial point
((0.5,0.5) for system (2.1). We draw the bifurcation diagram with respect to the parameter α1 in the interval (0.75, 1.5). As α1 increases, we
observe a transition phase from stability to bifurcation within a limit cycle, to a periodic window and ultimately to chaos (see Figure 6.2).

Example 6.3. Suppose k1 = 2,k2 = 2.8,α1 = 1,α2 = 1.5,β12 = 1,β21 = 1.1,γ1 = 0.5,E = 1,q = 0.1,d1 = 1,d2 = 1 and the initial point
(0.5,0.5) for system (2.1). We draw the bifurcation diagram with respect to the parameter γ2 in the interval (0.7, 1.5). As γ2 increases, we
observe a transition phase from chaotic behaviour to stable state (see Figure 6.3).

Example 6.4. Suppose k1 = 1.1,α1 = 0.1α2 = 0.5,β12 = 0.1,β21 = 0.1,γ1 = 0.5,γ2 = 0.1,E = 1,q = 0.1,d1 = 1,d2 = 1 and the initial
point (0.5,0.5) for system (2.1). We draw the bifurcation diagram with respect to the parameter k2 in the interval (1.5, 3). As k2 increases, we
observe a transition phase from stability to bifurcation within a limit cycle, to a periodic window and ultimately to chaos (see Figure 6.4).

Example 6.5. Suppose k1 = 2.2,k2 = 3.2,α1 = 1,α2 = 1.5,β12 = 1,β21 = 0.5,γ1 = 0.01,γ2 = 2,E = 1,d1 = 1,d2 = 1,q = 0.1 and the
initial point (0.1,0.1) for system (2.1) showing chaotic dynamics. The condition (3) of Theorem 3.7 is satisfied and the fixed point (1.664,
0.4905) is saddle in nature and hence unstable. Chaotic dynamics is observed (see Figure 6.5a ). The chaotic system is controlled when we
choose ρ = 0.5 for system (4.1) (see Figure 6.5b).

Example 6.6. Suppose k1 = 2.2,k2 = 3.5, ,α1 = 1α2 = 1.5,β12 = 1,β21 = 2.1,γ1 = 0.04,γ2 = 0.62,q = 0.1,d1 = 1,d2 = 1 and the initial
point (0.5,0.5) for system (2.1). We draw the bifurcation diagram with respect to the parameter E in the interval (0.1,1.5). As E increases, we
observe a transition phase from stability to bifurcation within a limit cycle, to a periodic window and ultimately to chaos (see Figure 6.6).
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Figure 6.1: Time series plots of system (2.1) for k1 = 0.8,k2 = 0.6,α1 = 1,α2 = 1,β12 = 0.1,β21 = 0.01,γ1 = 1,γ2 = 1,E = 4,q = 0.1,d1 = 1,d2 = 1 with
initial points (0.1,0.1) and (0.5,0.2) respectively
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Figure 6.2: Bifurcation diagram for two competing fish species with α1 of system (2.1) for fixed values k1 = 2,k2 = 2.8,α2 = 1.5,β12 = 1,β21 = 1.1,
γ1 = 0.5,γ2 = 1.4,E = 1,q = 0.1,d1 = 1,d2 = 1.

Figure 6.3: Bifurcation diagram for competing fish species γ2 of system (1.1) for fixed values k1 = 2,k2 = 2.8,α1 = 1,α2 = 1.5,β12 = 1,β21 = 1.1,
γ1 = 0.5,E = 1,q = 0.1,d1 = 1,d2 = 1.

Figure 6.4: Bifurcation diagram for competing fish species with k2 of system (2) for fixed values k1 = 1.1,α1 = 0.11,α2 = 0.5,β12 = 0.1,β21 = 0.1,
γ1 = 0.5,γ2 = 1,E = 1,q = 0.1,d1 = 1,d2 = 1.
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Figure 6.5: Time series plots for two competing fish species of system (2.1) fixed values k1 = 2.2,k2 = 3.2,α1 = 1,α2 = 1.5,β12 = 1,β21 = 0.5,
γ1 = 0.01,γ2 = 2,E = 1,d1 = 1,d2 = 1,q = 0.1 and for system (14) with ρ = 0.5.

Figure 6.6: Bifurcation diagram for competing fish species with E of system (2.1) for fixed values k1 = 2.2,k2 = 3.5,α1 = 1,α2 = 1.5,β12 = 1,
β21 = 1.1,γ1 = 0.4,γ2 = 0.62,d1 = 1,d2 = 1,q = 0.1

7. Discussion

Kar and Chaudhuri [6] proposed system (1.1) and showed global stability and existence of bionomic equilibrium under certain conditions.
The main novelty in our study is to introduce the non-linear Michaelis-Menten type harvesting in the first equation of system (1.1) and
examine the dynamical behaviour of discrete version of the continuous system. Discrete-time harvesting models studied in [17, 18] did not
consider the effect of toxicity of the interacting populations. Michaelis-Menten harvesting of the first species plays a significant role in
determining the dynamics and bifurcations of the system. We discover interesting oscillations in the population size which are not observed in
the continuous system. The parameters q and d1 in the harvesting term influence the number and stability of the fixed points. The stability of
boundary and interior fixed points is examined. As the trivial fixed point always exists and unstable when the intrinsic growth rate of the first
fish species exceeds a certain threshold value, which in turn implies that the two species cannot go to extinction together. Neimark-Sacker
and flip bifurcation, chaos control is investigated. Furthermore, the detailed mathematical proof of the global stability of the positive fixed
point is given by using iteration scheme and the comparison principle of difference equations. Conditions of Theorem 5.4 indicate that if the
intrinsic growth rates remain below one, then the global stability of the system may occur. But if we increase these rates, then the chaotic
behaviour will appear (see Figure 6.5 a). The chaotic nature of the system is controlled by the hybrid control technique (see Figure 6.5b). In
investigating bifurcation, we have identified that intra specific competition rate (α1), toxicity rate (γ2) and the intrinsic growth rate (k2) have
a major role in the system dynamics. It is observed that if the value of one the parameters α1 or k2 are increased we find a transition phase
from stability to bifurcation within a limit cycle, to a periodic window and ultimately to chaos (see Figure 6.2 and Figure 6.4) whereas the
opposite holds when we increase the value of the toxic inhibition rate (see Figure 6.3). Thus, the increase amount toxicity level can enhance
the stability of the system. According to Figure 6.6, we can observe that the system is under control when harvesting effort E is low and
chaotic when it is increased. Bifurcating behaviour and chaos have always been considered as an unwanted situation in biology. There will
be a high risk of extinction of the species due to chaos. So, to prevent such extinction of the species, one can consider the application of a
hybrid control method. It is to be noted that the competition terms used in (1.1) are instantaneous. In other words, two different species that
compete for a given resource require a certain amount of time to get the resource. So the interference term of the model will be in the form of
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a Holling type II. Also, both the species can be harvested in the form mentioned above. Therefore, the model (2.1) can be reformulated as:

xn+1 = xnexp(k1−α1xn−
β12yn

1+a1xn
− γ1xnyn−

q1E
d1E +d2xn

),

yn+1 = ynexp(k2−α2yn−
β21xn

1+a2yn
− γ2xnyn−

q2E
d3E +d4yn

) (7.1)

Stability, bifurcation analysis and chaos control for model (7.1) is our future work for investigation.
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