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 Abstract

 The aim of this study is to determine the optimal shape and clearance of the web openings in order to both 
increase the carrying capacity and decrease the weight of classic perforated beams by using evolutionary 
topological optimization technique. The effects of the optimal shape and web openings has been obtained 
by the application of the evolutionary topological optimization through finite elements method, and then 
the obtained optimal beam has been compared with widely used perforated beams in the market by using 
stress and displacement analysis. The designed beam seemed to have more advantages than the widely 
used ones in industry with a less weight and higher carrying capacity. With the topology optimization, the 
usual classic perforated beams’ geometry has been changed and stiffness was improved.

 Keywords: Optimization, Castellated Beam, Cellular Beam, Perforated Beam, Evolutionary Optimization, To-
pology Optimization, Structural Optimization

EVRİMSEL TOPOLOJİK OPTİMİZASYON YÖNTEMİYLE  
DELİKLİ KİRİŞLERİN BÜKÜLMESİNİN BOYUT ANALİZİ

 Özet

 Bu çalışmanın amacı, klasik delikli kirişlerin hem taşıma kapasitesini artırmak hem de ağırlığını azaltmak için ağ 
açıklıklarının optimal şeklini ve açıklığını evrimsel topolojik optimizasyon tekniği kullanarak belirlemektir. Son-
lu elemanlar yöntemi ile evrimsel topolojik optimizasyonun uygulanmasıyla optimal şekil ve ağ açıklıklarının 
etkileri elde edilmiş ve daha sonra elde edilen optimal kiriş, gerilme ve yer değiştirme analizi kullanılarak piya-
sada yaygın olarak kullanılan delikli kirişlerle karşılaştırılmıştır. Bu çalışmada tasarlanan kiriş, daha az ağırlık ve 
daha yüksek taşıma kapasitesi ile endüstride yaygın olarak kullanılanlardan daha fazla avantaja sahip görünü-
yordu. Topoloji optimizasyonu ile alışılmış klasik delikli kirişlerin geometrisi değiştirildi ve sertlik iyileştirilmiştir.

 Anahtar Kelimeler: Optimizasyon, Petek Kiriş, Boşluklu Kiriş, Evrimsel Optimazasyon, Topoloji Optimzasyon, 
Yapısal Optimizasyon.
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1. INTRODUCTION

The great idea of increasing the height of the I-beam by making a hole has been used for about 
hundred years (Tsavdaridis vd, 2015). The aim of this is to increase the stiffness by increasing the 
moment of inertia (Srimari and Das, 1978). Research on beams has mainly focused on castellated 
beams which have hexagonal web openings and cellular beams circular web openings as a result of 
zigzag cut (Sharifi vd 2020). The use of cellular beams instead of castellated beams in constructions 
began in the early 90’s. One of the biggest reasons for this change is aesthetic concerns (Weidlich vd 
2021, Knowles 1991, Redwood 1968, Kerdal and Nethercot 1984, Hosain and Spiers 1970, Ward 1990). 
The most noticeable features of perforated beams are its high weight-bearing ratio and aesthetic 
appearance. In addition to the increased carrying capacity, the low weight means fewer loads on the 
construction being manufactured. One of the benefits of the web opened in addition to the aesthetic 
beauty it adds to the building is that it increases the useful floor height as building installations pass 
through these spaces.

Figure 1. Perforated beam manufacturing process

Almost all the perforated beams are manufactured by cutting the standard I profile in a zigzag shape 
and then welding the two equal halves of the beam by sliding them a half step relative to each other. 
(Figure. 1) In order to save on cost, time and labor, this method is the most frequently used technique 
in the manufacturing area. However, manufacturing of complex shapes is difficult or impossible in this 
method.
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2. BEAM OPTIMIZATION

In general, there are two kinds of optimization methods. These are deterministic optimization which 
cannot be based on any assumptions and probabilistic optimization which is based on probability 
(Lagaros vd, 2008). In this study, optimization of evolutionary bottom topology which is involved in 
probabilistic optimization has been used for solving the optimization problem. In addition, there are 
three types of design-based optimizations: sizing, shape and topological. (Figure 2)
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Figure 2. Structural optimization (a)sizing optimization  (b)shape optimization, and (c)topology 
optimization (Tsavdaridis vd. 2015). 

Figure 1. Perforated beam manufacturing process 

Figure 2. Structural optimization (a)sizing optimization (b)shape optimization, and (c)topology optimization 
(Tsavdaridis vd. 2015).

The design-based optimization aims to reduce manufacturing costs, especially in mass production in 
which a small decrease in the unit cost results in huge savings (Belegundu and Chandrupatla). The aim 
of sizing optimization is to decrease the weight into the lowest possible value under certain limit values. 
In shape optimization, on the other hand, it is aimed to increase the performance of the work piece by 
modifying its shape.

In topological optimization, the designer aims to design the most suitable work piece for manufacturing 
(Lagaros vd, 2006). Structural topological optimization is closely related with determining the web 
opened at the designable number and location to be used in this (Xie and Steven, 1993). Topology 
optimization approaches often require additional post-processing to generate a manufacturable 
topology with smooth boundaries (Rostami vd, 2021)

It is possible to find numerous studies in the open literature. However, studies on the topological 
optimization of the web opening and location are rather lacking. Therefore, this study fills this gap, by 
applying a new structure for the first time to the beams with a higher strength and lower displacement 
values than widely used beams which can be manufacturing by castellation.

One of these few studies is the evolutionary structure optimization that Lagaros at all conducted. 
The purpose of this work was to optimize the design of 3D steel structures with I-section beams. The 
optimization problem has been formulated as a combined sizing, shape and topology optimization 
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problem. While the number and size of the web opened of the beams constitute the topology and shape 
design variables respectively, the cross-sectional dimensions of the columns and beams constitute the 
sizing design variables (Hosain and Spiers, 1970)

An alternative approach is the perforated beam optimization by using harmonic optimization, which 
was used in one of Erdal at all studies. The design problem of perforated beam is formulated as the 
optimum design problem. Harmony search and particle swarm optimization methods are used to solve 
the design problem. The design algorithms based on these two techniques select the optimum region 
of a cellular beam subjected to general loading to be used in producing the optimum web opened 
dimension and the optimum number of holes in the cellular crossover. This choice was made as design 
constraints were provided and the perforated beam was made to have the lowest weight (Erdal, Doğan 
and Saka, 2011)

Then Kingman proposed a beam web opened design based on the results of topology optimization 
on standard I profiles. The nonlinear finite element analysis technique is used to determine the load 
carrying performance of the optimized beam compared to conventional cellular beams. The optimized 
beam has been found to perform well in terms of load bearing capacities and stress intensity. The 
obstacles against the implementation of the topology optimization technique for the routine design 
of the beam web opened are emphasized. In detail, a parametric topology optimization study was 
performed to determine the optimal opening topology for large diameter beam sections which were 
found in practice. Thereafter, an optimal web opened configuration is proposed which was generalized 
on the results of the parametric study. With this optimal web opened configuration, a shape optimization 
study is expected to be needed to maximize the efficiency of the beams (Kingman vd, 2013)

In 2015, Travdaridis at all focused on the application of the structural topology optimization technique 
to design the perforated I profile as an intervention to replace traditional castellated beams containing 
the elliptical sparse and finite element model, and to better understand the related mechanisms when 
subjected to bending and shearing movements. Based on the results of parametric studies, optimal 
network latency configuration is recommended. A finite element analysis is used to determine the 
performance of the optimized beam compared to the traditional commonly used castellated beam. 
It has been found that the optimized beam exceeds load carrying capacities, deformations and tensile 
strengths. The obstacles against the application of the topology optimization technique for the routine 
design of the beam mesh have been emphasized (Tsavdaridis vd, 2015)

In 2017 Çiftçioğlu weight optimization of steel frames with cellular beams are carried out. Besides, the 
behavior of optimum structural system under external loads was investigated by use of finite element 
analysis (Çiftçioğlu, 2017)

In this study a new perforated beam was designed with optimum web opening geometry and 
dimensions, with a higher weight-bearing ratio, and easy to manufacture with a low cost. The stress and 
displacement analysis for the perforated beam were obtained as a result of this study will be conducted 
in the Ansys computer software by using through finite elements method, and then the results will be 
compared to the analysis results of widely used perforated beams in the market.
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3. MATERIALS AND METHOD

3.1. Materials and Dimensions

An I sectioned of St 37 steel (200×100×3000 mm) was selected as a target material. I shaped profile has 
been used as the work piece in the whole work (ozcedemir, access date: 24,19.2021). Approximately 3 
meter spans have been selected as the profile width. The reason for the approximation of the spans is 
that slight variations are observed in the beams of different types depending on the web opened and 
the shape. For example, while the spans of standard I-profile in this study is 3 meters, the spans of the 
cellular beam manufactured from IPE200 is 3.156 meters. 

The optimization method used in this study is the finite elements method as Sigmund and Peterson have 
announced (Sigmund and Petersson). Commonly used solid isotropic material Penalization technique 
has been applied as well in order to facilitate the solution of the optimization problem (Rozvavy, 2009)

3.2. Modeling of Materials

All the work pieces in this study are modeled as 3d solid with 6 DOFs, because the computer analyze 
results for the work pieces modeled as 2d Shell with 3 DOFs might give inconsistent results with actual 
experiments as can be seen in the Vierendeel effect example (Kerdal and Nethercot, 1984) Also buckling 
phenomenon is one of the most important issues in steel members due to their slender systems. In 
general, I-shaped beams under load inside the plane, are prone to local and lateral torsional buckling, 
depending on the web slenderness, flange slenderness as well as overall slenderness of the beam 
(Hosseinpour and Sharifi, 2021)

Finite elements method based Ansys mechanical computer software has been used in modeling the 
IPE profile to which topological optimization will be applied. Creation of all the nodes and elements 
which form the mesh has not been left to the software and has been done manually. For the hoods, the 
elements constituting the mesh are 47.2 × 5 × 5mm. The meshing was manually done by using 5×5×5 
mm elements in the body of IPE 200 profile. The reason for this being done manually is that in the 
evolutionary topological optimization applied, it is necessary to know each element’s address.

In this case, 13 holes calculated by the following equation were modeled on the workpiece in order to 
apply evolutionary optimization.  In other words, the border value is added.
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Where (L) is castellated Steel I beam span, (b) and (e) are size of hole’s parameter and (n_total) is the 
number of holes on work piece. 
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3.3. Optimization Algorithm

The optimization algorithm used in this study is based on stress values (Eq. 2). The strength applied to 
IPE 200 profile is calculated as:
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this equation, force is applied on the work piece to allow the yield stress to be observed. 

After calculating the maximum tensile and compressive stresses for each element by using the computer, 
it is required to take the absolute values of these stress measurements because it provides simplicity while 
making calculations with the limit values.  
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The following equations can be written for cellular beams, ignoring the effect of applied load and 
considering the vertical stability and the rate of change of bending moment. 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The constraint function states that the maximum moment value () occurring in any section should 
be less than the safe body moment (). 
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() applied to the section body, and the plastic moment capacity () and force capacity (). 
 

 =  +  −  ≤  

 
The  constraint function shows the relationship between the applied axial load () and the applied 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The constraint function states that the maximum moment value () occurring in any section should 
be less than the safe body moment (). 
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The  constraint function shows the relationship between the external force  and external moment 
() applied to the section body, and the plastic moment capacity () and force capacity (). 
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The  constraint function shows the relationship between the applied axial load () and the applied 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The constraint function states that the maximum moment value () occurring in any section should 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The  constraint function states that the calculated horizontal shear force () should be smaller than 
the allowable horizontal shear force (). 
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The simplest method for castellated beam analysis is the basic bending theory which takes the reduced 
web section into account when calculating the stress and deflection in beams.

The results calculated with this method may deviate significantly from the actual value due to the fact that 
it neglects local twist in the T-section. Vierendeel analysis is another widely used method. In this method, 
stress values due to local bending at shearing force in the T-section are also taken into consideration in 
addition to the stretching values due to bending [2].In total, 3 types of castellated beams were analyzed 
for this comparison. And each beam is loaded up to the limit of yield. These are the beam with a circular 
web opened –cellular beams, the beam with a hexagonal web opened –castellated beams, and finally the 
perforated beam with optimal web opened which we have obtained. As can be seen in the graph below, 
(Figure 8) the obtained optimal beam has the lowest internal stress value among these three.

Figure 8. Von Mises stress levels for cellular, castellated and topology optimized beams at yield load
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As is known, shear fracture is a brittle fracture type which is bluntly inconvenient. For this reason, in 
this study, it is aimed to develop design methods that will prevent crunching of perforated beams. 
The aim of the study is to produce perforated beams that reach the bending load before the shear 
strength and exhibit sufficiently ductile behavior. For this, it is thought that by changing the shape and 
numbers of the web opened on the beam, the stresses can be prevented from spreading by spreading 
over several holes instead of one. For both investigated beams at yield loading level, Von Mises strain 
is generally more uniform in stress distribution with some high localized stress concentrations in the 
beam optimized for openings due to the angles resulting from the openings. In contrast, stresses in 
the cellular tends to significantly increase in support and therefore in connection. The stresses of both 
investigated beams loaded at the yield limit show that the stress distribution is generally more uniform, 
despite some high localized (Figure 9) stress concentrations in the optimized beam due to the angles 
resulting from the openings. In contrast, stresses in the cellular tends to significantly increase in support 
and therefore in connection.

When we look at the displacement values, the castellated beam with web opened has better 
resistant results (Figure 10) in both vertical displacement and horizontal displacement with 
Vierendeel effect.
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The last comparison subject is economy, in other words load bearing capacity per unit weight. As clearly 
seen, (Figure 11) the optimal beam has the highest economic value. Nowadays, the most important 
factor is the production cost since it determines the market share.

Figure 10(a). Displacement occurring in the 
horizontal axis (Vierendeel effect)

Figure 10(b). Displacement occurring in the 
vertical axis

Figure 11. Comparison of Perforated beams based on economic factors

5. RESULTS AND DISCUSSION

In this study, the problem of optimal sizing for perforated beams in order to have the optimal web 
opened has been solved under the geometric and behavioral constraints such as where (approximately) 
should the web opened be. 

Evolutionary optimization algorithm among topological optimization methods has been used in order 
to obtain the minimum weight of the optimization problem and the most optimal measures.
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Comparison of the results has revealed that the obtained perorated beam with optimal web opened has 
performed better than other widely used beams in terms of load capacity, displacements under load 
and internal stresses that occur under load. 

In addition, it has been seen that the load capacity that the beam can carry per its weight has also 
increased, so that it provides a better economic factor for the structures it will be used in. 
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