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Research Article

Abstract − The permanent function is not as stable as the determinant function under the
elementary row operations. For example, adding a non-zero scalar multiple of a row to another
row does not change the determinant of a matrix, but this operation changes its permanent.
In this article, the variation in the permanent by applying the operation, which adds a scalar
multiple of a row to another row, is examined. The relationship between the permanent of
the matrix to which this operation is applied and the permanent of the initial matrix is given
by a theorem. Finally, the paper inquires the need for further research.
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1. Introduction

The permanent function was introduced first by Binet and Cauchy. According to Binet’s definition,
provided m ≤ 4, the permanent of a matrix with order m by n is the sum of all possible products
of m elements any two of which are not at the same column or row. Minc [1] emphasized that this
definition given by Binet could be generalized for all finite values of m and n and gave the following
definition.

Let A = [ai,j ] be a matrix of order m by n. Then, per(A), the permanent of A, is defined by

per(A) =
∑

σ

a1,σ1a2,σ2 ...am,σm

where the summation runs over on the set σ, which includes all one-to-one functions defined from
{1, 2, . . . , m} to {1, 2, . . . , n} such that m ≤ n [1].

The permanent function can be interpreted as a kind of assessment using all matrix elements. This
scalar-valued function of the matrix is best known for its relations with solutions to enumeration
problems in combinatorics. For example, the Menage problem is a classical combinatorial enumeration
problem, and it has been connected to the permanents of (0, 1)−matrices [2]. Another critical problem
is computing the permanent of some kind of matrices, for example, the sparse and the circulant. This
problem appears in various applications in mathematics, physics, computers, information systems,
cryptography, and other fields. It has been studied to obtain various linear recurrence relations for
permanents of certain sparse circulant matrices in [3], one of the recent studies in quantum computing.
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By solving the linear recursive system consisting of the obtained recurrences in [3], computing of
permanent will be realized in linear time.

The definition of permanent is the same as the definition of determinant except for the factor ±1
before terms in the summation. Thus, some properties of the permanent have direct analogs for the
determinant. The following will give a brief summary of several fundamental properties related to
both the permanent and the determinant.

The procedure of reducing anything to a simpler form is frequently used in both the determinant
and the permanent. Laplace expansion is an important example of reduction, and it can be applied
similarly to these two functions. Let A(i, j) denote the matrix of size m − 1 by n − 1 obtained from
the matrix A = [ai,j ] by deleting row i and column j such that i = 1, 2, · · · , m and j = 1, 2, · · · , n. It
follows as a direct consequence of the definition of the permanent that

per(A) =
n∑

j=1
aij per(A(i, j))

called Laplace expansion of the permanent according to the ith row of matrix A. Another procedure
that can be used for reduction is Gaussian elimination. The determinant can be evaluated efficiently
using Gaussian elimination (or row reduction) [4]. However, computation of the permanent in this way
is much more complicated. The elementary row operations may differ in these functions because the
permanent is not as stable as the determinant under the elementary row operations [2]. For example,
adding a non-zero scalar multiple of a row to another row does not change the determinant of a matrix,
but this operation changes its permanent. The determinant of a matrix with two equal rows is zero,
but its permanent does not have to be zero. Multiplying a row by a scalar requires multiplying the
determinant by the same scalar. This is also valid for the permanent. Interchanging two rows varies
the sign of determinant, but permanent is invariant under this operation [5].

One of the fundamental rules of the determinant is det(AB) = det(A) det(B). This rule is clearly false
for permanent. However, in [6], it has been proved that the equality per(AB) = per(A) per(B) holds
for the generalized complementary basic (GCB) matrices which have many remarkable properties such
as permanental, graph-theoretic, spectral, and inheritance properties [7, 8].

As mentioned above, for a square matrix A, adding a non-zero scalar multiple of a row to another
row varies its permanent. To the best of our knowledge, there is no discussion on the effect of this
operation on the permanent, in related literature. In this paper, the variation in the permanent has
been studied when the operation “adding a scalar multiple of one row to another row” is applied to
a square matrix. An equality that gives a relationship between the permanent of the original matrix
and the permanent of its changed form is presented. In addition, an algorithm that calculates the
variation is also given.

2. Main Results

Let

A =


a b c

d e f

g m n


be a square matrix of order 3 × 3 and |A| denote the determinant of the matrix A. The determinant
of a matrix remains unchanged when adding a non-zero scalar k multiple of a row to another row. As
an example of this property, the following equations can be written for the matrix A:
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∣∣∣∣∣∣∣∣
a b c

d + ak e + bk f + ck

g m n

∣∣∣∣∣∣∣∣ − |A| = 0

∣∣∣∣∣∣∣∣
a b c

d e f

g + ak m + bk n + ck

∣∣∣∣∣∣∣∣ − |A| = 0

and ∣∣∣∣∣∣∣∣
a b c

d + ak e + bk f + ck

g + ak m + bk n + ck

∣∣∣∣∣∣∣∣ − |A| = 0

These situations for the permanent function, in contrast to the determinant, are illustrated by the
equations below:

per




a b c

d + ak e + bk f + ck

g m n


 − per (A) = x (1)

per




a b c

d e f

g + ak m + bk n + ck


 − per (A) = y (2)

and

per




a b c

d + ak e + bk f + ck

g + ak m + bk n + ck


 − per (A) = z (3)

where x ̸= y ̸= z ̸= 0. The following theorem proposes obtaining x and y using (n − 2)-ordered
submatrices of a matrix A with order n by n. Namely, with the following theorem, we express the
variation in the permanents for which additive row operation is applied only once, as in x and y. We
note that the variation notion used in this study corresponds to x and y in Equalities 1 and 2. We
also note that the calculation of variation we suggest is necessary twice to calculate the z value in
Equality 3.

Let the notations used in this study clarify before giving on to the theorem. Let A = [ai,j ] be a matrix
of order n by n. The notation

Ãr|t

denotes the submatrix obtained by deleting the rth row and the tth column of the matrix A. The
notation

Ãi,r|j,t

denotes the submatrix obtained by deleting ith row, rth row, jth column, and tth column of the matrix
A. The submatrix Ãr|t is of order (n−1)×(n−1) and the submatrix Ãi,r|j,t is of order (n−2)×(n−2).
As an example, if we consider the matrix

B =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44


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then

B̃1|4 =


b21 b22 b23

b31 b32 b33

b41 b42 b43

 and B̃1,2|3,4 =
[

b31 b32

b41 b42

]

are some submatrices obtained from the matrix B.

Theorem 2.1. Let A = [ai,j ] be a matrix of order n × n and B be the matrix obtained by adding k

times of the ith row to the rth row of the matrix A. Then,

per(B) − per(A) = 2k
∑

(j,t)∈Ω
ai,jai,t per(Ãi,r|j,t)

where the summation extends over the set Ω = {(j, t) ∈ S × S | j < t} such that S = {1, 2, ..., n}.

Proof.
By using the Laplace expansion with respect to rth row of the matrix B, we obtain

per (B) = (ar,1 + kai,1) per(B̃r|1) + · · · + (ar,n + kai,n) per(B̃r|n) (4)

where B̃r|j denotes the submatrices obtained by deleting rth row and jth column of the matrix B.
Equality 4 can be arranged as the form

per (B) =
(
ar,1 per(B̃r|1) + · · · + ar,nper(B̃r|n)

)
+ k

(
ai,1 per(B̃r|1) + · · · + ai,n per(B̃r|n)

)
(5)

By applying the Laplace expansion along by the rth row of the matrix A, it is easily seen that

ar,1 per(B̃r|1) + · · · + ar,nper(B̃r|n) = per(A)

Therefore, from Equality 5, per(B) = per(A) + kVA where

VA = ai,1 per(B̃r|1) + ai,2 per(B̃r|2) + · · · + ai,n per(B̃r|n) (6)

At this point, the process will be continued by applying the Laplace expansion to every permanent in
VA seen by Equality 6, respectively. Firstly, by expanding the permanent, which in the first term of
VA seen by Equality 6, with respect to ith row, the following equality is obtained:

per(B̃r|1) =ai,2 per





a1,3 a1,4 · · · a1,n

...
...

. . .
...

ai−1,3 ai−1,4 · · · ai−1,n

ai+1,3 ai+1,4 · · · ai+1,n

...
...

. . .
...

ar−1,3 ar−1,4 · · · ar−1,n

ar+1,3 ar+1,4 · · · ar+1,n

...
...

. . .
...

an,2 an,4 · · · an,n




+ ai,3 per





a1,2 a1,4 · · · a1,n

...
...

. . .
...

ai−1,2 ai−1,4 · · · ai−1,n

ai+1,2 ai+1,4 · · · ai+1,n

...
...

. . .
...

ar−1,2 ar−1,4 · · · ar−1,n

ar+1,2 ar+1,4 · · · ar+1,n

...
...

. . .
...

an,2 an,4 · · · an,n





+ · · · + ai,n per





a1,2 a1,3 · · · a1,n−1
...

...
. . .

...
ai−1,2 ai−1,3 · · · ai−1,n−1
ai+1,2 ai+1,3 · · · ai+1,n−1

...
...

. . .
...

ar−1,2 ar−1,3 · · · ar−1,n−1
ar+1,2 ar+1,3 · · · ar+1,n−1

...
...

. . .
...

an,2 an,3 · · · an,n−1





(7)
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Equality 7 can be written briefly as

per(B̃r|1) = ai,2 per(Ãi,r|1,2) + ai,3 per(Ãi,r|1,3) + · · · + ai,n per(Ãi,r|1,n)

Similarly, if the permanents in other terms of Equality 6 are expanded along by their ith row, then

per(B̃r|2) = ai,1 per(Ãi,r|2,1) + ai,3 per(Ãi,r|2,3) + · · · + ai,n per(Ãi,r|2,n)

per(B̃r|3) = ai,1 per(Ãi,r|3,1) + ai,2 per(Ãi,r|3,2) + ai,4 per(Ãi,r|3,4) + · · · + ai,n per(Ãi,r|3,n)

...

per(B̃r|n) = ai,1 per(Ãi,r|n,1) + ai,2 per(Ãi,r|n,2) + · · · + ai,n−1 per(Ãi,r|n,n−1)

If we plug the equalities obtained, for all per(B̃r|α), where α ∈ S, into VA seen by Equality 6, then we
get

VA =
∑

(j,t)∈∆
ai,jai,t per(Ãi,r|j,t) (8)

where ∆ = {(j, t) ∈ S × S | j ̸= t} . There are two of each term in the summation in Equality 8 because
the terms of the form

ai,jai,t per(Ãi,r|j,t)

equal to the terms of the form
ai,tai,j per(Ãi,r|t,j)

Thus, we can write Equality 8 as

VA = 2
∑

(j,t)∈Ω
ai,jai,t per(Ãi,r|j,t)

where Ω = {(j, t) ∈ S × S | j < t} .

According to Theorem 2.1, per(B) − per(A) which we called as the variation, can be calculated by the
following algorithm.

Algorithm 1 Calculation of the variation kVA

INPUT: Matrix A = [ai,j ]n×n and k, i, and r values.
OUTPUT: Result of the variation kVA.
Step 1: row set = The set of row numbers of the matrix A except the rows i and r
Step 2: for j = 1, 2, · · · , n − 1 do

for t = j + 1, · · · , n do
column set = The set of column numbers of the matrix A except the columns j and t
A tilda = Form a submatrix of the matrix A using row set and column set
Per(A tilda) = Calculate the permanent of A tilda
summation = summation + ai,j ∗ ai,t∗Per(A tilda)

end for
end for

Step 3: result = 2 ∗ k∗ summation

3. Conclusion

It is important to note that this study does not propose any permanent calculation method. Instead,
it provides a theoretical analysis of the variation that results from an additive row operation on the
permanent of a square matrix. Moreover, it formulates the variation that occurs in the permanent of
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a square matrix in which the additive row operation is applied. This formula, called the variation in
the permanent, proposes utilizing matrices of order (n−2)× (n−2) instead of matrices of order n×n.
Besides, this paper presents an algorithm to calculate this variation formula. The proposed algorithm
needs

(n − 2)n!
2

arithmetic operations if the permanent is calculated by the Naive algorithm, and

n(n − 1)(n − 2)2n−3

arithmetic operations if the permanent is calculated by the Ryser-NW algorithm. For the numbers of
arithmetic operations of the Naive and the Ryser-NW algorithms, see [9].

This article’s findings can be extended to non-square matrices for further investigation. Furthermore,
the variation formula suggested herein can be used to study the calculation of any square matrix
permanents via the Gaussian elimination process.
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