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Abstract. In these days, many different techniques are implemented for gen-

erating distributions. The core aim in generating distribution, is better mod-
eling capability. With generating new distribution more reliable and appro-

priate models are available for data sets. In this paper, a new distribution is

gained by evaluating the conditional diagonal section of the bivariate Farlie-
Gumbel-Morgenstern distribution with exponential marginals. Specifications

and characteristics of this new distribution are studied. The statistical assess-

ment and some reliability analyzes are carried out. The success of the new
distribution on statistical modeling is detected by using data sets in literature.

It is concluded that this new distribution suggests a model that can be used

effectively in many different lifetime data sets.

1. Introduction

The exponential distribution is one of the most popular statistical distributions.
This valuable distribution has been used widely in modeling time data sets ( [11],
[4], [12]). Exponential distribution has also been used in modeling other kinds of
data sets (see [12]).

Although this distribution is very capable of modeling very different kinds of
lifetime data sets, in some data sets, the modeling success rate may be lower.
In some studies-to fix this situation-researchers add more parameters for better
modeling ( [10], [2], [8].

Exponential distribution has some specialties that this distribution can be used
efficiently in industrial engineering and stochastic processes. ( [11], [4]). The most
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important and most known specialty of Exponential distribution is memoryless
specialty. Exponential distribution also has a constant hazard rate.

In this study, main aim is generating an efficient statistical distribution which is
more appropriate in some data sets than exponential distribution and other lifetime
distributions.

We use Farlie-Gumbel-Morgenstern distribution and each marginal distribution
in that copula function is Exponential distribution. A very similar technique was
used in a study to gain a new distribution ( [14]). In this study a different con-
dition is carried out for achieving a new distribution. In this article, Exponential
distribution gains better capability.

In this study, a new distribution for analyzing many different kinds of time
data sets was suggested. This new distribution gains good results in modeling
customer waiting times, time intervals in earthquakes and broken times in mechanic
instruments. In our presentation at first new distribution is derived. And then
the properties of new distribution are shown, and important characteristics are
introduced. Section 4 illustrates the application of the new distribution on three
data sets. There is the comparison of new distribution with most known lifetime
distributions via data sets in the literature.

2. Material and Method

Theorem 1. (Sklar’s Theorem): Let F be a joint cumulative distribution func-
tion and H and G are continuous marginals, then there is a unique copula function
C in R for every x and y ( [13]).

F (x, y) = C (H(x), G(y)) .

Farlie-Gumbel-Morgenstern (FGM) copula with marginals has a formula as fol-
lows ( [9])

C (u, v) = uv + λuv (1− u) (1− v) .

Two dimensional FGM with marginals H (x) and G (y) is as follows.

F (x, y) = H (x)G (y)
[
1 + λH̄ (x) Ḡ (y)

]
,

where H̄ and Ḡ are the respective survival functions and λ ∈ [−1, 1] represents
association parameter.
First, we assume thatH and G are the same. Next, we will deal with the probability
that the first component will fail in this range, when it is known that the second
component fails in the range (0, t]. Then the conditional distribution function is as
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below.

Pr (X ≤ t|Y ≤ t) =
H (t)G (t)

[
1 + λH̄ (t) Ḡ (t)

]
G (t)

= H (t)
[
1 + λH̄ (t) Ḡ (t)

]
= H (t)

[
1 + λH̄2 (t)

]
= (1 + λ)H (t)− λH (t)

(
1− H̄2 (t)

)
.

Thus, we obtain a univariate distribution. Let a random variable T distributed as
above and F stand for this new distribution. Now, we explore what the association
parameter means in this univariate case:
By taking 1 + λ = 2δ, where δ ∈ [0, 1], we have

F (t) = (1 + λ)H (t)− λH (t)
(
1− H̄2 (t)

)
= 2δH (t) + (1− 2δ)H (t)

(
1− H̄2 (t)

)
= δ

[
2H (t)− 2H2(t) +H3(t)

]
+ (1− δ)H (t)

(
1− H̄2 (t)

)
.

The expression in square brackets is actually a convex combination of two distri-
bution functions as follows:

2

3

(
3H (t)− 3H2(t) +H3(t)

)
+

1

3
H3(t),

where components respectively represent the distributions of min{T1, T2, T3} and
max{T1, T2, T3}, when T1, T2 and T3 are independently distributed as H. Accord-
ingly, H (t)

(
1− H̄2(t)

)
represents a distribution of max{T1,min{T2, T3}}. Thus,

F is a distribution function representing the convex combination of two distribution
functions, while λ represents a transformed combination parameter.
Hence, probability density function (pdf) of this distribution is as below.

f (t) = h (t)
(
1 + λH (t) (1− 3H (t))

)
,

where h (t) is a pdf of base distribution. In prospect of H (t) = 1− e−θt, we have

F (t) =
(
1− e−θt

) (
1 + λe−2θt

)
, (1)

and pdf of this distribution is as below.

f (t) = θe−θt
(
1 + λ

(
e−2θt − 2e−θt

(
1− e−θt

)))
, (2)

where λ ∈ [−1, 1] and θ > 0. Plots of probability density function are as follows.
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Figure 1. The pdf graphs for some parameters

According to plots in Figure 1, it was easily seen that parameter λ is the shape
parameter and parameter θ is the location parameter. With the value of the pa-
rameter λ the shape of the probability density function changes significantly and
this specialty gives us hope for this distribution to use in different kinds of data
sets at the same time.

Survival and hazard rate functions of new distribution are as follows;

F̄ (t) = e−θt − λe−2θt + λe−3θt = e−θt
(
1− λe−θt

(
1− e−θt

))
and

r (t) =
f (t)

F̄ (t)
= θ

[
2− 1− λe−2θt

1− λe−θt (1− e−θt)

]
.

If we want to calculate the risk in the starting point, we reach this value as
below.

lim
t→0

(
θ

[
2− 1− λe−2θt

1− λe−θt (1− e−θt)

])
= (1 + λ)θ.

If we want to calculate long term risk, we reach this value as below.

lim
t→∞

(
θ

[
2− 1− λe−2θt

1− λe−θt (1− e−θt)

])
= θ.

In Figures 1 and 2, it can be seen easily that parameter λ changes both the
shapes of probability density function and hazard rate function. Therefore, we
consider that this new distribution may be successful in analyzing different data
sets which may have opposite kinds of risk in the same time.

When parameter λ is between (0, 1] , the shape of the hazard rate function be-
comes bathtub. With this there are decreasing starting deaths, and in the beginning
some components rapidly break down. After that there is nearly a constant hazard
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rate for a while. At last in the final part, the components which complete life time,
break down in increasing rate and the process completes.

Figure 2. The plots of hazard rate function

When parameter λ is between [−1, 0), the shape of the hazard rate function
becomes the inverse position of the bathtub shape. This curve is symmetric to
value of parameter θ which is the hazard rate of the exponential distribution. With
this, there are increasing starting deaths, and at the beginning some components
break down rapidly. After that there is a balance and nearly constant hazard rate.
At last, the components which complete life time, break down in decreasing rate and
the process completes. This shape calls upside-down bathtub or inverse bathtub.

3. Characteristics of Distribution

3.1. Moment Generating Function (mgf).

MT (v) = E
(
evT

)
=

∫ ∞

0

evt
(
θe−θt

) (
1 + λ

(
e−2θt − 2e−θt

(
1− e−θt

)))
dt

=

∫ ∞

0

(
θe−t(θ−v) − 2λθe−t(2θ−v) + 3λθe−t(3θ−v)

)
dt

=

∫ ∞

0

θe−t(θ−v)dt− 2λ

∫ ∞

0

θe−t(2θ−v)dt+ 3λ

∫ ∞

0

θe−t(3θ−v)dt

=
θ

θ − v
− 2λθ

2θ − v
+

3λθ

3θ − v
,
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where θ > v. This is a linear combination of mgf’s of exponential distributions with

three different means 1
θ , 1

2θ and 1
3θ . In other words, for Yj ∼ Exponential

(
1
jθ

)
,

j = 1, 2, 3 this mgf can be represented as a mgf’s of Yj which are MYj
(v) = jθ

jθ−v .

MT (v) = MY1
(v)− λMY2

(v) + λMY3
(v) , θ > v. (3)

3.2. k. th Raw Moment. We can provide raw moment easily by using (3) as
follows:

E
(
T k

)
=

Γ (k + 1)

θk
− λ

Γ (k + 1)

2kθ
k

+ λ
Γ (k + 1)

3kθ
k

=
k!

θk

[
1− λ

1

2k
+ λ

1

3k

]
3.3. Expected Value and Second Order Raw Moment.

E (T ) =
1

θ
− λ

2θ
+

λ

3θ
=

6− λ

6θ
,

E
(
T 2

)
=

2

θ2
− λ

2θ2
+

2λ

9θ2
=

36− 5λ

18θ2
.

3.4. Variance.

V ar (T ) = E
(
T 2

)
− E(T )

2
=

36− 5λ

18θ2
−

(
6− λ

6θ

)2

=
36 + 2λ− λ2

36θ2
.

3.5. Maximum Likelihood Estimation. The log-likelihood function for a ran-
dom sample T1, T2, · · · , Tn from (1) is:

ℓ (θ, λ ; t) = log (L (θ, λ; t)) = n log θ − θ

n∑
i=1

ti +

n∑
i=1

log
(
1 + λ

(
3e−2θti − 2e−θti

))
.

Now, by using Log-likelihood function, we get partial derivatives with respect to
λ and θ as follows:

∂

∂λ
ℓ (θ, λ ; t) =

n∑
i=1

(
3e−2θti − 2e−θti

)
1 + λ (3e−2θti − 2e−θti)

= 0, (4)

∂

∂θ
ℓ (θ, λ ; t) =

n

θ
−

n∑
i=1

ti +

n∑
i=1

2λte−θti − 6λte−2θti

1 + λ (3e−2θti − 2e−θti)
= 0. (5)

Equating these two expressions (4) and (5) to zero and solving them simultane-
ously yields the ML estimates of the θ and λ.
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4. Results and Discussions

Now, we will compare our new distribution with most known lifetime distribu-
tions by some different kinds of data sets. While comparing distributions, we will
use Kolmogorov-Smirnov test statistics. In using Kolmogorov-Smirnov statistics,
least statistic value is appraised as best modeling. pvalue of Kolmogorov-Smirnov
statistics informs us about plausibility of the conformity.

Data 1: This data sets represent waiting times of bank customers (see Table 1).
Data set was first used by [6] and later it was evaluated by [1], [14]. We compare
new distribution with Lindley and CFGMWEM, because these distributions were
used in modeling before.

Table 1. Customer waiting times

0,1 0,2 0,3 0,7 0,9 1,1 1,2 1,8 1,9 2
2,2 2,3 2,3 2,3 2,5 2,6 2,7 2,7 2,9 3,1
3,1 3,2 3,4 3,4 3,5 3,9 4 4,2 4,5 4,7
5,3 5,6 5,6 6,2 6,3 6,6 6,8 7,3 7,5 7,7
7,7 8 8 8,5 8,5 8,7 9,5 10,7 10,9 11
12,1 12,3 12,8 12,9 13,2 13,7 14,5 16 16,5 28

Table 2. Customer waiting times test results

Model K-S p

Lindley 0,08 0,84

CFGMWEM 0,0618 0,9651

New Distribution 0,061 0,9689

Once examining Table 2, it is clear that this new distribution is capable in mod-
eling waiting times and offer a strong model. According to Kolmogorov-Smirnov
test statistics the most appropriate model is the new generated distribution.

Data 2: Second data set represent broken times of ventilation in airplanes (see
Table 3). It was used by [7] and later [12] used for comparing distributions.

Table 3. Broken times of ventilation in airplanes

23 261 87 7 120 14 62 47 225 71
246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95
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Table 4. Test results of broken times of ventilation in airplanes

Model K-S p
Exponential
Poisson-Lindley

0,129 0,6531

Weibull 0,1531 0,4394

CFGMWEM 0,1528 0,4414

New Distribution 0,1157 0,7745

When Table 4 is examined it is clear that this new distribution is capable in
modeling broken times and offer a strong model. According to Kolmogorov-Smirnov
test statistics the most appropriate model is the new generated distribution.

Data 3: We evaluate the time intervals for earthquakes in Iran (see Table 5).
These data were analyzed by [3]. This data set was also studied in Alpha-Power
Transformed Lindley Distribution by [5].

Table 5. Time intervals of earthquakes in Iran

136 1187 117 944 24 70 716 1126 378 166
152 264 275

Table 6. Test results of time intervals of earthquakes in Iran

Model K-S p

Exponential Lindley 0,1307 0,9585

Weibull 0,1527 0,8783

New Distribution 0,1241 0,9735

In Table 6, it is clear that this new distribution is capable in modeling time
intervals and offer a strong model. According to Kolmogorov-Smirnov test statistics
the most appropriate model is the new generated distribution.

5. Conclusion

Although there are many different and capable statistical distributions in use
today, many new distributions may be needed with different data sets and better
modeling opportunities. The new distribution which introduced in this study is
capable in modeling time data sets. There are many lifetime distributions but this
distribution may be very helpful in analyzing times more appropriately.

But why our new distribution is capable in modeling different kinds of data sets?
In part two we showed that the value of parameter λ could change the structure of
our new distribution. So, we consider that the values of this parameter in modeling
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may be important. In Table 7 there are maximum likelihood estimations of the
parameters in modeling data1 to data 3.

Table 7. Values of Parameters in Models

Data θ λ
Customer waiting times 0,1715 -0,622

Broken times of ventilation 0,0141 1
Time intervals of earthquakes 0,0022 0,4041

We see that the new distribution fits the datasets better than the other distri-
butions. According to test results in Table 2 to Table 6 we suggest that the new
distribution can be used in many kinds of time data sets.
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