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Abstract
In this study, a discrete-time prey-predator model based on the Allee effect is presented.
We examine the parametric conditions for the local asymptotic stability of the fixed points
of this model. Furthermore, with the use of the center manifold theorem and bifurcation
theory, we analyze the existence and directions of period-doubling and Neimark-Sacker bi-
furcations. The plots of maximum Lyapunov exponents provide indications of complexity
and chaotic behavior. The feedback control approach is presented to stabilize the unstable
fixed point. Numerical simulations are performed to support the theoretical results.
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1. Introduction
Analysis of nonlinear mathematical models based on biological assumptions for inter-

acting species provides insight into species behavior. Such models have different behavior
patterns depending on their parameter values and typical properties. These models can
exhibit stable or unstable behaviors as well as complex behaviors that have a special in-
terest. In this case, one way to analyze such models is to examine the behavior of the
system around the fixed point. In general, since complex dynamics result from bifurcation
of fixed points, identifying parameters that make significant changes in equilibrium is an
important consideration in the analysis of population dynamics. The number of param-
eters that must be changed in a system determines the codimensional bifurcation size.
Systems can produce codimension-1 bifurcations such as period doubling and Neimark-
Sacker; codimension-2 bifurcations such as resonance 1:1, 1:2, 1:3 and 1:4; and higher
order codimension bifurcations [40–43,45].

The Lotka-Volterra system is typically used to describe the dynamics of biological sys-
tems. The Lotka-Volterra system, also known as the prey-predator system, consists of a
pair of first-order differential equations between two species, one of which acts as prey and
the other as a predator. It was suggested for the first time by Lotka in the United States
in 1925 [26] and then by Volterra in Italy in 1926 [38]. It is known that the generations of
many species do not overlap. Therefore their populations change in discrete time periods.
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Such population dynamics are defined by discrete-time systems. The analyses of these
systems which contain unpredictable and rich behaviors are important from both math-
ematical and biological points of view [1, 5, 9–12, 15–18, 21, 25, 28, 29, 32–37]. The desired
dynamic behaviors can be obtained by controlling the chaos and bifurcations that occur
[23,31].

In behavioral prey-predator interactions, predators are often considered as sources of
risk to which the prey reacts. Evolving competition from strong or weak predators affect
predation. A prey attacked by a predator may take advantage of its distance, age, and
physical condition to escape from the predator. In this case, the number of prey consumed
by the predator will change based on these assumptions.

The incorporation of the Allee effect to prey and predator populations is one of the
most fascinating and interesting area of ongoing mathematical biology studies. This effect,
which is the most basic phenomenon in the biological world, has been considered as an
extremely important factor in ecology and population dynamics. The Allee effect was first
described in 1930 by famous ecologist Allee [2]. In population dynamics, the per capita
population growth rate and the population density have a positive correlation when the
population density is very small [2, 3]. If the population density is very small, then the
population is heavily influenced by the Allee factor, and the effect of the Allee factor
gradually decreases as the population density increases. Various natural species exhibit the
Allee effect, including plants, insects, marine invertebrates, birds, and mammals. Recently,
the effects of the Allee factor on system or equation dynamics have been studied more
intensively [6, 13, 14, 19, 20, 22, 24, 30, 39, 44]. Small numerical changes in population can
cause large changes in the dynamics of such models. Considering this factor, it is possible
to offer more realistic approaches.

Liu and Xiao [25] consider the following discrete-time prey-predator system
xn+1 = xn + δ[rxn(1 − xn) − bxnyn] (1.1)
yn+1 = yn + δ[bxnyn − dyn]

where δ is the step size.
In this article, our aim is to discuss the dynamics of our model developed by incorpo-

rating the Allee effect into the prey population of the discrete-time predator-prey model
[25], and this model is given by

xn+1 = xn + δ[rxn(1 − xn) − bxnyn

(
xn

xn + c

)
] (1.2)

yn+1 = yn + δ[bxnyn − dyn]
where xn and yn denote the numbers of prey and predators in year (generation) n, respec-
tively, and the parameters r, b, d, c, δ are all positive parameters. In this model, xn

xn+c is
the Allee effect, and c is the Allee constant such that 0 < c < 1. Here, r is the per capita
growth rate of the prey population which has a logistic growth rate; d is the per capita
mortality rate of predators, and b is the predator rate.

The remainder of this article can be summed up as follows: Section 2 discusses the
existence and stability of biologically possible fixed points. The bifurcation analysis and
chaos control studies of system (1.2) are included in Section 3. In Section 4, significant
numerical simulations are created to support our analytical findings.

2. The existence and stability of fixed points of the system (1.2)
The existence and stability analyses of the fixed points of system (1.2) are presented in

this section. The modules of the eigenvalues of the characteristic equation of the Jacobian
matrix evaluated at a fixed point determine the stability condition of that fixed point (see
[8]).
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It is clear that the fixed points of (1.2) provide the following equations:

x = x + δ[rx(1 − x) − bxy

(
x

x + c

)
]

y = y + δ[bxy − dy].

When we examine the existence of all available fixed points of system (1.2), it is straight-
forward to obtain the following Lemma.

Lemma 2.1. (i) For all positive parameter values, system (1.2) has two fixed points,
O(0, 0) and A(1, 0);

(ii) If b > d, then the system (1.2) has also a unique positive fixed point, B(x∗, y∗) =
( b

d , r(b−d)(bc+d)
b2d

).

Now, we study the stability of these fixed points by using Jacobian matrix of system
(1.2) as follows:

J(x,y) =
(

1 − bx(2c+x)yδ
(c+x)2 + rδ(1 − 2x) − δbx2

(c+x)
byδ 1 + (−d + bx)δ

)
. (2.1)

For the fixed point O(0, 0), the roots of the corresponding characteristic equation are
λ1 = 1 + rδ and λ2 = 1 − dδ. Similarly, for the fixed point A(1, 0), the characteristic
equation’s roots are λ1 = 1 − rδ, λ2 = 1 + (b − d)δ. Note that we have the following
Jacobian matrices

J(0,0) =
(

1 + rδ 0
0 1 − dδ

)
, (2.2)

and

J(1,0) =
(

1 − rδ − bδ
1+c

0 1 + (b − d)δ

)
. (2.3)

Hence, the following propositions express the local dynamics of the fixed points O(0, 0)
and A(1, 0), respectively.

Proposition 2.2. The fixed point O(0, 0) is a saddle point when 0 < δ < 2
d , it is a source

point when δ > 2
d , it is a non-hyperbolic point when δ = 2

d .

Proposition 2.3. The fixed point A(1, 0) is a sink point when (δ < min
{

2
r , 2

d−b

}
and

d > b), it is a saddle point when (d > b and (2
r < δ < 2

d−b or 2
d−b < δ < 2

r )) or (d < b and
δ < 2

r ), it is a source point when (b < d and δ > max
{

2
r , 2

d−b

}
) or (d < b and δ > 2

r ) ,

and it is a non-hyperbolic point when b = d, δ = 2
r , δ = 2

d−b .

The following proposition, which is simply demonstrated by the relationships between
the quadratic equation’s roots and coefficients (see [25]), is given to classify the fixed point
B(x∗, y∗) topologically.

Proposition 2.4. Let b > d. For a unique positive fixed point B(x∗, y∗) of system (1.2),
the following statements are true:

(i) It is a sink point if one of the following conditions is satisfied:
(i.1)

r ≥ 4b(b − d)d(bc + d)2

(b2c + d2)2 and 0 < δ < A1,

A1 = b2cr + d2r −
√

r(4bd(−b + d)(bc + d)2 + (b2c + d2)2r)
(b − d)d(bc + d)r
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(i.2)

0 < r <
4b(b − d)d(bc + d)2

(b2c + d22)2 and 0 < δ <
1

b − d
+ 1

d
− 1

bc + d
.

(ii) It is a source point if one of the following conditions is satisfied:
(ii.1)

r ≥ 4b(b − d)d(bc + d)2

(b2c + d2)2 and δ > A2

A2 = b2cr + d2r +
√

r(4bd(−b + d)(bc + d)2 + (b2c + d2)2r)
(b − d)d(bc + d)r ,

such that A1 < A2.
(ii.2)

0 < r <
4b(b − d)d(bc + d)2

(b2c + d2)2 and δ >
1

b − d
+ 1

d
− 1

bc + d
.

(iii) It is a saddle point if the following condition is satisfied:

r ≥ 4b(b − d)d(bc + d)2

(b2c + d2)2 and A1 < δ < A2

(iv) It is a non-hyperbolic point if one of the following conditions is satisfied:
(iv.1)

r ≥ 4b(b − d)d(bc + d)2

(b2c + d2)2 and δ = A1 or δ = A2,

(iv.2)

0 < r <
4b(b − d)d(bc + d)2

(b2c + d2)2 and δ = 1
b − d

+ 1
d

− 1
bc + d

.

3. Bifurcation analysis and chaos control
In this section, we focus on the flip and Neimark-Sacker bifurcation of the positive fixed

point B(x∗, y∗) by using the center manifold theorem and bifurcation theory that have
been reported in previous studies [6,7,25]. For the analysis of the flip and Neimark-Sacker
bifurcation of B(x∗, y∗), we select δ as a bifurcation parameter.

3.1. Flip bifurcation
First, we investigate the flip (period-doubling) bifurcation of the positive fixed point

B(x∗, y∗) of system (1.2) with the variation of parameters in the small neighborhood of
the following set:

FBB(x∗,y∗) =


(r, b, c, d, δ) : δ = δ1 = b2cr+d2r−

√
r(4bd(−b+d)(bc+d)2+(b2c+d2)2r)

(b−d)d(bc+d)r

b > d and r > 4b(b−d)d(bc+d)2

(b2c+d2)2

δ 6= 2b(bc+d)
b2c+d2)r , δ 6= 4b(bc+d)

b2c+d2)r

 .

Clearly, there are two eigenvalues for the linearized system at the positive fixed point
B(x∗, y∗), one of which is −1 and the other is neither 1 nor −1. These conditions that
cause the flip bifurcation occurring at the positive fixed point B(x∗, y∗) are determined
depending on the coefficients of the characteristic equation of the matrix (2.1) (see [25]).

For the parameters (r1, b1, d1, c1, δ1), system (1.2) is expressed by(
x
y

)
→
(

x + δ1[r1x(1 − x) − b1xy
(

x
x+c1

)
]

y + δ1[b1xy − d1y]

)
. (3.1)
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Assuming that δ∗ is a small bifurcation parameter, the associated perturbed mapping of
(3.1) is given as follows:(

x
y

)
→
(

x + (δ1 + δ∗)[r1x(1 − x) − b1xy
(

x
x+c1

)
]

y + (δ1 + δ∗)[b1xy − d1y]

)
(3.2)

such that |δ∗| � 1.

Using the transformation u = x − d
b , v = y − (b−d)(bc+d)r

b2d
, the fixed point B(x∗, y∗) is

shifted to the origin. So, map (3.2) becomes(
u
v

)
→
(

a11 a12
a21 a22

)(
u
v

)
+
(

f(u, v, δ∗)
g(u, v, δ∗)

)
(3.3)

where

f(u, v, δ∗) = a13uv + a14u2 + a15u2v + a16u3

+b0uδ∗ + b2vδ∗ + b3uvδ∗ + b4u2δ∗ + O
(
(|x| + |y| + |δ∗|)4

)
g(u, v, δ∗) = a23uv + c2uδ∗ + c3uvδ∗ + O

(
(|x| + |y| + |δ∗|)4

)
such that

a11 = 1 +
(

x∗2y∗b1
(c1 + x∗)2 − 2x∗y∗b1

c1 + x∗ + r1 − 2x∗r1

)
δ1, a12 = −x∗2δ1b1

c1 + x∗ (3.4)

a21 = b1δ1y∗, a22 = 1,

a13 =
(

x∗2b1
(c1 + x∗)2 − 2x∗b1

c1 + x∗

)
δ1, a14 = −

[
y∗b1c2

1 + (x∗ + c1)3r1
]
δ1

(x∗ + c1)3

a15 = − b1c2
1δ1

(c1 + x∗)3 , a16 = b1c2
1δ1y∗

(c1 + x∗)4 , b0 = x∗2y∗b1
(c1 + x∗)2 − 2x∗y∗b1

c1 + x∗ + r1 − 2x∗r1

b2 = − x∗2b1
c1 + x∗ , b3 = x∗2b1

(c1 + x∗)2 − 2x∗b1
c1 + x∗ , b4 = −

[
y∗b1c2

1 + (x∗ + c1)3r1
]

(x∗ + c1)3

c2 = b1y∗, c3 = b1.

We translate the coefficient matrix in map (3.3) into the normal form by using the
translation as follows: (

u
v

)
= T

(
x̃
ỹ

)
where

T =
(

a12 a12
−1 − a11 λ2 − a11

)
is an invertible matrix. So, map (3.3) can be written as(

x̃
ỹ

)
→
(

−1 0
0 λ2

)(
x̃
ỹ

)
+
(

f∗(u, v, δ∗)
g∗(u, v, δ∗)

)
(3.5)

such that

f∗(u, v, δ∗) = a16(λ2 − a11)
a12(λ2 + 1) u3 + a14(λ2 − a11)

a12(λ2 + 1) u2 + a15(λ2 − a11)
a12(λ2 + 1) u2v

+(a13(λ2 − a11) − a12a23)
a12(λ2 + 1) uv + (b3(λ2 − a11) − a12c3)

a12(λ2 + 1) uvδ∗

+(b0(λ2 − a11) − a12c2)
a12(λ2 + 1) uδ∗ + b2(λ2 − a11)

a12(λ2 + 1) vδ∗ + b4(λ2 − a11)
a12(λ2 + 1) u2δ∗

+O
(
(|u| + |v| + |δ∗|)4

)
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g∗(u, v, δ∗) = a16(1 + a11)
a12(λ2 + 1) u3 + a14(1 + a11)

a12(λ2 + 1) u2 + a15(1 + a11)
a12(λ2 + 1) u2v

+(a13(1 + a11) + a12a23)
a12(λ2 + 1) uv + (b3(1 + a11) + a12c3)

a12(λ2 + 1) uvδ∗

+(b0(1 + a11) + a12c2)
a12(λ2 + 1) uδ∗ + b2(1 + a11)

a12(λ2 + 1)vδ∗ + b4(1 + a11)
a12(λ2 + 1)u2δ∗

+O
(
(|u| + |v| + |δ∗|)4

)
,

u = a12 (x̃ + ỹ)
v = (−1 − a11) x̃ + (λ2 − a11) ỹ.

Then, the center manifold Wc (0, 0, 0) of (3.5) is found at the fixed point (0, 0) in a
small region around δ∗ = 0. A center manifold Wc (0, 0, 0) is known to exist according to
the center manifold theorem, and it can be approximately expressed as follows:

Wc (0, 0, 0) =
{

(x̃, ỹ, δ∗) : ỹ = a0δ∗ + a1x̃2 + a2x̃δ∗ + a3δ∗2 + O
(
(|x̃| + |δ∗|)3

)}
and

a0 = 0, a1 = (1 + a11) ((1 + a11)a13 − a12a14 + a12a23)
−1 + λ2

2
,

a2 = −(1 + a11)a12b0 + (1 + a11)2b2 − a2
12c2

(1 + λ2)2a12
, a3 = 0.

Accordingly, we focus on the map that is limited to the center manifold Wc (0, 0, 0) :

f : x̃ → −x̃ + m1x̃2 + m2x̃δ∗ + m3x̃2δ∗ + m4x̃δ∗2 + m5x̃3 + O
(
(|x̃| + |δ∗|)4

)
(3.6)

where

m1 = 1
1 + λ2

{
a2

11a13 + a11(a12(−a14 + a23) − a13(−1 + λ2)) − a13λ2 + a12(a23 + a14λ2)
}

m2 = 1
a12(1 + λ2)

{
a2

11b2 − a2
11c2 + a11(−a12b0 − b2(−1 + λ2)) + (a12b0 − b2λ2)λ2

}

m3 = 1
1 + λ2


a2
[
a13(a11 − λ2)(1 + 2a11 − λ2)

+a12(2a11(−a14 + a23) − a23(−1 + λ2) + 2a14λ2)
]

+a11a12(−b4 + c3) + b3(a2
11 − a11(−1 + λ2) − λ2) + a12(c3 + b4λ2)


+ 1

a12(1 + λ2)a1
[
−a11a12b0 − a2

11c2 + a12b0λ2 + b2(a2
11 − 2a11λ2 + λ2

2)
]

m4 = 1
1 + λ2

{a2 [−a12c2 + b0(−a11 + λ2)]} + a2b2(a11 − λ2)2

a12(1 + λ2)

m5 = a1
1 + λ2

{
[a13

(
2a2

11 + a11(1 − 3λ2) + (−1 + λ2)λ2
)

+2a11a12(−a14 + a23) + a12 (a23 + (2a14 − a23) λ2)]

}
+ a12 [(1 + a11)a15 − a12a16] (a11 − λ2)

1 + λ2
.

We get two nonzero real number values α1 and α2, which are necessary to express a flip
bifurcation, as

α1 =
(

∂2f

∂x̃δ∗ + 1
2

∂f

∂δ∗
∂2f

∂x̃2

)
|(0,0)= m2 + m1m2,
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and

α2 =
(

1
6

∂3f

∂x̃3 +
(

1
2

∂2f

∂x̃2

))
|(0,0)= m5 + m2

1.

Consequently, the flip bifurcation of system (1.2) yields the following theorem.

Theorem 3.1. If α2 6= 0, then map (1.2) undergoes a flip bifurcation at the fixed point
B(x∗, y∗) when the parameter δ varies in the small neighborhood of δ1. Moreover, if α2 > 0
(resp., α2 < 0), then the period-2 points that bifurcate from B(x∗, y∗) are stable (resp.,
unstable).

3.2. Neimark-Sacker bifurcation
Here, we examine the existence and direction of the Neimark-Sacker bifurcation of the

system (1.2) for a unique positive fixed point B(x∗, y∗). The Jacobian matrix evaluated
at B(x∗, y∗) has a pair of complex conjugate eigenvalues with a modulus of one provided
that the following condition is met:

NSBB(x∗,y∗) =
{

(r, b, d, c, δ) : 0 < r < (4b(b−d)d(bc+d)2)
(b2c+d2)2 and

δ = δ2 = 1
b−d + 1

d − 1
bc+d .

}
.

To investigate the Neimark-Sacker bifurcation at the positive fixed point B(x∗, y∗) of
system (1.2), we take δ as a bifurcation parameter. Next, we show that the variation of
r, b, d, c and δ in the small neighborhood of δ2 yields a Neimark–Sacker bifurcation. For
(r2, b2, d2, c2, δ2) ∈ NSBB(x∗,y∗), system (1.2) can be denoted by the following map:

(
x
y

)
→
(

x + δ2[r2x(1 − x) − b2xy
(

x
x+c2

)
]

y + δ2[b2xy − d2y]

)
. (3.7)

Now, we consider a perturbed mapping of (3.7) by selecting the bifurcation parameter
∼
δ such that

∣∣∣∣∼δ ∣∣∣∣ � 1 as follows:

(
x
y

)
→

 x + (δ2 +
∼
δ)[r2x(1 − x) − b2xy

(
x

x+c2

)
]

y + (δ2 +
∼
δ)[b2xy − d2y]

 . (3.8)

Shifting the unique positive fixed point B(x∗, y∗) to the origin, with the transformation
u = x − d2

b2
, v = y − (b2−d2)(b2c2+d2)r2

b2
2d2

, we obtain

(
u
v

)
→
(

k11 k12
k21 k22

)(
u
v

)
+
(

f◦(u, v)
g◦(u, v)

)
, (3.9)

where

f◦(u, v) = k13uv + k14u2 + k15u2v + k16u3 + O
(
(|u| + |v|)4

)
g◦(u, v) = k23uv + O

(
(|u| + |v|)4

)
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such that

k11 = b2d2 − d2
2r2(δ2 +

∼
δ) − b2

2c2(−1 + r2(δ2 +
∼
δ))

b2(b2c2 + d2) , k12 = −d2
2(δ2 +

∼
δ)

b2c2 + d2

k21 = (b2 − d2)(b2c2 + d2)r2(δ2 +
∼
δ)

b2d2
, k22 = 1, k13 = −b2d2(2b2c2 + d2)(δ2 +

∼
δ)

(b2c2 + d2)2

k14 = −(b3
2c2

2 + 2b2c2d2
2 + d3

2)r2(δ2 +
∼
δ)

d2(b2c2 + d2)2 , k15 = −b4
2c2

2(δ2 +
∼
δ)

(b2c2 + d2)3 ,

k16 = b3
2c2

2(b2 − d2)r2(δ2 +
∼
δ)

d2(b2c2 + d2)3 , k23 = b2(δ2 +
∼
δ).

The characteristic equation of the matrix JB(x∗,y∗) associated with the linearization in
map (3.9) at (0, 0) is represented by

λ2 + p(
∼
δ)λ + q(

∼
δ) = 0 (3.10)

where

p(
∼
δ) = −2 + (b2

2c2 + d2
2)r2(δ2 +

∼
δ)

b2(b2c2 + d2) ,

q(
∼
δ) = 1 − r2(b2

2c2 + d2
2)(δ2 +

∼
δ)

b2(b2c2 + d2) + r2d2(δ2 +
∼
δ)2 (b2

2c2 − b2(−1 + c2)d2 − d2
2
)

b2(b2c2 + d2) .

The characteristic equation (3.10) has the following complex conjugate roots:

λ1,2 = −p(
∼
δ) ±

√
p(

∼
δ)2 − 4q(

∼
δ)

2

= 1 +
−(b2

2c2 + d2
2)r2(δ2 +

∼
δ) ± (δ2 +

∼
δ)i
√

r2
[
4b2d2(b2 − d2)(b2c2 + d2)2 − (b2

2c2 + d2
2)2r2

]
2b2(b2c2 + d2) ,

with

|λ1,2| =
(

q(
∼
δ)
)1/2

, l = d |λ1,2|

d
∼
δ

|∼
δ =0

6= 0.

Since (r2, b2, d2, c2, δ2) ∈ NSBB(x∗,y∗), we find that −2 < p(0) < 2. In other words,
4b2(b2c2+d2)
(b2

2c2+d2
2)r2

> 1
b2−d2

+ 1
d2

− 1
b2c2+d2

. So, p(0) 6= −2, 2. Additionally, we need to have

p(0) 6= 0, 1 such that p(0) = −2 + r2(b2
2c2+d2

2)δ2
b2(b2c2+d2) . This case leads to the requirement for

δ2 6= 2b2(b2c2 + d2)
(b2

2c2 + d2
2)r2

,
3b2(b2c2 + d2)
(b2

2c2 + d2
2)r2

. (3.11)

From the conditions (r2, b2, d2, c2, δ2) ∈ NSBB(x∗,y∗) and (3.11), λn
1,2 6= 1, n = 1, 2, 3, 4 at

∼
δ = 0. Moreover, we say that the roots λ1,2 of (3.10) are not located in the intersection of
the unit circle with the coordinate axes when

∼
δ = 0. Using the assumption that

α = 1 − r2(b2
2c2 + d2

2)
2b2(b2c2 + d2)

[ 1
b2 − d2

+ 1
d2

− 1
b2c2 + d2

]
,

β =

√
r2
[
4b2d2(b2 − d2)((b2c2 + d2)2) − (b2

2c2 + d2
2)2r2

]
2b2(b2c2 + d2)

[ 1
b2 − d2

+ 1
d2

− 1
b2c2 + d2

]
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at
∼
δ = 0, we can obtain the normal form of (3.9). For this, let us take into account the

following transformation: (
u
v

)
→
(

k11 0
α − k11 −β

)(
x̃
ỹ

)
. (3.12)

With transformation (3.12), the normal form of (3.9) becomes(
x̃
ỹ

)
→
(

α −β
β α

)(
x̃
ỹ

)
+
( ∼

f(x̃, ỹ)
∼
g(x̃, ỹ)

)
, (3.13)

where
∼
f(x̃, ỹ) = k13

k12
uv + k14

k12
u2 + k15

k12
u2v + k16

k12
u3 + O

(
(|x̃| + |ỹ|)4

)
∼
g(x̃, ỹ) =

((α − k11)k13
βk12

− k23
β

)
uv + (α − k11)k14

βk12
u2 + (α − k11)k15

βk12
u2v

+(α − k11)k16
βk12

u3 + O
(
(|x̃| + |ỹ|)4

)
,

u = k12x̃, v = (α − k11)x̃ − βỹ.

The Neimark-Sacker bifurcation of map (3.13) requires that the following real constant
is not zero:

a =
(

−Re

[
(1 − 2λ1)λ2

2
1 − λ1

ξ11ξ20

]
− 1

2 |ξ11|2 − |ξ02|2 + Re(λ2ξ21)
)

|δ2=0, (3.14)

where

ξ20 = 1
8

[∼
f x̃x̃ −

∼
f ỹỹ + 2∼

g x̃ỹ + i

(
∼
g x̃x̃ − ∼

g ỹỹ − 2
∼
f x̃ỹ

)]
,

ξ11 = 1
4

[∼
f x̃x̃ +

∼
f ỹỹ + i

(∼
g x̃x̃ − ∼

g x̃ỹ

)]
,

ξ02 = 1
8

[∼
f x̃x̃ −

∼
f ỹỹ + 2∼

g x̃ỹ + i

(
∼
g x̃x̃ − ∼

g ỹỹ + 2
∼
f x̃ỹ

)]
,

ξ21 = 1
16

[∼
f x̃x̃x̃ +

∼
f x̃ỹỹ + ∼

g x̃x̃ỹ + ∼
g ỹỹỹ + i

(
∼
g x̃x̃x̃ + ∼

g x̃ỹỹ −
∼
f x̃x̃ỹ −

∼
f ỹỹỹ

)]
.

Additionally, the partial derivatives of
∼
f and ∼

g evaluated at δ = 0 are provided by:
∼
f x̃x̃ = 2(α − k11)k13 + 2k12k14 ,

∼
f x̃x̃x̃ = 6k12 ((α − k11)k15 + k12k16)

∼
f ỹỹ = 0,

∼
f x̃x̃ỹ = −2βk12k15,

∼
f x̃ỹỹ = 0 ,

∼
f x̃ỹ = −βk13,

∼
f ỹỹỹ = 0

∼
g x̃x̃ = 2(α − k11) ((α − k11) k13 + k12 (k14 − k23))

β
,

∼
g x̃ỹ = (− α + k11)k13 + k12 k23

∼
g x̃x̃x̃ = 6(α − k11)k12 ((α − k11)k15 + k12k16)

β
,

∼
g x̃x̃ỹ = −2(α − k11)k12k15

∼
g x̃ỹỹ = 0,

∼
g ỹỹ = 0,

∼
g ỹỹỹ = 0.
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The following conclusion provides parametric requirements for the existence and direc-
tion of the Neimark- Sacker bifurcation for the positive fixed point of system (1.2).

Theorem 3.2. If the condition (3.11) holds and a 6= 0, then map (3.9) undergoes Neimark-
Sacker bifurcations at the fixed point B(x∗, y∗) when the parameter δ2 = 1

b2−d2
+ 1

d2
− 1

b2c2+d2
varies in the small neighborhood of δ. Moreover, if a < 0 (resp., a > 0), then an attracting
(resp., repelling) invariant closed curve bifurcates from the fixed point for δ > δ2 (resp.,
δ < δ2).

3.3. Chaos control
Chaos is an unpredictable behavior that causes great sensitivity at small changes in

nonlinear dynamical systems. Chemistry, physics, ecology, biology, chemical engineering,
telecommunications, medicine, and other fields that study chaotic behavior use chaos
management techniques to avoid chaos. Chaos consists of many periodic points and orbits
that depend heavily on the initial state. Therefore, the outcome of a chaotic system is
unpredictable, and a control tool is needed.

In this section, we perform the state feedback control method [4, 8, 9, 27] to stabilize
the chaotic orbit at an unstable fixed point of system (1.2). We consider the following
controlled system to apply this strategy to the model:

xn+1 = xn + δ[rxn(1 − xn) − bxnyn

(
xn

xn + c

)
] − Un (3.15)

yn+1 = yn + δ[bxnyn − dyn]

where Un = k1(xn − x∗) + k2(yn − y∗) is the feedback controlling force, and k1 and k2
describe the feedback gains. The Jacobian matrix of the controlled system can be expressed
as

FJ(x∗, y∗) =
[

1 − (b2c+d2)rδ
b(bc+d) − k1 − d2δ

(bc+d) − k2
(b−d)(bc+d)rδ

bd 1

]
.

The characteristic equation of the Jacobian matrix FJ(x∗, y∗) is given by

µ2+
(

−2 + (b2c + d2)rδ

b(bc + d) + k1

)
µ−k1+(b − d)(bc + d)rδk2

bd
+1−(b2c + d2)rδ

b(bc + d) +(b − d)drδ2

b
= 0.

(3.16)
Let µ1 and µ2 be the roots of the characteristic equation of system (3.16), then we can
write

µ1 + µ2 = 2 − (b2c + d2)rδ

b(bc + d) − k1, (3.17)

µ1µ2 = −k1 + (b − d)(bc + d)rδk2
bd

+ 1 − (b2c + d2)rδ

b(bc + d) + (b − d)drδ2

b
. (3.18)

We must solve equations µ1 = ∓1 and µ1µ2 = 1 to find the lines of marginal stability.
These constraints guarantee that |µ1,2| < 1. Assume that µ1µ2 = 1, then (3.18) denotes
that

L1 = −k1 + (b − d)(bc + d)rδk2
bd

− (b2c + d2)rδ

b(bc + d) + (b − d)drδ2

b
= 0.

Now, we suppose that µ1 = 1, then Eq. (3.17) and Eq. (3.18) imply

L2 = (b − d)drδ2

b
+ (b − d)(bc + d)rδk2

bd
= 0.
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Finally, if µ1 = −1, by using Eq. (3.17) and Eq. (3.18), we obtain

L3 = (−b + d)(bc + d)rδk2
bd

+ 2k1 − 4 + 2(b2c + d2)rδ

b(bc + d) + (−b + d)drδ2

b
= 0.

For the given parametric values, it is clear that stable eigenvalues lie within the triangular
region bounded by the lines L1, L2, and L3.

4. Numerical simulations
Three numerical examples are given in this section to support the theoretical conclusion

made in previous sections. For numerical simulations, we apply the Mathematica and
MATLAB applications.

Example 4.1. System (1.2) exhibits a flip bifurcation as the bifurcation parameter varies
in a small neighborhood of δ = 1.25149 for r = 2, b = 0.6, d = 0.5, c = 0.1, and the
initial condition (x0, y0) = (0.83, 0.55). System (1.2) has a unique positive fixed point
(x∗, y∗) = (0.833333, 0.622222) at (r, b, d, c, δ) = (2, 0.6, 0.5, 0.1, 1.25149). The Jacobian
matrix of system (1.2) has the following characteristic equation:

λ2 + 0.130513λ − 0.869475 = 0, (4.1)

and the eigenvalues of the characteristic equation are found as λ1 = −1, λ2 = 0.869481 such
that |λ2| 6= 1. In other words, (r, b, d, c, δ) = (2, 0.6, 0.5, 0.1, 1.25149) ∈ FBB(x∗,y∗). The
bifurcation diagram and maximum Lyapunov exponents (MLE) for system (1.2) can be
seen in Figure 1. Figures 1-(a)-(b) show that the positive fixed point (0.833333, 0.622222)
of system (1.2) is stable for δ < 1.25149 and loses stability through a period-doubling
bifurcation for δ = 1.25149 and δ > 1.25149. There are oscillations that are nonperiodic
when the parameter δ changes for increasing values. Figure 1-(c) shows the maximum Lya-
punov exponents, which reveal the existence of periodic orbits and chaotic behavior. The
chaotic oscillations in the nonlinear systems are supported by the positive values of the
Lyapunov exponent.

Example 4.2. The positive fixed point of system (1.2) is calculated as (0.571429, 0.431633)
for the parameter values r = 3, b = 3.5, d = 2, c = 0.1, δ = 0.741135, and the initial con-
dition (x0, y0) = (0.57143, 0.36735). Then, the system (1.2) exhibits a Neimark-Sacker
bifurcation at δ ∈ (0.5, 0.95). It is possible to get the following characteristic equation of
the Jacobian matrix for system (1.2):

λ2 − 0.587563λ + 1 = 0. (4.2)

So, the roots of the characteristic equation can be obtained as λ1,2 = 0.293782 ∓
0.955873i such that |λ1,2| = 1. Consequently, (r, b, d, c, δ) = (3, 3.5, 2, 0.1, 0.741135) ∈
NSBB(x∗,y∗). Figure 2 shows the related bifurcation diagrams and maximum Lyapunov
exponents (MLE). The unique positive fixed point (0.571429, 0.431633) is stable for δ <
0.741135, loses stability at δ = 0.741135, and an attractive invariant curve arises if δ >
0.741135, according to the bifurcation diagrams in Figures 2-(a)-(b). To determine the
presence of a chaotic structure in Figure 2-(c), the maximum Lyapunov exponents are
numerically calculated.

Example 4.3. For system (1.2), we choose (r, b, d, c, δ) = (3, 3.5, 2, 0.1, 0.8) to apply the
feedback control method. From there, we see that the fixed point (0.571429, 0.431633) is
an unstable point of system (1.2). Then, in accordance with these parametric values, we
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provide the following controlled system:

xn+1 = xn + 0.8[3xn(1 − xn) − 3.5xnyn

(
xn

xn + 0.1

)
] (4.3)

−k1(xn − 0.571429) − k2(yn − 0.431633)
yt+1 = yn + 0.8[3.5xnyn − 2yn].

The Jacobian matrix of the controlled system is as follows:

FJ(x∗, y∗) =
[

−0.52462 − k1 −1.3617 − k2
1.20857 1

]
.

Additionally, the lines L1, L2, and L3 for marginal stability are provided by

L1 = 0.121094 − k1 + 1.20857k2 = 0,

L2 = −1.64571 − 1.20857k2 = 0,

L3 = −2.59647 + 2k1 − 1.20857k2 = 0.

The stable triangular region for the controlled system (4.3) bounded by the L1, L2 and
L3 marginal lines is displayed in Figure 3.

(a) (b)

(c)

Figure 1. Bifurcation diagram and MLE for system (1.2) for δ ∈ (1, 1.5), r =
2, b = 0.6, d = 0.5, c = 0.1, and the initial value (0.83, 0.55). (a)-(b) Bifurcation
diagrams (c) Maximum Lyapunov Exponent
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(a) (b)

(c)

Figure 2. Bifurcation diagram and MLE for system (1.2), for r = 3, b = 3.5, d =
2, c = 0.1, the initial value (0.57143, 0.36735). (a)-(b) Bifurcation diagrams for
δ ∈ (0.6, 1) (c) Maximum Lyapunov Exponent for δ ∈ (0.5, 0.9)

Figure 3. Stability region of system (4.3) for r = 3, b = 3.5, d = 2, c = 0.1, δ = 0.8
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(a)

(b)

(c)

Figure 4. The time series and phase plane diagrams of system (1.2) for r = 3,
b = 3.5, d = 2, c = 0.1. (a) The time series and phase plane diagrams for δ = 0.731
(b) The time series and phase plane diagrams for δ = 0.755. (c) Phase plane
diagrams according to the changing values δ.

Additionally, we provide more different dynamics for system (1.2). The figures above
give the time series and its phase diagram plots for system (1.2). Phase diagrams are
drawn according to values δ . Here, for r = 3, b = 3.5, d = 2, c = 0.1, and δ = 0.731,
the prey and predator populations approach the fixed point in a finite time and the path
spirals towards the fixed point, which indicates stability. For r = 3, b = 3.5, d = 2, c = 0.1,
and δ = 0.755, the time series and phase plane diagrams provide a glimpse of an unstable
behavior of the system with uniform oscillation. The trajectory spirals inwards but does
not approach a point. The trajectory finally settles down as a limit cycle.
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5. Conclusions
In this study, the dynamics of a discrete-time predator-prey model modified by adding

the Allee effect to the prey population are discussed. For system (1.2), we investigated the
existence of fixed points, as well as their local asymptotic stability, the presence of period-
doubling and Neimark-Sacker bifurcation. The topological classification of the three fixed
points of system (1.2) was obtained by using the linearization technique. If b > d, we
show that system (1.2) has only a unique positive fixed point. With the help of the
center manifold theorem and bifurcation theory, it is proven that system (1.2) is subject
to both flip and Neimark-Sacker bifurcation. The theoretical results obtained are shown
by drawing bifurcation diagrams and maximum Lyapunov exponents. Additionally, time
series and phase plots are provided. Under the influence of the Neimark-Sacker bifurcation,
system (1.2) produces unstable invariant closed curves. It is well-known that the presence
or absence of chaotic solutions for a dynamic system is determined by calculating the
Lyapunov exponent. In general, a positive Lyapunov exponent is considered as one of the
properties that imply the presence of chaos. Lyapunov exponent values greater than zero
confirm the existence of chaos with periodic orbits in the chaotic region. The bifurcation
and chaos of system (1.2) are controlled using the chaos control strategy.

The parametric values selected in the examples are taken from a previous study[25].
In Figure 1-(a)-(b) and Figure 4.1-(a) derived from the aforementioned previous study
[25], we see that the system goes into a flip bifurcation earlier with the Allee effect for
the obtained parameter values. In Figure 2-(a)-(b) and Figure 4.3-(a) [25], we see that
the Allee effect delays the Neimark-Sacker bifurcation. The Allee effect appears to have
a different influence on different bifurcations. To clarify this situation, let’s obtain the
bifurcation values of the system with and without the Allee effect by taking the Allee
constants c = 0.005 and c = 0, respectively, and compare the behaviors of these two
systems. According to these values, we get the flip bifurcation values of the system as δ =
1.28045 and δ = 1.2822, respectively. It is clear that the system exposed to the Allee effect
has undergone bifurcation before. Therefore, the Allee factor has a destabilizing role on the
flip bifurcation behavior of the system. Similarly, the Neimark-Sacker bifurcation points
for Allee constants c = 0.005 and c = 0 are obtained as δ = 0.671004 and δ = 0.666667,
respectively. This case highlights the late entry of the system into the Neimark-Sacker
bifurcation under the Allee factor. In other words, the Allee factor plays a stabilizing role
in the Neimark-Sacker bifurcation behavior of the system. As a result, the Allee factor
has the effect of accelerating the flip bifurcation of the system, while the Neimark-Sacker
has a retarding effect on bifurcation behavior.

When the literature is examined, it is seen that there is no comprehensive study on
higher codimension bifurcations, especially for discrete-time dynamical systems. The
larger the codimension bifurcation size, the greater the number of conditions that must be
met at the bifurcation point. Therefore, there are very few specific systems that satisfy
the conditions for a codimension-3 bifurcation and greater than 3. In this case, it can be
difficult to understand the dynamics of these systems. For the future study, codimension-2
bifurcation conditions such as resonance 1:1, 1:2, 1:3, and 1:4 of the relevant model can
be investigated.
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