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Abstract: In this article, a new test based on Jonckheere test [1] for  randomized 
blocks which have dependent observations within block is presented. A weighted 
sum for each block statistic rather than the unweighted sum proposed by 
Jonckheereis included. For Jonckheere type statistics, the main assumption is 
independency of observations within block. In the case of repeated measures 
design, the assumption of independence is violated. The weighted Jonckheere type 
statistic for the situation of dependence for different variance-covariance structure 
and the situation based on ordered alternative hypothesis structure of each block 
on the design is used. Also, the proposed statistic is compared to the existing test 
based on Jonckheere in terms of type I error rates by performing Monte Carlo 
simulation. For the strong correlations, circular bootstrap version of the proposed 
Jonckheere test provides lower rates of type I error. 

  
  

Tekrarlı Ölçümler Tasarımında Sıralı Alternatifler için Uyarlanmış Jonckheere Test 
İstatistiği 

 
 

Anahtar Kelimeler 
Tekrarlı ölçümler, 
Jonckheere test, 
Döngüsel bootstrap, 
1. Tip hata 

Özet: Bu makalede, blok içinde bağımlı ölçümler içeren rasgele bloklar için 
Jonckheere testine dayalı yeni bir test sunulmuştur. Jonckheere tarafından 
önerilen ağırlıksız toplam yerine her blok istatistiği için ağırlıklı toplam dahil 
edilmiştir. Jonckheere tipi istatistikler için ana varsayım blok içi gözlemlerin 
bağımsız olmasıdır. Tekrarlı ölçümler tasarımı durumunda, bağımsızlık varsayımı 
bozulur. Tasarımdaki her bloğun sıralı alternatif hipotez yapısına dayalı durumu 
ve farklı varyans-kovaryans yapılarının bağımlılık durumları için ağırlıklı 
Jonckhere tipi test istatistiği kullanılmıştır. Ayrıca, önerilen istatistik Jonckheere 
testine dayalı var olan test ile Monte Carlo simulasyonu yoluyla 1. Tip hata oranları 
bakımından karşılaştırılmıştır. Güçlü korelasyonlarda, önerilen Jonckheere testinin 
döngüsel bootstrap versiyonu daha düşük 1. Tip hata oranı sağlamıştır. 

  
 
1. Introduction 
 
In medical research, testing the direction change or 
trend of response levels over time/treatment is very 
considerable problem. For ordered alternatives in a 
randomized block design, Jonckheere and Page tests 
are well-known distribution-free tests [1,2]. Zhang 
and Cabilio [3] developed a generalized Jonckheere 
test against ordered alternatives for repeated 
measures in a randomized block design. Repeated 
measures designs are often just special cases of 
randomized block designs. This is also the case when 
a particular sequence is of interest and is used by all 
subjects– as is the case in many learning experiments.  
Agresti and Pendergast [4] proposed a rank test to 
detect treatment effects in repeated measures 

designs where the observations within blocks are 
assumed to be correlated. Also, Kepner and Robinson 
suggest a RT-type statistics similar to the one 
proposed by Page [2]. The RT technique was 
described in detail by Conover and Iman [5] and 
compared efficiency of RT and F (ANOVA) statistics 
based on their asymptotic relative efficiency for the 
same problem. Repeated measures design tends to be 
serially correlated, and hence the usual assumptions 
of analysis of variance or linear regression analysis 
cannot be applied. The main difference between 
completely randomized and repeated measures 
designs is that in the former it is often reasonable to 
assume independence across all observations, while 
in the latter case observations are likely to be 
dependent.  If this dependence is not taken into 
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account then inference about treatment effects may 
be biased or may fail to reveal the true significance of 
treatment contrasts. Each experimental unit is 
considered as a block of the design, and the model is 
shown as in Equation (1): 
 
𝑋𝑖𝑖 = 𝛽𝑖 + 𝜏𝑖 + 𝑒𝑖,𝑖         𝑖 = 1, … , 𝑏; 𝑗 = 1, … ,𝑛 (1) 

  
𝑒𝑖,𝑖 = 𝜌𝑒𝑖,𝑖−1 + 𝜀𝑖,𝑖  ;    𝜀𝑖,𝑖~𝑁(0,1),  (2) 

 
where 𝑛 is the length of time period of repeated 
measures of the 𝑖𝑡ℎ block or experimental unit, 𝑏 is 
the number of experimental unit, 𝜏𝑖is the time effect 
of the 𝑗𝑡ℎ  time period, 𝛽𝑖 is the effect of 𝑖𝑡ℎblock and 
finally 𝜀𝑖,𝑖 ’s are independent white noise. Since the 
observations in each block are dependent, error 
terms {𝑒𝑖,𝑖} are also assumed dependent and they 
have zero mean. This dependency weakly forms 
dependent stationary process, autoregressive 𝐴𝐴(1) 
model. 𝐴𝐴(1) model assumes that repeated 
measurements have a first-order autoregressive 
relationship. The correlation between any two 
elements is equal to 𝜌 for adjacent elements, 𝜌2 for 
elements that are separated by a third, and so on. 𝜌is 
constrained so that −1 ≤ 𝜌 ≤1. As the time interval 
increases between experimental units, correlation 
structure of error terms weakens [3]. Since 
parametric repeated measures analysis has 
commonly stationary autoregressive model, we will 
focus on 𝐴𝐴(1) structure in our study. A very 
common problem in applied statistics is to test the 
differences between the effects of the treatments. The 
null and alternative hypothesis are as seen below:  
 
𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛;      𝐻1: 𝜏𝑖 ≠ 𝜏𝑖  ,∃𝑖 ≠ 𝑗. (3) 

 
In this alternative hypothesis, it is assumed that at 
least one treatment is different from the others. 
However, sometimes we have prior knowledge of 
these treatments that increase or decrease.  For 
example, dose-response studies or psychological 
experiments are frequently suitable to use ordered 
alternative hypothesis. When the repeated measures 
design has ordered alternative hypothesis, it is 
usually shown as a longitudinal design. In 
longitudinal designs, the same experiment subjects 
are measured at different time intervals. The main 
focus of this kind of experiment is  the study of 
change over time or development or growth. For 
instance, aggression in students who were 
transitioning from primary school into middle school 
was studied by Pellegrini and Long [6]. They elicited 
aggression ratings for each student from their peers 
and teachers at four different time points: the 
beginning and end of the last year of primary school, 
and the beginning and end of the first year of 
secondary school. The analysis focused on the mean 
change across time. From primary to secondary 
school, the major hypothesis was confirmed as mean 
aggression increased. This was attributed to students 
establishing (or reestablishing) the social dominance 

hierarchy through aggression after a major 
environmental change [6]. In this paper, our main 
attention is to examine ordered alternatives studies. 
Null and alternative hypothesis of ordered 
alternatives are given as:       
 
𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛;    𝐻1: 𝜏1 ≤ 𝜏2 ≤ ⋯ ≤ 𝜏𝑛, (4) 

 
where at least one of the inequalities is strict. 
 
In testing ordered hypotheses, Page [2] and 
Jonckheere [1] develop test statistics for randomized 
blocks. Mostly, tests presenting for randomized block 
require the observations in the model to be 
independent and identically distributed. However, 
the data collected from the real-world usually does 
not fit these assumptions. For instance, each 
experimental subject is measured more than once to 
a treatment over a time period. Repeated 
measurements designs, crossover or changeover 
designs, time series designs and before-after designs 
are used in this kind of situations. Both Jonckheere 
and Page tests are based on rank correlations 
between the within-block rankings and the criterion 
alternative ranking. For the Jonckheere test, it is 
Kendall’s tau correlation, while for the Page test, it is 
Spearman’s rank correlation. Mann-Kendall (MK) test 
that is derived from a rank correlation test (Kendall’s 
Tau) is the widely known as nonparametric method 
for trend detection [7]. It is widely known the rank 
correlation test for two sets of observations. Although 
MK test is a distribution free test, it has such an 
assumption that observations must be serially 
independent. Von Starch [8] states that “positive 
correlation increases the possibility of the null 
hypothesis of no trend to be rejected when it is 
correct, with a probability larger than the assigned 
(nominal) level of significance”. This situation leads 
to inflation of the variance of the MK test  by serial 
correlation. Many authors have attempted to modify 
the MK test for serially dependent data to decrease 
the rejection rate when there is no trend to the 
nominal significance level [9]. Cabilio and Zhang [3] 
used a generalized version of Jonckheere statistic 
based on MK statistics for testing the ordered 
alternative hypothesis. They also obtained the 
asympyotic distribution of this statistic and used 
different dependent structure for this testing 
procedure. As seen from their simulation study, the 
obtained empirical type I error rates are not close to 
their nominal levels sufficiently. For this reason, we 
modified this test statistic and, investigated circular 
block bootstrap and independent and identically 
bootstrap methods based on Jonckheere test and 
modified Jonckheere test. This article is organized as 
follows. The Jonckheere test and modified version of 
Jonckheere test are introduced briefly. Also bootstrap 
methods are examined for the cases dependent series 
and indepenedent series of a dataset. After this 
section, we compare the performance of these tests 
with simulation study in terms of the type 1 error 
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rates of tests. Eventually, we provide a summary for 
our findings. 
 
2. Tests for Ordered Alternatives in Repeated 
Measures of Randomized Blocks 
 
In this section, we examine the Jonckhere test and 
modified version of Jonckheere test given as follows. 
 
2.1. Jonckheere test 

The Jonckheere test is based on Mann-Kendall 
statistic [7]. For this reason, we initially give the 
Mann-Kendal statistic. The Mann-Kendall statistic can 
be formulated as follows: 
 

𝐴 = �𝑎𝑖𝑖𝑏𝑖𝑖 = �𝑠𝑠𝑛(𝑋𝑖 − 𝑋𝑖)𝑠𝑠𝑛(𝑌𝑖 − 𝑌𝑖)
𝑛

𝑖<𝑖𝑖<𝑖

 (5) 

 
where 
 

𝑎𝑖𝑖 = �
1,   𝑋𝑖 < 𝑋𝑖
0,    𝑋𝑖 = 𝑋𝑖
−1,   𝑋𝑖 > 𝑋𝑖

 (6) 

 
and 𝑏𝑖𝑖  can be similarly defined by observations of 𝑌. 
Under the null hypothesis that 𝑋 and 𝑌 are 
independent and randomly ordered, the statistic 
𝐴 tends to normal distribution for large 𝑛, with mean 
and variance as follows [9]: 
 
𝐸(𝐴) = 0 and 𝑉𝑎𝑉(𝐴) = 𝑛(𝑛 − 1)(2𝑛 + 5)/18. 
 
If the values in 𝑌 are replaced with the time order of a 
time series  , 𝑖. 𝑒. , 1,2, … ,𝑛 as in repeated measures 
design, the test can be used as a trend test [7]. In this 
case, the statistic 𝐴 reduces to the following equation, 
 
𝐴 = ∑ 𝑎𝑖𝑖 = ∑ 𝑠𝑠𝑛(𝑋𝑖 − 𝑋𝑖)𝑛

𝑖<𝑖𝑖<𝑖 . The derivation of 
the mean and variance of 𝐴 is given in detail by 
Kendall [7]. 
 
Based on Mann-Kendal statistic, the Jonckheere test 
[10] is defined as follow: 
 

𝐽 =
1
𝑏
�𝑇𝑘(𝑖)
𝑏

𝑖=1

 (7) 

 
In the Jonckheere test formula, 𝑇𝑘(𝑖) = �𝑛2�

−1𝐴𝑘(𝑖)is 
Mann-Kendal statistic for testing trend in a series of 
observations and 𝐴𝑘(𝑖) = ∑ 𝑠𝑠𝑛(𝜇𝑖(𝑚) − 𝜇𝑖(𝑙))𝑛

𝑙<𝑚 is 
the non-standardized Kendall’s tau correlation 
between a subject’s repeated responses and the 
alternative ordering where each subject is ranked 
within itself over time. Also, 𝜇𝑖(𝑗) is the rank of the 
𝑖𝑡ℎsubject at time 𝑗, and 𝑠𝑠𝑛(𝜇𝑖(𝑚) − 𝜇𝑖(𝑙)) is either 
1 or −1, depending on whether 𝜇𝑖(𝑚) > 𝜇𝑖(𝑙) or 
𝜇𝑖(𝑚) < 𝜇𝑖(𝑙). 

2.2. Modified Jonckheere test 
 
In order to test 𝐻0 versus 𝐻1 in Eq. (4), Skillings and 
Wolfe [10] used weighted Jonckheere test statistics in 
a randomized block design [10]. In this paper, we 
modified the Jonckheere test statistics for repeated 
measures design by using the weighting given in 
Skillings and Wolfe (1978). Modified Jonckheere Test 
statistic is proposed for repeated measures designs 
as follow:  

𝑀𝐽 =
1
𝑏
�𝑇𝑘(𝑖)
𝑏

𝑖=1

. (8) 

 
In the modified Jonckheere test formula, 𝑇𝑘(𝑖) =
�𝑛2�

−1𝐴𝑘(𝑖) is Mann-Kendal statistic for testing trend 
in a series of observations and 𝐴𝑘(𝑖) = ∑ (𝑚 −𝑛

𝑙<𝑚
𝑙)𝑠𝑠𝑛(𝜇𝑖(𝑚) − 𝜇𝑖(𝑙)). 
 
3. Independent and Identically Distributed and 
Circular Bootstrap Method 
 
One of the most powerful nonparametric tools is 
bootstrap methods for estimating certain statistical 
properties of interest. In the bootstrap methods, to 
get new samples with the same number of samples 
from the original dataset, the core dataset are 
shuffled many times with replacement. The test 
statistic is obtained from each bootstrap sample. 
Since the shuffling of the core data will exterminate 
trend, distribution of test statistics become trend-
free. By comparing the original test statistic with the 
new trend-free test statistic, type1 error rates can be 
estimated. Resampling with or without replacement 
from a given dataset 𝑋1,𝑋2, … ,𝑋𝑛 to give a 
distribution of estimator is the main function of the 
bootstrap method. One of the bootstrap methods is 
the independent and identically distributed (IID) 
bootstrap method by performing picking from 
{1, … ,𝑛} with equal probability with replacement. 
The IID bootstrap method is based on the notion that 
the data 𝑋1,𝑋2, … ,𝑋𝑛 only represents a single 
realization of all possible combinations of a sample.  
Therefore, the distribution of an estimate 𝜃 �obtained 
by IID bootstrap method is an estimate of 𝜃� when 
𝑋1,𝑋2, … ,𝑋𝑛 derived from a common distribution 
function 𝑃(𝑋 ≤ 𝑥). One of the other bootstrap 
methods is the block bootstrap method proposed by 
Kunsch [11] for a stationary dependent data. One of 
the most commonly used block bootstrap methods is 
the circular block bootstrap introduced by Politis and 
Romano [12]. When the dataset isserially dependent, 
bootstrap method is performed in circular blocks. 
Hence, the correlation of the original dataset pattern 
is saved. Dehling and Wendler [13] gave the 
properties of circular block bootstrap method for U-
statistics when the observations are dependent. Let 
𝑋𝑖1,𝑋𝑖2, … ,𝑋𝑖𝑛 be a sample in the 𝑖𝑡ℎ block for 𝑛𝑡ℎ 
time interval. It is shown that circular block length as 
𝑐𝑙, and the number of circular block as 𝑐𝑏 = ‖𝑛/𝑐𝑙‖ 
from now on, brackets mean the largest integer 
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which is equal to a smaller than the 𝑛/𝑐𝑙. In the 
simulation study, we choice 𝑐𝑙 = √𝑛, it balances 
variance ratio for positive and negative correlation 
terms of model. Thus, we used it as the optimal block 
length for the following simulation study. Each 
sampled circular block include consecutive 
observations of length 𝑐𝑙. The 𝑐𝑙 consecutive 
observations are taken from 𝑋𝑖1,𝑋𝑖2, … ,𝑋𝑖𝑛 
depending upon starting point picked randomly from 
{1, … ,𝑛}. 
 
In the article, the circular block bootstrap and IID 
bootstrap methods are used to generate observations 
of repeated measures. Bootstrap samples based on 
two methods are used to generate Jonckheere–type 
statistics. 
 
4. Simulation Study 
 
In this section, the performances of Jonckheere test 
statistic and modified Jonckheere test statistic based 
on two different bootstrap methods are investigated 
in terms of type 1 error rates. Jonckheere test statistic 
based on IID bootstrap (JI), Jonckheere test statistic 
based on circular bootstrap (JC), modified Jonckheere 
test statistic based on IID bootstrap (MJI) and 

modified Jonckheere test statistic based on circular 
bootstrap (MJC) are compared in the Monte Carlo 
simulation study in terms of type 1 error rates. In 
order to investigate effect of the correlation term on 
the Jonckheere based statistics, we perform R 2.9.2 
statisticial software program to simulate of MJI, JI, 
MJC, JC for time series whose errors are modeled by 
𝐴𝐴(1) variance-covariance structures. 
 
The size of each bootstrapping sample is 3000 to 
estimate type1 error rates of the four statistics, and 
nominal level of significance is chosen as 0.05. We 
have conducted simulations with the values 
of𝑏 (5, 10, 20, 30) for the each values of 
𝑛  (6, 9, 12, 24) with different correlation term of 
𝐴𝐴(1) model ρ = -0.9,-0.7,-0.5,-0.3( ,-0.1)
ρ =( 0,0.1,0.3,0.5,0.7,0.9)  and standard normal white 

noise. The simulation study also provides 
opportunity to investigate effect of negative, positive 
correlation terms and independent case ρ =( 0) . 
Figures 1,2,3,4 display type1 error rates of all tests 
corresponding to nominal significance level of 0.05 
based on IID bootstrap and circular bootstrap 
methods.  

 

  

  
Figure 1(a).Type 1 Error Rates of 𝑛 = 6and𝑏 = 5 for different correlation coefficients of 𝐴𝐴(1) model, (b).Type 1 Error 
Rates of 𝑛 = 6and𝑏 = 10 for different correlation coefficients of 𝐴𝐴(1) model, (c).Type 1 Error Rates of 𝑛 = 6 and 𝑏 = 20 for 
different correlation coefficients of 𝐴𝐴(1) model, (d).Type 1 Error Rates of 𝑛 = 6 and 𝑏 = 30 for different correlation 
coefficients of 𝐴𝐴(1) model. 

(a) (b) 

(c) (d) 
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As seen in the Figure 1, the estimated type 1 error 
rates of four tests for negative values of 𝜌 are lower 
than the test result of positive values of 𝜌. When the 
block size is 5, for negative values of 𝜌 MJI generates 
the lowest type1 error rates among four of them. For 
the independent case, MJI generates the closest value 
to the nominal level. For the positive values of 𝜌, MJI 
also provides closer values to nominal level. When 
block size is increased to 10, 20 and 30, MJI gives the 
lowest values of type1 error rates even for 𝜌 = 0.9. 
As seen in the Figure 1, there is slight difference 
between bootstrap methods for the combination 𝑛 
and 𝑏 except for 𝜌 = 0.9. Furthermore, it seems that 
when block size is increased, estimated type1 error 
rates are decreased for all test statistics. 
 
The lowest results of type 1 error are generated by 
MJI for the block size 5 for the negative values of 𝜌 
and weak correlation values (𝜌 = 0.1, 0.3). For the 
higher positive correlation values (𝜌 = 0.5, 0.7, 0.9) 
MJC gives the higher value of type 1 error for the 
block size 5. For the block sizes 𝑏 = 10, 20, 30, 
simulation results show similar trend  with the block 
size 5. The test statistics based on circular bootstrap 

(JC and MJC) provides closer results to each other in 
terms of type 1 error rates.  After moderate positive 
values of 𝜌 , MJC and JC generates lower type 1 error 
rates. 
 
As shown on Figure 3 (a), the lowest type1 error 
rates are given by MJI for the negative correlation 
term for the smallest block size. Also, it is seen that 
MJC and JC generate very close type1 error rates to 
the nominal level for the negative values of 𝜌.  For the 
lower positive values of 𝜌, MJI has lower results of 
type1 error rates. For the higher positive values of 𝜌, 
MJC generates better type1 error rates than JC does. 
For the block sizes 𝑏 = 10, 20, 30, the trend of four 
tests stays same with 𝑏 = 5 yet, type1 error rates are 
decreased. For example, for the block size 5 and 
𝜌 = 0.9, MJC gives type 1 error rate as 0.1615. As 
block size is increased to 30 for 𝜌 = 0.9 type 1 error 
rate is decreased to 0.1284 for MJC. 𝜌 = 0.3 is 
intersection point for all test of 𝑛 = 12, circular 
bootstrap-based tests provide lower type1 error 
rates for 𝜌 = 0.5, 0.7, 0.9  as seen in Figure 3. As 
positive correlation terms are increased, MJC and JC 
give lower type1 error rates than MJI and JI. 

 

  

  
Figure 2(a).Type 1 Error Rates of 𝑛 = 9 and 𝑏 = 5 for different correlation coefficients of 𝐴𝐴(1) model, (b).Type 1 Error 
Rates of 𝑛 = 9 and 𝑏 = 10 for different correlation coefficients of 𝐴𝐴(1) model, (c).Type 1 Error Rates of 𝑛 = 9 and 𝑏 = 20 
for different correlation coefficients of 𝐴𝐴(1) model, (d).Type 1 Error Rates of 𝑛 = 9 and 𝑏 = 30 for different correlation 
coefficients of 𝐴𝐴(1) model. 
 

(a) (b) 

(c) (d) 
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Figure 3(a).Type 1 Error Rates of 𝑛 = 12 and 𝑏 = 5 for different correlation coefficients of 𝐴𝐴(1) model, (b).Type 1 Error 
Rates of 𝑛 = 12 and 𝑏 = 10 for different correlation coefficients of 𝐴𝐴(1) model, (c).Type 1 Error Rates of 𝑛 = 12 and 𝑏 = 20 
for different correlation coefficients of 𝐴𝐴(1) model, (d).Type 1 Error Rates of 𝑛 = 12 and 𝑏 = 30 for different correlation 
coefficients of 𝐴𝐴(1) model. 
 

 
As given in Figure 4, the lowest type1 error rates are 
generated by MJI when correlation terms are 
negative. It can be seen that that MJC generates very 
close type 1 error rates to the nominal level for the 
negative values. When the observation terms are 
independent, MJI gives the closest type 1 error rates 
to the nominal alpha. MJI gives lower actual type1 
error rates when correlation terms are moderate 
(𝜌 = 0.3, 0.1). For the higher positive (𝜌 =
0.5, 0.7, 0.9) correlation terms, MJC generates more 
reasonable type 1 error rates. The results above stays 
almost similar with 𝑏 = 5 when the block size is 
increased to 10, 20 and 30. However, type 1 error 
rates are decreased about %2. For example, when the 
block size is and 𝜌 = 0.9, MJC gives type 1 error rate 
as 0.1585. As block size is increased to 30 for 𝜌 =
0.9 type 1 error rate is decreased to 0.1375 for MJC. 
The intersection point is 𝜌 = 0.1 for all test statistics 
of 𝑛 = 24 that means it is hard to recognize 
difference of four tests on this point. Also, circular 
bootstrap-based tests indicate lower type1 error 
rates for almost all positive correlation terms except 
for 𝜌 = 0.1 for each block size. 
 
 

5. Numerical Example 
 
A numerical example is given in order to apply the 
test statistics to dataset that are generated in Table 1. 
Consider that six depression patients are given a drug 
that increases levels of ‘happy chemical’ in the brain. 
At baseline, all six patients have similar levels of this 
chemical. Researcher measures brain-chemical levels 
at three subsequent time points after given drug: at 2 
months, 3 months and 6 months post-baseline.  
 
Since there is a natural personal variability, we can 
take each subject as a block. Because experiment 
subject stays same for each time period, we need to 
take into consideration the dependence in repeated 
observations. The both Jonckheere test statistics are 
appropriate for such a situation. For this dataset, we 
can define our null and ordered alternative 
hypothesis as given below based on 3000 bootstrap 
samples:  
 
𝐻0: 𝜏1 = 𝜏2 = 𝜏3 = 𝜏4;    𝐻1: 𝜏1 ≤ 𝜏2 ≤ 𝜏3 ≤ 𝜏4  

 
the bootstrap p-value results of these four statistics is 
obtained as shown in Table 2. 

(a) (b) 

(c) (d) 
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Figure 4(a).Type 1 Error Rates of 𝑛 = 24 and 𝑏 = 5 for different correlation coefficients of 𝐴𝐴(1) model, (b).Type 1 Error 
Rates of 𝑛 = 24 and𝑏 = 10 for different correlation coefficients of 𝐴𝐴(1) model, (c).Type 1 Error Rates of 𝑛 = 24 and 𝑏 = 20 
for different correlation coefficients of 𝐴𝐴(1) model, (d).Type 1 Error Rates of 𝑛 = 24 and 𝑏 = 30 for different correlation 
coefficients of 𝐴𝐴(1) model. 
 
Table 1. Hypothetical dataset for repeated measures of 
blocks. 
 Time Periods 

Baseline Time1 Time2 Time3 
Subject1 1000 1100 1200 1300 
Subject2 1000 1000 1005 950 
Subject3 1000 1999 800 1700 
Subject4 1000 1100 1150 1100 
Subject5 1000 1000 1050 1010 
Subject6 1000 1100 1109 1500 

 
Table 2. p-values for assesing time effect for the numerical 
example. 

MJI 0.0126 
MJC 0.0053 
JI 0.0050 
JC 0.0023 

 
All test statistics results indicate that we have enough 
evidence to reject the null hypothesis at the 
significance level. It can be concluded that the drug 
given the patients during the depression treatment 
period increases the happy chemical level in the 
patients brain. Hence, it can be used as a depression 
medicine for patients treatment based on this result 
of study. 
 

6. Discussion and Conclusion 
 
In clinical or medical research, dataset is usually 
gathered serially or longitudinally on subjects. The 
group of repeated measures can be analyzed by 
parametric methods to uncover the mean profile 
change with ordered alternatives. The modification of 
Jonckheere tests were developed in order to make 
use of information contained blocks that have 
dependent observations. In the literature, some 
authors investigate large time interval (𝑛 =
25, 50, 100) [3],[14]. Due to this attitude, they miss 
out IID bootstrap importance for small time intervals 
(𝑛 = 6 𝑜𝑉 9). Therefore, we take into consideration 
small time intervals in this study. As seen from the 
tables, the strong correlation increases the type1 
error rates. For negative values of 𝜌, type1 error rates 
are very smaller than the nominal level, which shows 
a very conservative test. While, opposite is true, the 
rates are highly larger than nominal level that 
indicates a very liberal test. These problems 
moderately can be solved for larger block sizes. The 
accuracy of the estimated type 1 error rates improves 
when block size is increased to 20  or 30. These tests 
are mostly liberal for small blocks sizes for small 
value of  𝑛. Type 1 error rates for IID bootstrap- 

(a) (b) 

(c) (d) 
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based tests vary in the range of [0.000; 0.0447] for 
negative correlation terms and [0.043; 0.3] for 
positive correlation terms.  
 
As the time intervals are increased, MJC provides 
lower rates of type1 error for higher positive 
correlation terms. Generally, when block size gets 
larger for all the time intervals (𝑛 = 6, 9, 12, 24) , 
type1 error rates get lower. 
 
After moderate values of 𝜌, the bootstrap methods 
become quickly distinguishable from their type1 
error rates. Whereas circular bootstrap method is 
reasonable for larger correlation terms (𝜌 > 0.5) , IID 
bootstrap can be preferred for smaller values of 
(𝜌 < 0.5). It is seen that the type1 error rates for 
these tests are affected by the value of correlation 
term. Generally, the type1 error rates for these tests 
are somewhat higher than the nominal. It appears 
that there is quite difference between the two 
bootstrap-based methods. As far as we have realized 
that a similar behavior has been observed for 
unweighted trend statistics as in [3]. 
 
Since any trend will be eliminated due to shuffling, 
circular bootstrap method is preferred for the dataset 
which has strong dependent structure as in explained 
Section 2 broadly. As seen in Figures, circular 
bootstrap-based tests provide lower type1 error 
rates for more number of positive correlation terms 
as 𝑛 is increased. For instance, MJC and JC generate 
lower type1 error rates for combination of 𝑛 = 9 and 
𝜌 = 0.7, 0.9. For 𝑛 = 24, MJC and JC provide lower 
type1 error rates for 𝜌 = 0.3, 0.5, 0.7, 0.9. We also 
should note that the tests will mostly be liberal for 
small block sizes. These tests should be applied with 
caution when both 𝑛 and b are small. Especially, for 
high positive correlation terms, estimated type error 
rates are increased for large time intervals. 
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