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Abstract: In this paper, we will show some properties of codes over the ring By = Fp[v1, ..., vs]/ (v = v;, Vi =
1,...,k). These rings, form a family of commutative algebras over finite field F,. We first discuss
about the form of maximal ideals and characterization of automorphisms for the ring Bi. Then, we
define certain Gray map which can be used to give a connection between codes over By and codes over
F,. Using the previous connection, we give a characterization for equivalence of codes over Bj, and
Euclidean self-dual codes. Furthermore, we give generators for invariant ring of Euclidean self-dual
codes over By through MacWilliams relation of Hamming weight enumerator for such codes.
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1. Introduction

Codes over finite rings has been an interesting topic in algebraic coding theory since the discovery
of codes over Zg4, see [4]. An example of finite rings which has interesting properties is the ring Ay =
Fa[vy, ..., vk], where v? = v;, for 1 < i < k, because it has two Gray maps which relate codes over such
ring and binary codes, see [2]. This ring also has non-trivial automorphisms which can be used to define
skew-cyclic codes, for example in [1], skew-cyclic codes over the ring A; = Fy + vFy, where v? = v,
which give some optimal Euclidean and Hermitian self-dual codes. Furthermore, Abualrub et al. show
that skew-cyclic codes over A; have a connection to left submodules over a skew-polynomial ring and
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give skew-polynomial generators for these codes. In [6], skew-cyclic codes over the ring A; have been
characterized using a Gray map. This characterization gives a way to construct skew-cyclic codes over the
ring A; from binary cyclic or quasi-cyclic codes, and also gives decoding algorithm for some codes over
such ring. Meanwhile, Gao [3] consider skew-cyclic codes over the ring By = F, + vF,,, where v? = v, and
found that these codes are equivalent to either cyclic codes or quasi-cyclic codes. Using this connection,
Gao is able to give an enumeration for skew-cyclic codes which are constructed using an automorphism
with order relatively prime to the length of the codes.

In this paper, we consider codes over the ring By = Fp[v1,...,v;], where v? = v; for 1 < i < k,
which is a generalization of the ring Ay in [2] and By in [3]. We study its maximal ideals, automorphisms,
equivalence codes, and Euclidean self-dual codes over these rings, including the generators for its invariant
ring. This paper is organized as follows: Section 2 describes some properties of the ring By such as
maximal ideals and automorphisms. Meanwhile, in Section 3, we describe a Gray map for the ring By, and
we characterize linear codes and equivalent codes over the ring Bj. Finally, in Section 4, we characterize
Euclidean self-dual codes, give the shape of MacWilliams relation and generators of invariant rings for

Euclidean self-dual codes.

2. The ring B;

As we readily see, the ring By, forms a commutative algebra over prime field F,,. Let Q = {1,2, ..., k}
and 2% is the collection of all subsets of 2. Also, let w; be an element in the set {vi,1—=v;},for 1 <i < k.
Then, we will prove the following observation.

Lemma 2.1. w € By, is a zero divisor if and only if w € (w1, ws, ..., w).

Proof. («<=) It is clear that, v;(1—wv;) =0, for all i = 1,..., k. Therefore, if w € (wy, wa, ..., wg), then
it is a zero divisor in By,.

(=) Cousider the equation,
(o + Bug) (v + evg) = a + buy,

given a + Bug, a+ by € By, for some a, 3,a,b € Bj,_1. We have v = aa~! and € = (b— Ba)(a(B8+a)) L.
Therefore, if a + bvy, = 1, then v = 1 and € = —S(a(B + «))~. Which implies, o + By is a unit if and
only if @ and « + § are also units. Considering this observation for elements in By_1, Bx_2,..., B, we
have o 4 fv € B is a unit if and only if o,ac + 8 € F,, are non zero elements. Since, every element in
finite commutative ring is either a unit or a zero divisor, we can see that the only zero divisors in By are
the elements in the ideals generated by v or a(1 — v). By generalizing this result recursively, we have

the intended conclusion. O
Also, we can easily show that I = (wy,ws,...,wy) is a maximal ideal in By.
Lemma 2.2. Let I = (wq,wa,...,wg). Then I is a mazimal ideal in By,.

Proof. Consider quotient ring By/I. If v; € I, then 1 —v; = 1 mod I, and if 1 —v; € I, then
vi = 1—(1—wv;) =1 mod I. Consequently, By/I is a field. So, I is a maximal ideal. Moreover,
B /I =T,. O

The following lemma is needed to prove Proposition 2.4.

Lemma 2.3. of = «, for all o € By.
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Proof. Let a= EAg{l,..‘,k} aqv4, for some as € Fp, where va = [];c 4 vj. Then, consider

p—i P

P
P _ Py i —
o = ; Qg VA, aAVA = 4,04, + aAVA

i=0 AAA, AAA,

since FF,, has characteristic p and P~! =1 for all 8 € F,. If we continue this procedure, then we have
aPf = a. O

The following result shows that the ring By is a principal ideal ring.

Proposition 2.4. Let I = (ay,...,qn,) be an ideal in By, for some aq, ...,y € By. Then,
I'={ > (=DM er -
AC{1,...,;m},A#D JEA

Proof. Consider «; ZAQ{L“_,m}’A#@(—l)‘A|+1(HjeA a;)P~t For any A C {1,...,m}, if i € A, then
() (T o)t = () e [ ey
JEA jeEA—{i}

since o = a; by Lemma 2.3. Consequently, there is a unique A’ = A — {i} C {1,...,m}, such that

ai [ (DA (L + () ([T e | = o,

JEA JEA

Otherwise, if 7 ¢ A, then there is a unique A” = AU {i} C {1,...,m} such that

ai | DM o=t + ()W Lyt ) =0,

JEA jEA
So, every term will be vanish except a;af 1= «;. Therefore,
ey (=D)AHT ey -
AC{1,...,m},A#D JEA

It is clear that

¢ ] er

AC{1,...m}, A£0 jeA
Thus, I = <ZAQ{1,.A.,m},A;£Q)(71)|A|+1(HjEA a;)P~h). U

The following proposition shows that the ideal in Lemma 2.2 is the only maximal ideal in Bj.

Proposition 2.5. An ideal I in By is mazimal if and only if I = (w1, wa, ..., wg).

Proof. (<) It is clear by Lemma 2.2.

(=) Let J be a maximal ideal in Byj. By Proposition 2.4, By, is a principal ideal ring. Then, let J = (w),
for some w € By. Note that, w is not a unit in By, so it is a zero divisor. By Lemma 2.1, w is an element
of some m; = (wy,ws,...,w), which means J C m;. Consequently, J = m,;, because J is a maximal
ideal. O
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Using the above result, we have the following lemmas.

Lemma 2.6. The ring Bj, can be viewed as an IFp-vector space with dimension 2% whose basis consists
of elements of the form wg = [];cqwi, where S € 29,

Proof. As we can see, every element a € By can be written as a = ) g0 asvs, for some ag € I,

where vg = [[;cgv:i and vy = 1. So, By, is a vector space over [F;, whose basis consists of elements of the
k

form vg = [];c g vi, where vy = 1 and there are Z?:o (J) = 2F elements of basis. Now, we will show that

the set {1,ws,,...,ws,, } is also a basis. Consider,

a1 + aws, + -+ agrws,, = 0
for some o; € Fp, foralle =1,..., 2% which gives,

-1 = Qowg, + -+ QorWs,, -

If a; # 0, then & = (a2w32 + et agkaQk) is a unit, a contradiction to the fact that & € (wy, ..., wy).
So, a1 = 0, which means,

- (a2w52 + e+ Oék+1w5k+1) = QppaWs,,, + 0+ QorWs,, .

If (ows, + -+ agq1ws,,,) # 0, then it is a contradiction to the fact that |S;| > 2, for all j =
k+2,...,2% Consequently, (a2w52 4+ 4+ ak+1w5k+1) = 0. We have to note that, the set with elements
of the wg, where S € 2%, is also linearly independent over F,, because Sj is a vector space over F,
with element of basis are of the form vg, where S C ). Therefore, (agw52 4+t ak+1wsk+1) =0 gives
ag = -+ = ag+1 = 0. By continuing this process, we have a; = --+ = agr = 0, which means they are
linearly independent over IF,,. O

Lemma 2.7. The ring By has characteristic p and cardinality pzk.

Proof. It is immediate since characteristic of F, is p, and By, can be viewed as a [F-vector space with
dimension Zf:o (lf) =2k, So, |By| = ka. O
The following theorem characterizes the shape of automorphisms in the ring By.

Theorem 2.8. Let 0 be an endomorphism in By. Then, 0 is an automorphism if and only if 6(v;) = wj,
for every i € Q, and 0, when restricted to Fy,, is an identity map.

Proof. (=) Let J = (v1,...,v;) and Jy = (8(v1),...,0(vx)). Consider the map
B, B,

J 0
a+J — 9(a)+Jg

A

We can see that the map A is a ring homomorphism. For any a,b € By/J where A(a) = A(b), let
a =ay+J and b = by + J for some a1,b; € Bi. As we can see, 6(a; — b)) € Jy, so a1 — by € J.
Consequently, a — b = 0 + J, which means a = b, in other words, A is a monomorphism. Moreover,
for any o’ € By/Jy, let a’ = ag + Jy for some ay € By, then there exists a = 6~ 1(az) + J such that
Aa) = &'. Therefore, F), ~ By /J ~ By, /Jp, which implies Jp is also a maximal ideal. By Proposition 2.5,
Jo = (w1,...,wy), where w; € {v;,1 —v;} for 1 <i < k. By Proposition 2.4,

> M (JTwyr =0 > GO 0o

ACQ,AAD jeA ACQ,AAD JEA

which means, ZAQQ,A#@(_l)lAHl(HjeA w;)P~! and ZAQQ,A;A(Z)(_l)‘A|+1(HjeA 0(v;))P~1 are associate.

Therefore, §(v;) = pw; for some unit S which satisfies (B““')p_1 = B, for all A # (). Consequently, we

Jo
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have AP~! = 3, but by Lemma 2.3, 87 = 3. Since 8 is a unit, we have that fP~! = 1. Therefore, 8 must
be equal to 1. Moreover, since # is an automorphism, 8(v;) # 6(v,;) whenever i # j. Also, since the only
automorphism in F), is identity map, we have the conclusion.

(«<=) Suppose that 8(v;) = w;, and 8(v;) # 0(v;) whenever i # j. By Lemma 2.6, we can see that 6 is
also an automorphism. O

Now, we have to note that every element a in By can be written as

a = E asws

Se2
for some ag € F), where wg = [[;cg w;. Define a map ¢ as follows.

@ @ By — Fik
2k
a=y . ,0sws, (ZSQSl ag, 25992 Qag, ..., ZSESQk ag)
We can show that this map ¢ is a bijection map. Furthermore, this map can be extended n tuples of By,
as follows.
2

(a1), ..., plan)).

Since ¢ is a bijection map, we also have @ is a bijection map. We have to note that, the map ¢ is a
permutation, based on the choice of subsets S; € 2, of Gray maps in [2].

o By

, — Fy
(aty...,an) — (p

3. Codes over the ring B;

A subset C C B} is called code over By, of length n. If C' is a Bj-submodule of B}, then C called
linear code. The following proposition gives a characterization of Bj-linear codes using the map @.

Proposition 3.1. C is a linear code over By, if and only if there exist linear codes C1,...,Cor over I,
such that C =@ 1(Cy,...,Cqx).

Proof. (=) Since @ is a bijection, there exist C1, ..., Cyr such that C =% 1(Cy,...,Cy). Now, we

only need to show that C; is a linear code over IF,, for all i =1,..., 2% For any Cj, let ¢; and ¢y be two
codewords in C;. For | = 1,2, let ¢; = (a(ll), cee aif)), for some ay) in F,,. Consider

C; = @71(0,...,0,)\161,0,0)
_ @*1(07...,07/\la§l),07...,0),...7go*1(07...,07>\la5f),07...,0))

l l
= Alag) (wSz = el k)8 wSzU{j}) s ) (wSz — i1, k) -5, U’Sz,u{j})) )

for any A; in F; for all [ = 1,2. The last equality holds since

1 !
® ag) ws, — Z Ws,u{4} :(0,...,0,04,5),0,...,0)
Je€{l ek} =S

for all 1 <t <n. Since C =% (Cy,...,Cq), we have ¢} is in C for all = 1,2, and ¢} + ¢} is also in C.
Then, consider
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0 0 0
0 0 0
2 +ch) = Mol + 20 0 Ma + 20 0 el + Aal?
0 0 0
0 0 0

Hence, A\ic1 + Aacs is also in C.

(«<=) Take any two codewords c3 and ¢4 in C. Let

C3 = ( Z a(sl)ws, ey Z a(sn)w5>

Se2¢ Se2f
and
_ (1) (n)
Cy = ZBS wSa"'aZﬁS ws |,
Se2@ Se2@
for some oy, f; in Fp, where i =1,.. ., 2% For any A3 and )\ in IFPX we have

Asaly) + AaBg) - Asal + AgByY
1 1 n n
B A3 scs, O‘g + A1 5cs, (s N > 5Cs, afs W > -5Cs, g )
P(Aze3 + A\geq) = : ) :
1 ) 1 ) n ' n
A3Yscs,, g’ + A 225CS, N 58, ag” + A4 25Cs,, &
is also in (C1,...,Cyx), since C; is a linear code for every i = 1,...,2F. Therefore, Azc3 + Ascy is also in
C. O

Now, following [5], we define permutation equivalence of codes as follows.

Definition 3.2. Two codes are permutation equivalent if one can be obtained from the other by permuting
the coordinates.

Using Definition 3.2, we can define the following notion of equivalence between two codes.

Definition 3.3. Two codes C and C' over By are equivalent if either they are permutation-equivalent
or C is permutation equivalent to the code 8(C') for some automorphism 0 in By, i.e. the code 0(C")
obtained from C' by changing o with 6(«) in all coordinates.

Note that, the above definition is similar to the one in [5]. Now, let Iy be a permutation on 2*
tuples of IF,, induced by automorphism 6. Then we have

(I 0 @) (c) = (6(c)) (1)
for any c € By’. Then, we have the following characterization.

Theorem 3.4. Let C and C’ be two codes over By. Then, C and C' are equivalent if and only if there
exists a permutation which sends (C1,...,Co) to (C1,...,C5) or to (Il(CY),. .., (CYy)).
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Proof. (=) Let C =% (Ch,...,Cor) and C' =5 1(CY,...,C},), where C; and C} are codes over
F,, for all 1 <i < 2*.If there exists an automorphism @ such that C is permutation equivalent to 8(C"),
then by equation 1, we have C =% (C},...,Car) is permutation equivalent to (Ilg(C1), ..., IIs(Cl)) .

(«<=) If there exists a permutation which sends (C1,...,Ca) to

(HG(Ci)’ s ’HQ( ék))a

for some bijective map Ily, then we can have the automorphism 6 using the equation 1. O

4. Invariant ring

In this section, we describe some aspect of Euclidean self-dual codes as well as MacWiliams identity
and invariant ring.

Related to Euclidean self-dual codes over the ring By, we have the following result.

Proposition 4.1. Let C =3 }(C1,Cs,...,Cor), for some p-ary codes C1, . ..,Cor. Then, C is Eulidean
self-dual codes over By, if and only if C; is also Euclidean self-dual codes, for 1 < i < 2F.

Proof. (=) For any ¢; € C;, let ¢; = (a(so), . ,ozngl)x for some a(J) € F,, where 0 < j <n—1. Let
c=%10,...,0,¢;,0,...,0) € C, then we have {c,c’) = 0 for every ¢’ € C. To make the representation

for any element in the ring Bj easier, we will use the basis whose elements are of the form vg, for all
S C{L,2,...,k}. Now, let

d = ﬁg)vsi + Z ﬁgo)vs, e (S:_L*l)vsi + Z ,B(Snfl)

5€29,548; Se27 545,
Consider,
¢ =9 H0,...,0,¢,0,...,0)
- (ag)(vgi B Zje{lw")k}*si Us,U(i})s 70‘%71)(1’& - ZjE{l,‘.wk}fSi Usiu{j})> ’

Since (c, ') = 0 for every ¢’ € C' and v% = vg for every S € 2, we have

( i) A ) ()
Z ;! 2 Bs, 1 - Z Ofsj 5s u{j1Vsiu{i}r = 0

j=0 Ge{l,...k}—S;

Consequently, Z] 0 asj),b)
Take any ¢, € C;. Let ¢, = (’yéo),...77$71)), for some 'yé{) € FF,, where 0 < 7 < n — 1. Since

d=%140,...,0,¢,0,...,0) € C, we have {(c,c¢') = 0. So

(circp) E 04575 =

Therefore C; C Ci-.
For any cl € CJ- let ¢1 = (o, ...,¢n—1) for some ¢; € F,, where 0 < j < n — 1. Since (c1,¢;) =0,
we have > "7 1 ¢ad (J) = 0. We can see that
g = % 40,...,0,¢1,0,...,0)
= <CO(’USi - Zje{l ,,,,, k}—5; vSiU{j})’ G (vs, — Zje{l kY-S, USiU{j})) :

.....
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Now, since @:—1 404@ = 0, we also have (¢}, c3) = 0 for every cp € C. Remember that C = C*, which
7=0 SIS, 1

gives ¢; € C. So, ¢; € Cj, or in other words Ci* C C;. Thus, C; is a Euclidean self-dual code, for all
i=1,...,2k

(<) Take any c1,c2 € C. For every i = 1,2, let

= Z Cg,o)’ e Z C(Si’"_l) ,

SC{1,....k} SC{1,...k}
for some cg’j) €F,, wherei=1,2,and j =0,...,n — 1. Consider,
_ i,0 in—1
() = (Esgsl cg ) doscs cg b
i,0 in—1
...,ngslcg ),...,ngslcgn ),...
(‘70) (l7 _1)
s Dscs, 6 Tacs, 6V,
where i = 1,2. Since C; is a Euclidean self-dual code, for all | = 1,..., 2%, we have

—1 1,5) (2,5
<Cl7c2> = Z?:o ZS;@Q ZSQS, CES J)cg ])US
0.

So, C C C+.
Now, take any c3 € C*. Since (c3,c) = 0 for all ¢ € C, we have

n—1 ) )
j=0 SCS,

for all S € 29. Remember that C; is a Euclidean self-dual code, for all [ = 1,2,...,2*, which give
n—1 ] ]
3 3 g =
j=0 SCS,

for all S € 29, and moreover c3 € C. So, C*+ C C. Therefore, C is a Euclidean self-dual code. O

The following lemma gives MacWilliams identity for codes over the ring By.

Lemma 4.2. The MacWilliams identity for Hamming weight enumerators for codes over By is :

1
Wor (X,Y) = (o Wo (X + P ~ 1Y, X -Y) 2)
Proof. The identity follows from [7, Theorem 8.3] and Proposition 4.1. O

As we can see from Lemma 4.2, MacWilliams identity gives a transformation between polynomial
representing a code and polynomial representing its corresponding dual code. We have to note that if C'
is an Euclidean self-dual code, then the weight enumerator of C' is invariant under this transformation.
The above transformation can be formulated as an action o’ by a matrix group GG generated by matrices

N
1 p2 —1 _
T = pzkfl sz? and D = ( 10 ) . The action of any g = (a1 @2 ) € G to a polynomial
SFT  oR-T 0 -1 as a4
P

P
f(X,Y) is written as

go f(X)Y) = f(a X + aY,a3X + asY).
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Note that the matrix T is derived from the identity in Lemma 4.2 and the matrix D is derived from the
condition that n is always even. Also, it is easy to see that G = {I, D,T,—T}. Formally, we have the
following result.

Lemma 4.3. If Wo(X,Y) is a Hamming weight enumerator for an Euclidean self-dual code C' over By,
then We(X,Y) is invariant under the action of G.

Let Rg be a set of all polynomials in two variables which are invariant under the action o of G.
We can easily prove that Rg is a ring, and by the above Lemma we can see that every Hamming
weight enumerator of Euclidean self-dual codes must be inside Rg. This ring Rg called invariant ring
for Euclidean self-dual codes over By. The following theorem gives generators for Rg.

Theorem 4.4. Invariant ring of G is generated by

k
Weo(z,y) =2+ (p° — 1)y°

and

Proof. Consider the Molien series,

(N = & Lacc TTA
i (1+1)\)2 + (1i\)2 + (13\%)
1

=22
= 14+2X2 43X +4X0 4508 4 4 pA2 D)

we can see that, the invariant ring generated by two invariants of degree 2. Consider the weight enumerator
for self-dual code

Co = {cc|Ve € Ag}

i.e. Weo(x,y) = 2% + (p2k — 1)y?. This weight enumerator is of degree 2 and invariant under the action
of G. So, this weight enumerator is one of the generator. We use averaging method to find the other one.
Let f(x) = 22, then by averaging method, we have

_ ok k
2 ok—1 + 2 4 (p — 1) 2 2% 1 2
: P2t @+ PP Ty + " Ly

f(%y):i

f(z,y) are algebraically independent. O
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