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Abstract: A xring R is called strongly nil x-clean if every element of R is the sum of a projection and a nilpotent
element that commute with each other. In this paper we investigate some properties of strongly nil *-
rings and prove that R is a strongly nil *-clean ring if and only if every idempotent in R is a projection,
R is periodic, and R/J(R) is Boolean. We also prove that a *-ring R is commutative, strongly nil
*-clean and every primary ideal is maximal if and only if every element of R is a projection.
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1. Introduction

Let R be an associative ring with unity. A ring R is called strongly nil clean if every element of
R is the sum of an idempotent and a nilpotent that commute. These rings were first considered by
Hirano-Tominaga-Yakub [9] and refered to as [E-N]-representable rings. In [7], Diesl introduces this class
and studies their properties. The class of strongly nil clean rings lies between the class of Boolean rings
and strongly m-regular rings (i.e. for every a € R, a™ € Ra™*t! N a" 'R for some positive integer n) |7,
Corollary 3.7].

An involution of a ring R is an operation * : R — R such that (z 4 y)* = 2* + y*, (zy)* = y*2* and
(z*)* =z for all z,y € R. A ring R with an involution * is called a *-ring. An element p in a *-ring R is
called a projection if p> = p = p* (see |2]). Recently the concept of strongly clean rings were considered
for any #-ring. Vas [12] calls a #-ring R strongly *-clean if each of its elements is the sum of a projection
and a unit that commute with each other (see also [10]).

In this paper, we adapt strongly nil cleanness to *-rings. We call a x-ring R strongly nil x-clean if
every element of R is the sum of a projection and a nilpotent element that commute. The paper consists
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of three parts. In Section 2, we characterize the class of strongly nil *-clean rings in several different
ways. For example, we show that a ring R is a strongly nil *-clean ring if and only if every idempotent
in R is a projection, R is periodic, and R/J(R) is Boolean. Also, if R is a commutative *-ring and
R[i] = {a+bi | a,b€ R, i> = —1 }, then with the involution * defined by (a + bi)* = a* + b*i, the ring
RJ[i] is strongly nil x-clean if and only if R is strongly nil *-clean. Foster [8] introduced the concept of
Boolean-like rings as a generalization of Boolean rings. In Section 3, we adapt the concept of Boolean-like
rings to rings with involution and prove that a x-ring R is *-Boolean-like if and only if R is strongly nil
x-clean and af = 0 for all nilpotent elements «, 8 in R. In the last section, we investigate submaximal
ideals (see [11]) of strongly nil #-clean rings. We also define x-Boolean rings as *-rings over which every
element is a projection and characterize them in terms of strongly nil x-cleanness. As a corollary, we get
that R is a Boolean ring if and only if R is commutative, strongly nil clean and every primary ideal of R
is maximal. Other characterizations of Boolean rings by means of (strongly) nil clean rings can be found
in [7].

Throughout this paper all rings are associative with unity (unless otherwise noted). We write J(R),
N(R) and U(R) for the Jacobson radical of a ring R, the set of all nilpotent elements in R and the set
of all units in R, respectively. The ring of all polynomials in one variable over R is denoted by R[z].

2. Characterization theorems

The main purpose of this section is to provide several characterizations of strongly nil *-clean rings.

First recall some definitions. A ring R is called uniquely nil clean if, for any x € R, there exists a
unique idempotent e € R such that x — e € N(R) [7]. If, in addition,  and e commute, R is called
uniquely strongly nil clean [9]. Strongly nil cleanness and uniquely strongly nil cleanness are equivalent
by [9, Theorem 3].

Analogously, for a *ring, we define uniquely strongly nil x-clean rings by replacing “idempotent"
with “projection" in the definition of uniquely strongly nil clean rings.

We will use the following lemma frequently.

Lemma 2.1. [10, Lemma 2.1] Let R be a *-ring. If every idempotent in R is a projection, then R is
abelian, i.e. every idempotent in R is central.

Proposition 2.2. Let R be a x-ring. Then the following are equivalent.

(1) R is strongly nil x-clean;
(ii) R is strongly nil clean and every idempotent in R is a projection;

(iil) R is uniquely strongly nil x-clean.

Proof. (i) = (ii) Assume that R is strongly nil x-clean. Then R is strongly x-clean as can be seen in
the proof of [7, Proposition 3.4], i.e. if € R, there exist a projection e and a nilpotent w in R such that
x—1=e+ w and ew = we. This gives that © = e + (1 + w) where e is a projection, 1 + w is invertible
and e(1 +w) = (1 4+ w)e. Now, by [10, Theorem 2.2], every idempotent in R is a projection and central.
Hence R is uniquely nil clean by [9, Theorem 3].

(ii) = (iii) If R is uniquely nil clean, then R is uniquely strongly nil clean by Lemma 2.1. Hence R
is uniquely strongly nil *-clean.

(iii) = (i) Clear. O

We note that the condition “every idempotent in R is a projection" in Proposition 2.2 is necessary
as the following example shows.

56
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Example 2.3. LetR:{<8 8),((1) ?),((1) (1))’<8 })}whereO,leZz. Define * : R — R,

a b a+b b . . . . . -
( . d) — (a Cbterd by d)' Then R is a commutative *-ring with the usual matrix addition

and multiplication. In fact, R is Boolean. Thus, for any x € R, there exists a unique idempotent e € R
such that £ — e € R is nilpotent. But it is not strongly nil *-clean because the only projections are the
11

00 ) — e is nilpotent.

trivial projections and there does not exist a projection e in R such that (

In [9, Theorem 3|, it is proved that R is strongly nil clean if and only if N(R) is an ideal and R/N(R)
is Boolean. Also, R is uniquely nil clean if and only if R is abelian, N(R) is an ideal and R/N(R) is
Boolean [9, Theorem 4]. So if we adapt these results to rings with involution, immediately we have the
following proposition by using Proposition 2.2.

Proposition 2.4. Let R be a x-ring. Then R is strongly nil x-clean if and only if

(1) Ewvery idempotent in R is a projection;
(2) N(R) forms an ideal;
(3) R/N(R) is Boolean.
A ring R is called strongly J-x-clean if for any x € R there exists a projection e € R such that
x —e € J(R) and ex = ze [6], equivalently, for any = € R there exists a unique projection e € R such

that z — e € J(R) [6, Theorem 3.2]. We call R uniquely nil x-clean ring if for any a € R, there exists a
unique projection e € R such that a — e € N(R).

Proposition 2.5. Let R be a x-ring. Then the following are equivalent.

(i) R is strongly nil x-clean;
(ii) R is strongly J-x-clean and J(R) is nil;
(iil) R is uniquely nil x-clean and J(R) is nil.
Proof. (i) = (ii) Suppose that R is strongly nil #-clean. In view of Proposition 2.4, N(R) forms an

ideal of R, and this gives that N(R) C J(R) (see also |7, Proposition 3.18]). By [7, Proposition 3.16],
J(R) is nil, and so N(R) = J(R). Hence R is strongly J-#-clean.

(ii) = (i) is obvious.

(i) and (ii) = (iii) Since R is strongly J-#-clean, there exists a unique projection e € R such that
x —e € J(R) by [6, Theorem 3.2|. Since J(R) = N(R), R is uniquely nil *-clean.

(iii) = (ii) Since J(R) € N(R), R is strongly J-*-clean rings by [6, Theorem 3.2]. O
From Proposition 2.5 and [6, Proposition 2.1], it follows that
{strongly nil *-clean} C {strongly J--clean} C {strongly *-clean}.

The first inclusion is strict because, for example, the power series ring Zs[[z]] with the identity involution
is strongly J-#-clean but not strongly nil x-clean by [4, Example 2.5(5)]. The second inclusion is also
strict by [6, Example 2.2(2)].

We should note that a strongly nil clean ring may not be strongly J-clean (see [4, Example on p.
3799]). Hence strongly nil clean and strongly nil #-clean classes have different behavior when compared
to classes of strongly J-clean and strongly J-x-clean classes respectively.

~
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Lemma 2.6. Let R be a x-ring. Then R is strongly nil x-clean if and only if

(1) Fvery idempotent in R is a projection;
(2) J(R) is nil;
(3) R/J(R) is Boolean.

Proof. Assume that (1),(2) and (3) hold. For any z € R, = + J(R) = 2% + J(R). As J(R) is nil,
every idempotent in R lifts modulo J(R). Thus, we can find an idempotent e € R such that © —e €
J(R) C N(R). By Lemma 2.1, xe = ex, and so the result follows. The converse is by Propositions 2.4
and 2.5. O

Recall that a ring R is periodic if for any « € R, there exist distinct m,n € N such that 2™ = 2.
With this information we can now prove the following.

Theorem 2.7. Let R be a x-ring. Then R is strongly nil x-clean if and only if

(1) Fvery idempotent in R is a projection;
(2) R is periodic;
(3) R/J(R) is Boolean.

Proof. Suppose that R is strongly nil %-clean. By virtue of Lemma 2.6, every idempotent in R is
a projection and R/J(R) is Boolean. For any x € R, x — 2% € N(R). Write (x — 2*)™ = 0, and so
a™ = ™t f(x), where f(x) € Z[z]. According to Herstein’s Theorem (cf. [3, Proposition 2|), R is
periodic. Conversely, J(R) is nil as R is periodic. Therefore the proof is completed by Lemma 2.6. O

Proposition 2.8. A x-ring R is strongly nil x-clean if and only if

(1) R is strongly x-clean;
(2) NR)={zeR|1—-x€U(R)}.

Proof. Suppose that R is strongly nil x-clean. By the proof of Proposition 2.5, N(R) = J(R). Since
R is strongly J-*-clean, N(R) ={x € R|1—2 € U(R)} by [6, Theorem 3.4|.

Conversely, assume that (1) and (2) hold. Let a € R. Then we can find a projection e € R such that
(a—1)—ec€U(R) and e(a — 1) = (a — 1)e. Thatis, (1 —a)+e € U(R). As1— (a—e) € U(R), by
hypothesis, a — e € N(R). In addition, ea = ae. Accordingly, R is strongly nil *-clean. O

Let R be a *ring. Define x : R[z]/(z"

) = R[z]/(z™) by ap + a1 + -+ + ap_12""t + (a") —
ap +ajr+---+a;_;2" 1 + (2"). Then R[z]/(a™

) is a #-ring (cf. [10]).

Corollary 2.9. Let R be a %-ring. Then R is strongly nil x-clean if and only if so is Rlx]/(z™) for every
n>1.

Proof. One direction is obvious. Conversely, assume that R is strongly nil x-clean. Clearly,
N(R[z]/(z™)) = {ao + a13 4 - - + an—12" " + (") | ap € N(R), a1, ,an—1 € R}. In view of Proposi-
tion 2.8, N(R[z]/(z")) = {ao + a1 + -+ + ap—12" ' + (z") | 1 —ao € U(R), a1, -+ ,an—1 € R}. Also
note that R is abelian. Thus, it can be easily seen that every element in R[z]/(z™) can be written as the
sum of a projection and a nilpotent element that commute. O



A. Harmancu et al. / J. Algebra Comb. Discrete Appl. 4(2) (2017) 155-164

Let R be a commutative *-ring and consider the ring R[i] = {a + bi | a,b € R, > = —1 } and i
commutes with elements of R. Then R[i] is a -ring, where the involution is * : R[i] — R][i], a + bi —
a* + b*i.

Note that if 2 and y are idempotent elements that commute, then (z—vy)? = x—3zy+3zy—y = z—y.
This argument will also be used in Lemma 4.6.

Proposition 2.10. Let R be a commutative x-ring. Then with the involution (a + bi)* = a* + b*i, R]i]
1s strongly nil x-clean if and only if R is strongly nil x-clean.

Proof. Suppose that R[i] is strongly nil *-clean. Then every idempotent in R is a projection. Since R
is commutative, N(R) forms an ideal. For any a € R, we see that a—a? € N(R[i]), and so a—a* € N(R).
Thus, R/N(R) is Boolean. Therefore R is strongly nil %-clean by Proposition 2.4.

Conversely, assume that R is strongly nil %-clean. As R is commutative, N (R[ZD forms an ideal
of R[i]. Let a + bi € R[i] be an idempotent. Then we can find projections e, f € R and nilpotent
elements w,v € R such that @ = e+ u, b = f +w. Then a — a*,b — b* € N(R). This shows that
(a+bi)— (a+bi)* = (a—a*)+ (b—0b*)i € N(R[]). As a+ bi,(a+ bi)* € R[i] are idempotents, we see
that ((a-+bi)— (a+ bi)*)3 = (a+bi) — (a+bi)* by the above argument. Hence, ((a+ bi) — (a+bi)*) (1 —
((a+bi) — (a+ bi)*)?) = 0, therefore (a + bi) — (a + bi)* = 0. That is, a + bi € R]i] is a projection.

Since R is strongly nil *-clean, it follows from Proposition 2.4 that 2 —2% € N(R), and so 2 € N(R).
For any a + bi € RJ[i], it is easy to verify that

(a+ bi) — (a+ bi)? (a — a?) — 2abi + bi — b%i?
b* + bi

b+ bi (mod N(R[i)).

This shows that ((a+bi)—(a+bi)2)2 = 2b% = 2b = 0 (mod N (R]i])). Hence, (a-+bi)—(a+bi)? € N(R[i]).
That is, R[i]/N (R[i]) is Boolean. According to Proposition 2.4, we complete the proof. O

3. x-Boolean like rings

In this section, we consider a subclass of strongly nil *-clean rings consisting of rings which we call
x-Boolean-like. First recall that a ring R is called Boolean-like if it is commutative with unit and is of
characteristic 2 with ab(1+a)(1+b) = 0 for every a,b € R [8]. Any Boolean ring is clearly a Boolean-like
ring but not conversely (see [8]). Any Boolean-like ring is uniquely nil clean by [8, Theorem 17|. Also, R
is Boolean-like if and only if (1) R is a commutative ring with unit; (2) It is of characteristic 2; (3) It is
nil clean; (4) ab = 0 for every nilpotent element a,b in R [8, Theorem 19].

Definition 3.1. A x-ring R is said to be *-Boolean-like provided that every idempotent in R is a
projection and (a — a?)(b— b*) =0 for all a,b € R.

The following is an example of a *-Boolean-like ring.

~ °~

Example 3.2. Let R = {(z Z) | a,b,c € Zy}. Define (

a b)+<a
c a c
/ / ! / /
(Ccl Z)(Ccl’ Z’):(ca’aﬁac’ aba—g’ba ) and *: R — R, (Cclz =
a b

Let < ¢ a ) € R be an idempotent. Then a = a? and (2a—1)b = (2a—1)c = 0. As (2a—1)? = 1, we see

¥\  [a+d b4V

!/ - C+C/ a/_"_a/ I
c

a

a
a . .
b ) . Then R is a *-ring.

that b = ¢ = 0, and so the set of all idempotents in R is {( 8 8 ) , < (1) (1) )} Thus, every idempotent in

R is a projection. For any A, B € R, we see that (A — A?)(B — B?) = ( 2 3 ) ( 2 S > = 0. Therefore

R is *-Boolean-like.

15
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Theorem 3.3. Let R be a x-ring. Then R is x-Boolean-like if and only if

(1) R is strongly nil x-clean;
(2) aB =0 for all nilpotent elements «, 8 € R.

Proof. Suppose that R is *-Boolean-like. Then every idempotent in R is a projection; hence, R is
abelian. For any a € R, (a — a?)? = 0, and so a® = a®f(a) for some f(t) € Z[t]. This implies that R
is strongly m-regular, and so it is w-regular. It follows from [1, Theorem 3| that N(R) forms an ideal.
Further, a — a? € N(R). Therefore R/N(R) is Boolean. According to Proposition 2.4, R is strongly nil
x-clean. For any nilpotent elements «, 5 € R, we can find some m,n € N such that o™ = ™ = 0. Since
a? = a3g(a) for some g(t) € Z[t], a® = 0. Likewise, 32 = 0. This shows that a8 = (o — a?)(8 - 3?) = 0.

Conversely, assume that (1) and (2) hold. By Proposition 2.4, every idempotent is a projection,
and for any a € R, a — a? is nilpotent. Hence for any a,b € R, (a — a®)(b — b?) = 0. Therefore R is
x-Boolean-like. O

Corollary 3.4. x-Boolean-like rings are commutative rings.

Proof. Let xz,y € R. In view of Theorem 3.3, x — ¢ and y — f are nilpotent for some projections
e, f € R. Again by Theorem 3.3, (x —e)(y — f) =0 = (y — f)(z — e). Since R is abelian, it follows that
zy = yx. Hence R is commutative. 0

Example 3.5. Let R be the ring

00 10 01 11 00 10 01 11
{00’01’10’00’11’10’01’11}’
where 0,1 € Zs. Define * : R — R, A — AT the transpose of A. Then R is a *-ring in which (a —a?)(b —
b?) = 0 for all a,b € R. Further, a3 = 0 for all nilpotent elements a, 3 € R. But R is not *-Boolean-like.
We end this section with an example showing that strongly nil clean rings need not be strongly nil

*-clean.

Example 3.6. Consider the ring

R:{(g QCb) | a,b,c € Zs}.

Then for any =,y € R, (z — 2?)(y — %) = 0. Obviously, R is not commutative. This implies that
R is not a *-Boolean-like ring for any involution x. Accordingly, R is not strongly nil *-clean for any
involution *; otherwise, every idempotent in R is a projection, a contradiction (see Lemma 2.1). We can

also consider the involution * : R — R, ( 8 2:) — < S _jb > and the idempotent ( 8 (1) ) which is

not a projection. On the other hand, since (z —22)? = 0 and so z — 22 € N(R) for all € R, we get that
R is strongly nil clean by [9, Theorem 3|.

4. Submaximal ideals and *-Boolean rings

An ideal I of a ring R is called a submazimal ideal if I is covered by a maximal ideal of R. That is,
there exists a maximal ideal I; of R such that I ; I ; R and for any ideal K of R such that I C K C I,
we have I = K or K = I;. This concept was initially introduced to study Boolean-like rings (cf. [11]).

A x-ring R is called a *x-Boolean ring if every element of R is a projection.

The purpose of this section is to characterize submaximal ideals of strongly nil *-clean rings, and
x-Boolean rings by means of strongly nil #-cleanness. We begin with the following lemma.
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Lemma 4.1. Let R be strongly nil x-clean. Then an ideal M of R is maximal if and only if

(1) M is prime;

(2) For any a € Ryn > 1, a™ € M implies that a € M.

Proof. Suppose that M is maximal. Obviously, M is prime. Let a € R and ™ € M. If a &€ M,
RaR+ M = R. Thus, RaR = R where R = R/M and @ = a + M. Clearly, R is an abelian clean ring,
and so it is an exchange ring by [5, Theorem 17.2.2]. This implies that R/M is an abelian exchange ring.
As in the proof of [5, Proposition 17.1.9], there exists a nonzero idempotent € € R such that € € @R and
T—e € (I—-a)R. Since ReR is a nonzero ideal of simple ring R, ReR = R. Thus 1 — e € M. Hence,
1 —ar € M for some r € R. This implies that a"~! — a”r € M, and so a”~! € M. By iteration of this
process, we see that a € M, as required.

Conversely, assume that (1) and (2) hold. Assume that M is not maximal. Then we can find a
maximal ideal I of R such that M G I G R. Choose a € I while a ¢ M. By hypothesis, there exists
a projection e € R and a nilpotent ©v € R such that a = e + u. Write u™ = 0. Then v™ € M. By
hypothesis, u € M. This shows that e ¢ M. Clearly, R is abelian. Thus eR(1 —e) C M. As M is prime,
we deduce that 1 —e€ M. Asaresult, ]l —a=(1—e)—ue M,andsol=(1l—a)+aec . Thisgives
a contradiction. Therefore M is maximal. O

Let R be a strongly nil *-clean ring, and let x € R. Then there exists a unique projection e € R
such that x — e € N(R). We denote e by zp and z — e by zn.

Lemma 4.2. Let I be an ideal of a strongly nil x-clean ring R, and let x € R be such that x ¢ I. If
xp & I, then there exists a mazimal ideal J of R such that I C J and x & J.

Proof. Let Q={K | Kisanidealin R, I C K,zp & K}. Then Q # (. Given K; C Ko C --- in ,
oo

we set @ = |J K;. Then @ is an ideal of R. If Q & Q, then zp € @Q, and so xp € K; for some i. This
i=1

gives a contradiction. Thus, 2 is inductive. By using Zorn’s Lemma, there exists an ideal L of R which is

maximal in Q. Let a,b € R such that a,b ¢ L. By the maximality of L, we see that RaR+ L, RbR+L & Q.

This shows that p € (RaR+ L) N (RbR+ L). Hence, zp = v% € RaRbR+ L. This yields that aRb € L;

otherwise, zp € L, a contradiction. Hence, L is prime. Assume that L is not maximal. Then we can find

a maximal ideal M of R such that L G M & R. Clearly, R is abelian. By the maximality, we see that

xp € M, and so 1 —xp ¢ M. This implies that 1 —xp € L. As zpR(1 —xp) = 0 C L, we have that

xp € L, a contradiction. Therefore L is a maximal ideal, as asserted. O

Proposition 4.3. Let R be strongly nil x-clean. Then the intersection of two maximal ideals is submazx-
imal and it is covered by each of these two mazimal ideals. Further, there is no other mazimal ideals
containing .

Proof. Let I and I5 be two distinct maximal ideals of R. Then I N1y ; I,. Suppose I1yNI, C L ; 1.
Then we can find some = € I; while x ¢ L. Write 2%, = 0. Then 2%, € I;. In light of Lemma 4.1, x5 € I;.
Likewise, xny € Is. Thus, x5 € I; NIy C L. This shows that zp ¢ L. By virtue of Lemma 4.2, there
exists a maximal ideal M of R such that L C M and x ¢ M. Hence, [1NIs C M and I; # M. If I # M,
then Is+M = R. Writet+y = 1witht € Iy,y € M. Then forany z € I, z = 2zt+zy € [ NIy+M = M,
and so ;1 = M. This gives a contradiction. Thus I = M, and then L C M C I5. Asaresult, L C 1N,
and so Iy NIy = L. Therefore Iy N I3 is a submaximal ideal of R. We claim that I; N I is semiprime.
If K2 C I, N I, then for any a € K, we see that a®> € I; N I,. In view of Lemma 4.1, a € I; N I,. This
implies that K C I N I5. Hence, I} N I5 is semiprime. Therefore Iy N I5 is the intersection of maximal
ideals containing I; N I5.

Assume that K is a maximal ideal of R such that I1NI, C K. If K # I, I5, then [+ K = I[,+K = R.
This implies that I; N I + K = R, and so K = R, a contradiction. Thus, K = I; or K = I, and so the
proof is completed. O



A. Harmancu et al. / J. Algebra Comb. Discrete Appl. 4(2) (2017) 155-164

162

We call a local ring R absolutely local provided that for any 0 # = € J(R), J(R) = RzR.

Corollary 4.4. Let R be strongly nil x-clean, and let I be an ideal of R. Then I is a submaximal ideal
if and only if R/I is Boolean with four elements or R/I is absolutely local.

Proof. Let I be a submaximal ideal of R.

Case 1. I is contained in more than one maximal ideal. Then I is contained in two distinct maximal
ideals of R. Since [ is submaximal, there exists a maximal ideal L of R such that I is covered by L. Thus,
we have a maximal ideal L’ such that L' # L and I & L'. Hence, I C LNL' C L. Clearly, LN L' # L
as L+ L' = R,and so [ = LN L. In view of Proposition 4.3, there is no maximal ideal containing I
except for L and L’. This shows that R/I has only two maximal ideals covering {0+ I'}. For any a € R,
it follows from Proposition 2.4 that a — a? € R is nilpotent. Write (a — a?)™ = 0. Then (a — a®)" € L.
According to Lemma 4.1, a — a® € L. Likewise, a — a? € L. Thus, a —a®> € LN L', and so a — a? € I.
This shows that R/I is Boolean. Therefore R/I is Boolean with four elements.

Case II. Suppose that I is contained in only one maximal ideal L of R. Then R/I has only one
maximal ideal L/I. Clearly, R is an abelian exchange ring, and then so is R/I. Let € € R/I be a
nontrivial idempotent. Then I C I+ ReR C L or I + ReR = R. Likewise, I C T+ R(1 —e¢)R C L or
I+ R(1—e)R = R. This shows that I+ ReR = R or [ + R(1—e)R = R Thus, (R/I)(e+I)(R/I) = R/I
or (R/I)(1—e+1I)(R/I)= R/I, a contradiction. Therefore all idempotents in R/I are trivial. It follows
from [5, Lemma 17.2.1] that R/I is local. For any 0 # T € L/I, we see that 0 # I C ReR C L. As I is
submaximal, we deduce that L = Rz R. Therefore R is absolutely local.

Conversely, assume that R/I is Boolean with four elements. Then R/I has precisely two maximal
ideals covering {0+ I'}, and so R has precisely two maximal ideals covering I. Thus, we have a maximal
ideal L such that I ; L. fI CKCL. Then K =1 or K is maximal, and so K = L. Consequently, I
is submaximal. Assume that R/I is absolutely local. Then R/I has a unique maximal ideal L/I. Hence,
L is a maximal ideal of R such that I € L. Assume that I ; K C L. Choose a € K while a € I. Then

=
L = RaR C K, and so K = L. Therefore I is submaximal, as required. O

Corollary 4.5. Let R be strongly nil x-clean. If Iy and I are distinct mazimal ideals of R, then
R/(I1 N I3) is Boolean.

Proof. Since I /(I; N1I2) and I/(I; N I3) are distinct maximal ideals, R/(I; N 1I3) is not local. In view
of Proposition 4.3, I1 N I5 is a submaximal ideal of R. Therefore Corollary 4.4 yields the proof. 0

Recall that an ideal I of a commutative ring R is primary provided that for any =,y € R, xy € I
implies that x € I or y™ € I for some n € N. Clearly, every maximal ideal of a commutative ring is
primary. We end this article by giving the relation between strongly nil *-clean rings and *-Boolean rings.

Lemma 4.6. Let R be a commutative strongly nil x-clean ring. Then the intersection of all primary
ideals of R is zero.

Proof. Let a be in the intersection of all primary ideal of R. Assume that a # 0. Let Q =
{I|I is an ideal of R such that a & I'}. Then Q # () as 0 € 2. Given any ideals I; C Iy C --- in 2, we set

M = U I;. Then M € ). Thus, Q is inductive. By using Zorn’s Lemma, we can find an ideal () which is

max1mal in Q. It will suffice to show that @ is primary. If not, we can find some z,y € R such that zy € Q,
but x € Q and y™ ¢ @ for any n € N. This shows that a € Q+( ), and so a = b+cx for some b € Q,c € R.
Since R is strongly nil *-clean, it follows from Theorem 2.7 that there are some distinct k,I € N such
that y* = y'. Say k > I. Then ¢} = y* = yitlyh—l-1 = ylyyk—I=1 = yl+22(0—1=1) — . — g2l l(k=1-1)
Hence, 3/ (F=0 = ¢l (yt=1=1)) = g2 20(k=1=1) — (yl(k’l))Q. Choose s = [(k —1). Then y® is an idempo-
tent. Write y = yp +yn. Then y°* —yp = (yp + yn)° —yp = yN(syp + -+ yjsv_l) € N(R). As R is
a commutative ring, we see that (y* — yp)® = y* — yp. This implies that y* = yp. Since zy € Q, we
have that zy° € @, and so xyp € Q. It follows from a = b+ cx that ayp = byp + cxyp € Q. Clearly,
y* ¢ Q,and so a € Q + (yp). Write a = d + ryp for some d € Q,r € R. We see that ayp = dyp + ryp,
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and so ryp € Q. This implies that a € @, a contradiction. Therefore @) is primary, a contradiction.
Consequently, the intersection of all primary ideals of R is zero. O

Theorem 4.7. Let R be a *-ring. Then R is a *-Boolean ring if and only if

(1) R is commutative;
(2) Every primary ideal of R is mazimal;

(3) R is strongly nil x-clean.

Proof. Suppose that R is a *-Boolean ring. Clearly, R is a commutative strongly nil *-clean ring. Let I
be a primary ideal of R. If I is not maximal, then there exists a maximal ideal M such that I G M G R.
Choose x € M while z ¢ I. As z is an idempotent, we see that zR(1 —z) C I, andso (1—z)" € I C M
for some m € N. Thus, 1 — 2 € M. This implies that 1 = z + (1 — x) € M, a contradiction. Therefore I
is maximal, as required.

Conversely, assume that (1), (2) and (3) hold. Clearly, every maximal ideal of R is primary, and so
J(R)={P | P is primary}. In view of Lemma 4.6, J(R) = 0. Hence every element is a projection i.e.
R is x-Boolean. O

Corollary 4.8. A ring R is a Boolean ring if and only if
(1) R is commutative;
(2) FEvery primary ideal of R is mazimal;

(3) R is strongly nil clean.
Proof. Choose the involution as the identity. Then the result follows from Theorem 4.7. O
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