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1. Introduction
A crossed module [20] A = (∂ : C −→ R) of commutative algebras is given by an algebra morphism ∂ : C −→ R together with
an action · of R on C such that the relations below hold for each r ∈ R and each c,c

′ ∈C,

∂ (r · c) = r∂ (c)
∂ (c) · c′ = cc

′
.

Group crossed modules were firstly introduced by Whitehead in [21],[22]. They are algebraic models for homotopy 2-types,
in the sense that [5],[15] the homotopy category of the model category [6],[9] of group crossed modules is equivalent to the
homotopy category of the model category [11] of pointed 2-types: pointed connected spaces whose homotopy groups πi vanish,
if i≥ 3. The homotopy relation between crossed module maps A −→A

′
was given by Whitehead in [22], in the contex of

“homotopy systems” called free crossed complexes.
In [2] it is addressed the homotopy theory of maps between crossed modules of commutative algebras. It is proven that if

A and A
′

are crossed modules of algebras without any restriction on A and A
′

then the crossed module maps A −→A
′

and
their homotopies give a groupoid.

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras
is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy
for 2-algebras. This definition is essentially a special case of 2-natural transformation due to Gray in [12]. And we explore
the relations between the crossed module homotopies and 2-algebra homotopies. Similar results are given [13] by İçen for
2-groupoids.
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2. Preliminaries
In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is
equivalent to the category of crossed modules in commutative algebras.

2.1 2-algebras
Definition 2.1. A weak 2-algebra consists of
· a 2-module A equipped with a functor • : A×A −→ A, which is defined by (x,y) 7→ x • y and bilinear on objects and

defined by ( f ,g) 7→ f •g on morphisms satisfying interchange law, i.e.,

( f1 •g1)◦ ( f2 •g2) = ( f1 ◦ f2)• (g1 ◦g2)

· k−bilinear natural isomorphisms

αx,y,z : (x• y)• z−→ x• (y• z)

lx : 1• x−→ x

rx : x•1−→ x

such that the following diagrams commute for all objects w,x,y,z ∈ A0.

((w• x)• y)• z

αw,x,y•1z

��

αw•x,y,z // (w• x)• (y• z)
αw,x,y•z

((
(w• (x• y))• z

αw,x•y,z
// w• ((x• y)• z)

1w•αx,y,z

// w• (x• (y• z))

(x•1)• y

rx•1y &&

αx,1,y // x• (1• y)

1x•ly
��

x• y

A strict 2-algebra is the special case where αx,y,z, lx, rx are all identity morphisms. In this case we have

(x• y)• z = x• (y• z)

1• x = x,x•1 = x

Strict 2-algebra is called commutative strict 2-algebra if x•y = y•x for all objects x,y ∈ A0 and f •g = g• f for all morphisms
f ,g ∈ A1.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomorphism between
2-algebras should preserve both the 2-module structure and the • functor.

Definition 2.2. Given 2-algebras A and A′, a homomorphism

F : A−→ A′

consists of
· a linear functor F from the underlying 2-module of A to that of A′, and
· a bilinear natural transformation

F2(x,y) : F0(x)•F0(y)−→ F0(x• y)

· an isomorphism F : 1′ −→ F0(1) where 1 is the identity object of A and 1′ is the identity object of A′,
such that the following diagrams commute for x,y,z ∈ A0,
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(F(x)•F(y))•F(z)

αF(x),F(y),F(z)

��

F2•1 // F(x• y)•F(z)
F2 // F((x• y)• z)

F(αx,y,z)

��
F(x)• (F(y)•F(z))

1•F2

// F(x)•F(y• z)
F2

// F(x• (y• z)).

1′ •F(x)

F0•1
��

l′F(x) // F(x)

F(1)•F(x)
F2

// F(1• x).

F(lx)

OO

F(x)•1′

1•F0
��

r′F(x) // F(x)

F(x)•F(1)
F2

// F(x•1).

F(rx)

OO

Definition 2.3. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by 2Alg .

Therefore if A = (A0,A1,s, t,e,◦,•) is a 2-algebra, A0 and A1 are algebras with this • bilinear functor. Thus we can take that
2-algebra is a 2-category with a single object say ∗, and A0 collections of its 1-morphisms and A1 collections of its 2-morphisms
are algebras with identity.

2.2 Crossed modules
Crossed modules have been used widely and in various contexts since their definition by Whitehead [23] in his investigations of
the algebraic structure of relative homotopy groups. We recalled the definition of crossed modules of commutative algebras
given by Porter [20].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together with a
commutative action of R on C and a morphism

∂ : C −→ R

such that for all c ∈C, r ∈ R

CM1) ∂ (r I c) = r∂c.

This is a crossed R-module if in addition for all c,c′ ∈C

CM2) ∂c I c′ = cc′.

The last condition is called the Peiffer identity. We denote such a crossed module by (C,R,∂ ).
A morphism of crossed modules from (C,R,∂ ) to (C′,R′,∂ ′) is a pair of k-algebra morphisms φ : C −→C′,ψ : R−→ R′

such that

∂
′
φ = ψ∂ and φ(r I c) = ψ(r)I φ(c).

Thus we get a category XModk of crossed modules (for fixed k).
Examples of Crossed Modules
1. Any ideal I in R gives an inclusion map, inc : I −→ R which is a crossed module. Conversely given an arbitrary R-module

∂ : C −→ R one easily sees that the Peiffer identity implies that ∂C is an ideal in R.
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2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero morphism 0 : M→ R
sending everything in M to the zero element of R is a crossed module. Conversely: If (C,R,∂ ) is a crossed module, ∂ (C) acts
trivially on ker∂ , hence ker∂ has a natural R/∂ (C)-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules. Both aspects
are important.

3. Let be M (C) multiplication algebra. Then (C,M (C) ,µ) is multiplication crossed module. µ : C→M (C) is defined
by µ (r) = δr with δr (r′) = rr′ for all r,r′ ∈C, where δ is multiplier δ : C→C such that for all r,r′ ∈C, δ (rr′) = δ (r)r′. Also
M (C) acts on C by δ I r = δ (r) .(See [3] for details).

In [20] Porter states that there is an equivalence of categories between the category of internal categories in the category of
k-algebras and the category of crossed modules of commutative k-algebras. In the following theorem, it is given a categorical
presentation of this equivalence.

Theorem 2.4. [1] The category of crossed modules XModk is equivalent to that of 2-algebras, 2Alg.

Proof. Let A = (A0,A1,s, t,e,◦,•) be a 2-algebra consisting of a single object say ∗ and an algebra A0 of 1-morphisms and
an algebra A1 of 2-morphisms and ∂ = t|Kers algebra homomorphism by ∂ : Kers−→ A0,∂ (h) = t(h). Then (Kers,A0,∂ ) is a
crossed module.

Let A = (A0,A1,s, t,e,◦,•) and A
′
= (A

′
0,A

′
1,s
′
, t
′
,e
′
,◦′ ,•′) be 2-algebras and F = (F0,F1) : A −→A

′
be a 2-algebra

morphism. Then F0 : A0 −→ A
′
0 and F1 : A1 −→ A

′
1 are the k-algebra morphisms. For f1 = F1|Kers : Kers −→ Kers

′
and

f0 = F0 : A0 −→ A
′
0, ( f1, f0) map is a crossed module morphism (Kers,A0,∂ )−→ (Kers

′
,A
′
0,∂

′
). So it is got a functor

Γ : 2Alg−→ XModk.

Conversely, let (G,C,∂ ) be a crossed module of algebras. For s, t : GoC→C and e : C→ GoC by s(g,c) = c, t(g,c) =
∂ (g)+ c,e(c) = (0,c) and

the compositions

(g,c)• (h,d) = (c I h+d I g+gh,cd)

(g,c)◦ (g′,∂ (g)+ c) = (g+g′,c)

such that t(g,c) = s(g′,∂ (g)+ c) = ∂ (g)+ c, it is constructed a 2-algebra A = (C,GoC,s, t,e,◦,•) consists of the single
object say ∗ and the k-algebra C of 1-morphisms and the k-algebra GoC of 2-morphisms. Let (G,C,∂ ) and (G

′
,C
′
,∂
′
) be

crossed modules and f = ( f1, f0) : (G,C,∂ ) −→ (G
′
,C
′
,∂
′
) be a crossed module morphism. For

F1 : GoC −→ G
′ oC

′

(g,c) 7−→ F1(g,c) = ( f1(g), f0(c))

and

F0 : C −→ C
′

c 7−→ F0(c) = f0(c).

F = (F1,F0) is a 2-algebra morphism from (C,GoC,s, t,e,◦,•) to (C
′
,G
′ oC

′
,s
′
, t
′
,e
′
,◦′ ,•′). Thus it is got a functor

Ψ : XModk −→ 2Alg.

3. Homotopies of Crossed Modules and 2-Algebras
The notion of homotopy for morphisms of crossed modules over commutative algebras is given in [2]. In this section, we
explain the relation between homotopies for crossed modules over commutative algebras and homotopies for 2-algebras. The
formulae given below are playing important role in our study.

Definition 3.1. [2] Let A = (E,R,∂ ) and A
′
= (E

′
,R
′
,∂
′
) be crossed modules and f0 : R−→ R

′
be an algebra morphism.

An f0-derivation s : R−→ E
′

is a k-linear map satisfying for all r,r
′ ∈ R,

s(rr
′
) = f0(r)I s(r

′
)+ f0(r

′
)I s(r)+ s(r)s(r

′
).
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Let f = ( f1, f0) be a crossed module morphism A −→A
′

and s be an f0-derivation. If g = (g1,g2) is defined as (where e ∈ E
and r ∈ R)

g0(r) = f0(r)+(∂
′
s)(r)

g1(e) = f1(e)+(s∂ )(e),

then g is also crossed module morphism A −→ A
′
. In such a case we write f

( f0,s)−→ g, and say that ( f0,s) is a homotopy
connecting f to g.

If ( f0,s) and (g0,s
′
) are homotopies connecting f to g and g to u respectively, then ( f0,s+ s

′
) is a homotopy connecting f

to u, where s+ s
′
: R−→ E

′
is an f0-derivation defined by (s+ s

′
)(r) = s(r)+ s

′
(r).

The notion of homotopy for 2-algebras is essentially a special case of 2-natural transformation due to Gray in [12].

Definition 3.2. Let A = (A0,A1,s, t,e,◦,•) and A′= (A
′
0,A

′
1,s
′
, t
′
,e
′
,◦′ ,•′) be 2-algebras and let F =(F1,F0) and G=(G1,G0)

be 2-algebra morphisms A−→A′ . A k-algebra morphism µ : A0 −→ A
′
1 satisfying the following conditions is called a homotopy

connecting F to G :
1) s

′
µ = F0

2) t
′
µ = G0

3) F1 ◦
′
µt = µs◦′ G1. In such a case we write F

µ−→ G.

Theorem 3.3. Let A = (A0,A1,s, t,e,◦,•) , A
′
= (A

′
0,A

′
1,s
′
, t
′
,e
′
,◦′ ,•′) be 2-algebras, F = (F1,F0), G = (G1,G0) and

U = (U1,U0) be 2-algebra morphisms A −→A
′
and µ be a homotopy connecting F to G, µ

′
be a homotopy connecting G to

U. Then the map µ ∗µ
′
: A0 −→ A1 defined by (µ ∗µ

′
)(x) = µ(x)+µ

′
(x)− e

′
(t
′
µ)(x) is a homotopy connecting F to U.

Proof. We first show that µ ∗µ
′

is an algebra morphism. Since µ and µ
′

are algebra morphisms, µ(x• x
′
) = µ(x)•′ µ(x′) and

µ
′
(x• x

′
) = µ

′
(x)•′ µ ′(x′) for all x,x

′ ∈ A0. Then we get

(µ ∗µ
′
)(x• x

′
) = µ(x• x

′
)+µ

′
(x• x

′
)− e

′
(t
′
µ)(x• x

′
)

= µ(x• x
′
)+µ

′
(x• x

′
)− e

′
(G0)(x• x

′
)

= µ(x• x
′
)◦′ µ ′(x• x

′
)

= (µ(x)•′ µ(x′))◦′ (µ ′(x)•′ µ ′(x′))
= (µ(x)◦′ µ ′(x))•′ (µ(x′)◦′ µ ′(x′)) (interchange law)
= (µ(x)+µ

′
(x)− e

′
(G0)(x))•

′
(µ(x

′
)+µ

′
(x
′
)− e

′
(G0)(x

′
))

= (µ ∗µ
′
)(x)•′ (µ ∗µ

′
)(x

′
).

For all x ∈ A0

s
′
(µ ∗µ

′
)(x) = s

′
(µ(x)+µ

′
(x)− e

′
G0(x))

= s
′
µ(x)+ s

′
µ
′
(x)− s

′
e
′
G0(x)

= F0(x)+G0(x)−G0(x)
= F0(x),

t
′
(µ ∗µ

′
)(x) = t

′
(µ(x)+µ

′
(x)− e

′
G0(x))

= t
′
µ(x)+ t

′
µ
′
(x)− t

′
e
′
G0(x)

= G0(x)+U0(x)−G0(x)
= U0(x),

and since F1 ◦
′
µt = µs◦′ G1 and G1 ◦

′
µ
′
t = µ

′
s◦′U1, we get

F1 ◦
′
µt ◦′ µ ′t = µs◦′ G1 ◦

′
µ
′
t

= µs◦′ µ ′s◦′U1.

Thus, we get

F1 ◦
′
(µ ∗µ

′
)t = F1 ◦

′
(µt ◦′ µ ′t)

= (µs◦′ µ ′s)◦′U1

= (µ ∗µ
′
)s◦′U1.

Therefore µ ∗µ
′
: A0 −→ A1 is a homotopy connecting F to U.
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Theorem 3.4. Let Γ :: 2Alg−→: XModk be the functor as mentioned in Teorem 1.4 and µ be homotopy connecting F to G.
Then

Γ(µ) = h : A0 −→ Kers
′

x 7−→ h(x) = µ(x)− e
′
(s
′
µ)(x)

is a homotopy of corresponding crossed module morphisms.

Proof. We first show that h is an f0−derivation where f0 : A0 −→ A
′
0 defined by f0(x) = F0(x). For x,x

′ ∈ A0,

f0(x)I h(x
′
)

+ f0(x
′
)I h(x)+h(x)•′ h(x′) = F0(x)I (µ(x

′
)− e

′
(s
′
µ)(x

′
))

+F0(x
′
)I (µ(x)− e

′
(s
′
µ)(x))

+(µ(x)− e
′
(s
′
µ)(x))•′ (µ(x′)− e

′
(s
′
µ)(x

′
))

= e
′
(F0(x))•

′
(µ(x

′
)− e

′
F0(x

′
))

+e
′
(F0(x

′
))•′ (µ(x)− e

′
F0(x))+µ(x)•′ µ(x′)

−µ(x)•′ e′F0(x
′
)− e

′
F0(x)•

′
µ(x

′
)+ e

′
F0(x)•

′
e
′
F0(x

′
)

= µ(x• x
′
)− e

′
(s
′
µ)(x• x

′
)

= h(x• x
′
).

Therefore h is an f0−derivation.
Now we show that

g0(x) = f0(x)+∂
′
h(x)

g1(n) = f1(n)+h∂ (n)

for x ∈ A0 and n ∈ Kers.

∂
′
h(x) = ∂

′
(µ(x)− e

′
f0(x))

= ∂
′
(µ(x))−∂

′
(e
′
f0(x))

= (t
′
µ)(x)− (t

′
e
′
) f0(x)

= g0(x)− f0(x)

and we get g0(x) = f0(x)+∂
′
h(x).

Since A1 ' KersoA0, we take a = (n,x) for a ∈ A1 where n = a− es(a) ∈ Kers and x = s(a) ∈ A0. We define µ∗ : A0 −→
Kers

′ oA
′
0, as µ∗(x) = (µ(x)− e

′
s
′
(µ(x)),s

′
µ(x)) and h∗ : A0 −→ Kers

′ oA
′
0, as h∗(x) = (h(x),F0(x)). Therefore

A1 ∼= Ker(s)oA0
s //

t
//

(F1,F0)

��

(G1,G0)

��

A0

µ∗

zz

F0

��

G0

��

e

xx

A′1 ∼= Ker(s′)oA′0

s′ //

t ′
// A′0

e′

ff

for (F1,F0)(n,x),(µ∗t)(n,x) ∈ A1 ' Kers
′ o A

′
0 such that t(F1,F0)(n,x) = s(µ∗t)(n,x), we have (F1,F0)(n,x) ◦

′
µ∗t(n,x)

= (F1(n)+µt(n),F0(x)) and −(F1,F0)(n,x) = (−F1(n), t
′
F1(n)+F0(x)) and then, since

(F1,F0)(n,x)◦
′
µ
∗t(n,x) = µ

∗s(n,x)◦′ (G1,G0)(n,x)

we have

µ∗t(n,x) = −(F1,F0)(n,x)◦
′
µ∗s(n,x)◦′ (G1,G0)(n,x)

= (−F1(n)+h(x)+G1(n), t
′
F1(n)+F0(x))
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and

−e
′
F0t(n,x) = (0, t

′
f1(n)+ f0(x)).

Hence we get

µ∗t(n,x)− e
′
F0t(n,x) = (It ′F1(n)+F0(x)

◦µt)(n,x)
= µ∗t(n,x).

Then

h∗(t(n,x)) = µ∗(t(n,x))− e
′
(s
′
µ∗)(t(n,x))

= µ∗t(n,x)− e
′
F0t∗(n,x)

= µ∗t(n,x)
= (−F1(n)+h(x)+G1(n), t

′
F1(n)+F0(x)) (1)

and

h∗(t(n,x)) = h∗(∂ (n)+ x))
= (h(∂ (n)+ x)), f0(∂ (n)+ x))
= (h(∂ (n))+h(x), f0(∂ (n))+ f0(x))
= (h(∂ (n))+h(x), t

′
F1(n)+F0(x)). (2)

Therefore from (1) and (2) we have

h(∂ (n))+h(x) =−F1(n)+h(x)+G1(n)

and

h(∂ (n)) =−F1(n)+G1(n).

Then

g1(n) = f1(n)+h∂ (n).

Hence

h : A0 −→ Kers
′

x 7−→ h(x) = µ(x)− e
′
F0(x)

is a homotopy connecting f = ( f1, f0) : (Kers ∂−→ A0)−→ (Kers
′ ∂

′

−→ A
′
0) to g = (g1,g0) : (Kers ∂−→ A0)−→ (Kers

′ ∂
′

−→ A
′
0).

Let F
µ−→ G and G

µ
′

−→ H. Then we have

Γ(µ ∗µ
′
)(x) = (µ ∗µ

′
)(x)− e

′
(s
′
µ ∗µ

′
)(x)

= µ(x)+µ
′
(x)− e

′
(t
′
µ)(x)− e

′
(s
′
µ)(x)

= µ(x)+µ
′
(x)− e

′
(s
′
µ
′
)(x)− e

′
(s
′
µ)(x)

= (µ(x)− e
′
(s
′
µ)(x))+(µ

′
(x)− e

′
(s
′
µ
′
)(x))

= Γ(µ)(x)+Γ(µ
′
)(x)

for all x ∈ A0.

Theorem 3.5. Let Ψ : XModk −→ 2Alg be the functor as mentioned in Theorem 1.4 and h be homotopy connecting f :
(G,C,∂ )−→ (G

′
,C
′
,∂
′
) to g : (G,C,∂ )−→ (G

′
,C
′
,∂
′
). Then

Ψ(h) = µ : C −→ G
′ oC

′

x 7−→ µ(x) = (h(x), f0(x))

is a homotopy of corresponding 2-algebra morphisms.
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Proof. We first show that µ is an algebra morphism. For x,x
′ ∈C

µ(xx
′
) = (h(xx

′
), f0(xx

′
))

= ( f0(x)I h(x
′
)+ f0(x

′
)I h(x)+h(x)h(x

′
), f0(x) f0(x

′
))

= (h(x), f0(x))(h(x
′
), f0(x

′
))

= µ(x)µ(x
′
).

Now we show that
1) s

′
µ = F0 2) t

′
µ = G0 3) ( f1, f0)◦′ µt = µs◦′ (g1,g0)

1)For all x ∈C,

s
′
µ(x) = s

′
(h(x), f0(x))

= f0(x) = F0(x),

2)For all x ∈C,

t
′
µ(x) = t

′
(h(x), f0(x))

= t
′
(h(x))+ f0(x)

= ∂
′
h(x)+ f0(x)

= g0(x) = G0(x),

3)For all x ∈C,a ∈ G, since t
′
( f1(a), f0(x)) = ∂

′
f1(a)+ f0(x),

s
′
(µt(a,x)) = s

′
(µ(∂ (a)+ x))

= s
′
(h(∂ (a)+ x), f0(∂ (a)+ x))

= f0(∂ (a)+ x)
= f0(∂ (a))+ f0(x)
= ∂

′
f1(a)+ f0(x)

then t
′
( f1(a), f0(x)) = s

′
(µt(a,x)) and ( f1, f0) , µt are composable pairs. Also since

t
′
(µs(a,x)) = t

′
(µ(x)) = t

′
(h(x), f0(x))

= ∂
′
(h(x))+ f0(x)

= g0(x)

and s
′
(g1(a),g0(x)) = g0(x) then t

′
(µs) = s

′
(g1,g0) and µs,(g1,g0) are composable pairs.

Therefore we get

( f1(a), f0(x))◦
′
µt(a,x) = ( f1(a)+h(∂ (a)+ x), f0(x))

and

µs(a,x)◦′ (g1(a),g0(x)) = ( f1(a)+h(∂ (a)+ x), f0(x)).

Then ( f1, f0)◦
′
µt = µs◦′ (g1,g0). So

µ : C −→ G
′ oC

′

c 7−→ µ(x) = (h(x), f0(x))

is a homotopy connecting F = (( f1, f0), f0) to G = ((g1,g0),g0).

Let f h−→ g and g h
′

−→ u. Then we have

Ψ(h+h
′
)(x) = ((h+h

′
)(x), f0(x))

= (h(x)+h
′
(x), f0(x))

= (h(x), f0(x))+(h
′
(x),g0(x))− (0,g0(x))

= Ψ(h)(x)+Ψ(h
′
)(x)− e

′
(t
′
(Ψ)(h))(x)

= (Ψ(h)∗Ψ(h))(x).
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