

Homotopies of 2-Algebra Morphisms

İbrahim İlker Akça¹*, Ummahan Ege Arslan²

Abstract

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy for 2-algebras and we explore the relations of crossed module homotopy and 2-algebra homotopy.

Keywords: 2-categories, Crossed modules, Homotopy 2010 AMS: 18F99, 18G30

¹Department of Mathematics and Computer Science, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkey, ORCID: 0000-0003-4269-498X

² Department of Mathematics and Computer Science, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkey, ORCID: 0000-0002-2995-0718

*Corresponding author: i.ilkerakca@gmail.com

Received: 27 September 2022, Accepted: 21 November 2022, Available online: 30 December 2022

1. Introduction

A crossed module [20] $\mathscr{A} = (\partial : C \longrightarrow R)$ of commutative algebras is given by an algebra morphism $\partial : C \longrightarrow R$ together with an action \cdot of *R* on *C* such that the relations below hold for each $r \in R$ and each $c, c' \in C$,

$$\begin{array}{rcl} \partial(r \cdot c) &=& r \partial(c) \\ \partial(c) \cdot c^{'} &=& cc^{'}. \end{array}$$

Group crossed modules were firstly introduced by Whitehead in [21],[22]. They are algebraic models for homotopy 2-types, in the sense that [5],[15] the homotopy category of the model category [6],[9] of group crossed modules is equivalent to the homotopy category of the model category [11] of pointed 2-types: pointed connected spaces whose homotopy groups π_i vanish, if $i \ge 3$. The homotopy relation between crossed module maps $\mathscr{A} \longrightarrow \mathscr{A}'$ was given by Whitehead in [22], in the contex of "homotopy systems" called free crossed complexes.

In [2] it is addressed the homotopy theory of maps between crossed modules of commutative algebras. It is proven that if \mathscr{A} and \mathscr{A}' are crossed modules of algebras without any restriction on \mathscr{A} and \mathscr{A}' then the crossed module maps $\mathscr{A} \longrightarrow \mathscr{A}'$ and their homotopies give a groupoid.

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy for 2-algebras. This definition is essentially a special case of 2-natural transformation due to Gray in [12]. And we explore the relations between the crossed module homotopies and 2-algebra homotopies. Similar results are given [13] by İçen for 2-groupoids.

2. Preliminaries

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is equivalent to the category of crossed modules in commutative algebras.

2.1 2-algebras

Definition 2.1. A weak 2-algebra consists of

• a 2-module A equipped with a functor • : $A \times A \longrightarrow A$, which is defined by $(x, y) \mapsto x \bullet y$ and bilinear on objects and defined by $(f,g) \mapsto f \bullet g$ on morphisms satisfying interchange law, i.e.,

$$(f_1 \bullet g_1) \circ (f_2 \bullet g_2) = (f_1 \circ f_2) \bullet (g_1 \circ g_2)$$

 $\cdot k$ -bilinear natural isomorphisms

$$\alpha_{x,y,z}: (x \bullet y) \bullet z \longrightarrow x \bullet (y \bullet z)$$

 $l_x: 1 \bullet x \longrightarrow x$

 $r_x: x \bullet 1 \longrightarrow x$

such that the following diagrams commute for all objects $w, x, y, z \in A_0$.

A strict 2-algebra is the special case where $\alpha_{x,y,z}$, l_x , r_x are all identity morphisms. In this case we have

 $(x \bullet y) \bullet z = x \bullet (y \bullet z)$

 $1 \bullet x = x, x \bullet 1 = x$

Strict 2-algebra is called commutative strict 2-algebra if $x \bullet y = y \bullet x$ for all objects $x, y \in A_0$ and $f \bullet g = g \bullet f$ for all morphisms $f, g \in A_1$.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomorphism between 2-algebras should preserve both the 2-module structure and the • functor.

Definition 2.2. Given 2-algebras A and A', a homomorphism

$$F: A \longrightarrow A'$$

consists of

 \cdot a linear functor F from the underlying 2-module of A to that of A', and

· a bilinear natural transformation

 $F_2(x,y): F_0(x) \bullet F_0(y) \longrightarrow F_0(x \bullet y)$

 \cdot an isomorphism $F : 1' \longrightarrow F_0(1)$ where 1 is the identity object of A and 1' is the identity object of A', such that the following diagrams commute for $x, y, z \in A_0$,

$$\begin{array}{c|c} (F(x) \bullet F(y)) \bullet F(z) \xrightarrow{F_2 \bullet 1} F(x \bullet y) \bullet F(z) \xrightarrow{F_2} F((x \bullet y) \bullet z) \\ \hline \alpha_{F(x),F(y),F(z)} & & & \downarrow F(\alpha_{x,y,z}) \\ F(x) \bullet (F(y) \bullet F(z)) \xrightarrow{1 \bullet F_2} F(x) \bullet F(y \bullet z) \xrightarrow{F_2} F(x \bullet (y \bullet z)). \end{array}$$

$$1' \bullet F(x) \xrightarrow{l'_{F(x)}} F(x)$$

$$F_{0} \bullet 1 \downarrow \qquad \uparrow F(l_{x})$$

$$F(1) \bullet F(x) \xrightarrow{F_{2}} F(1 \bullet x).$$

$$F(x) \bullet 1' \xrightarrow{r'_{F(x)}} F(x)$$

$$1 \bullet F_0 \bigvee \qquad \uparrow F(r_x)$$

$$F(x) \bullet F(1) \xrightarrow{F_2} F(x \bullet 1).$$

Definition 2.3. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by 2Alg.

Therefore if $A = (A_0, A_1, s, t, e, \circ, \bullet)$ is a 2-algebra, A_0 and A_1 are algebras with this \bullet bilinear functor. Thus we can take that 2-algebra is a 2-category with a single object say *, and A_0 collections of its 1-morphisms and A_1 collections of its 2-morphisms are algebras with identity.

2.2 Crossed modules

Crossed modules have been used widely and in various contexts since their definition by Whitehead [23] in his investigations of the algebraic structure of relative homotopy groups. We recalled the definition of crossed modules of commutative algebras given by Porter [20].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together with a commutative action of R on C and a morphism

 $\partial: C \longrightarrow R$

such that for all $c \in C$, $r \in R$

CM1) $\partial(r \triangleright c) = r\partial c$.

This is a crossed *R*-module if in addition for all $c, c' \in C$

CM2)
$$\partial c \triangleright c' = cc'$$
.

The last condition is called the Peiffer identity. We denote such a crossed module by (C, R, ∂) .

A morphism of crossed modules from (C, R, ∂) to (C', R', ∂') is a pair of k-algebra morphisms $\phi : C \longrightarrow C', \psi : R \longrightarrow R'$ such that

$$\partial' \phi = \psi \partial$$
 and $\phi(r \triangleright c) = \psi(r) \triangleright \phi(c)$.

Thus we get a category \mathbf{XMod}_k of crossed modules (for fixed k).

Examples of Crossed Modules

1. Any ideal *I* in *R* gives an inclusion map, *inc* : $I \rightarrow R$ which is a crossed module. Conversely given an arbitrary *R*-module $\partial : C \rightarrow R$ one easily sees that the Peiffer identity implies that ∂C is an ideal in *R*.

2. Any *R*-module *M* can be considered as an *R*-algebra with zero multiplication and hence the zero morphism $0: M \to R$ sending everything in *M* to the zero element of *R* is a crossed module. Conversely: If (C, R, ∂) is a crossed module, $\partial(C)$ acts trivially on ker ∂ , hence ker ∂ has a natural $R/\partial(C)$ -module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules. Both aspects are important.

3. Let be $\mathscr{M}(C)$ multiplication algebra. Then $(C, \mathscr{M}(C), \mu)$ is multiplication crossed module. $\mu : C \to \mathscr{M}(C)$ is defined by $\mu(r) = \delta_r$ with $\delta_r(r') = rr'$ for all $r, r' \in C$, where δ is multiplier $\delta : C \to C$ such that for all $r, r' \in C$, $\delta(rr') = \delta(r)r'$. Also $\mathscr{M}(C)$ acts on C by $\delta \triangleright r = \delta(r)$. (See [3] for details).

In [20] Porter states that there is an equivalence of categories between the category of internal categories in the category of k-algebras and the category of crossed modules of commutative k-algebras. In the following theorem, it is given a categorical presentation of this equivalence.

Theorem 2.4. [1] The category of crossed modules \mathbf{XMod}_k is equivalent to that of 2-algebras, $\mathbf{2Alg}$.

Proof. Let $A = (A_0, A_1, s, t, e, \circ, \bullet)$ be a 2-algebra consisting of a single object say * and an algebra A_0 of 1-morphisms and an algebra A_1 of 2-morphisms and $\partial = t|_{Kers}$ algebra homomorphism by $\partial : Kers \longrightarrow A_0, \partial(h) = t(h)$. Then $(Kers, A_0, \partial)$ is a crossed module.

Let $\mathscr{A} = (A_0, A_1, s, t, e, \circ, \bullet)$ and $\mathscr{A}' = (A'_0, A'_1, s', t', e', \circ', \bullet')$ be 2-algebras and $F = (F_0, F_1) : \mathscr{A} \longrightarrow \mathscr{A}'$ be a 2-algebra morphism. Then $F_0 : A_0 \longrightarrow A'_0$ and $F_1 : A_1 \longrightarrow A'_1$ are the k-algebra morphisms. For $f_1 = F_1|_{Kers} : Kers \longrightarrow Kers'$ and $f_0 = F_0 : A_0 \longrightarrow A'_0$, (f_1, f_0) map is a crossed module morphism $(Kers, A_0, \partial) \longrightarrow (Kers', A'_0, \partial')$. So it is got a functor

$$\Gamma$$
 : **2Alg** \longrightarrow **XMod**_k.

Conversely, let (G, C, ∂) be a crossed module of algebras. For $s, t : G \rtimes C \to C$ and $e : C \to G \rtimes C$ by $s(g, c) = c, t(g, c) = \partial(g) + c, e(c) = (0, c)$ and

the compositions

$$(g,c) \bullet (h,d) = (c \triangleright h + d \triangleright g + gh, cd)$$

 $(g,c) \circ (g',\partial(g) + c) = (g + g',c)$

such that $t(g,c) = s(g', \partial(g) + c) = \partial(g) + c$, it is constructed a 2-algebra $\mathscr{A} = (C, G \rtimes C, s, t, e, \circ, \bullet)$ consists of the single object say \ast and the *k*-algebra *C* of 1-morphisms and the *k*-algebra $G \rtimes C$ of 2-morphisms. Let (G, C, ∂) and (G', C', ∂') be crossed modules and $f = (f_1, f_0) : (G, C, \partial) \longrightarrow (G', C', \partial')$ be a crossed module morphism. For

$$\begin{array}{rrrr} F_1: & G \rtimes C & \longrightarrow & G' \rtimes C' \\ & (g,c) & \longmapsto & F_1(g,c) = (f_1(g), f_0(c)) \end{array}$$

and

$$\begin{array}{rccc} F_0: & C & \longrightarrow & C' \\ & c & \longmapsto & F_0(c) = f_0(c). \end{array}$$

 $F = (F_1, F_0)$ is a 2-algebra morphism from $(C, G \rtimes C, s, t, e, \circ, \bullet)$ to $(C', G' \rtimes C', s', t', e', \circ', \bullet')$. Thus it is got a functor

$$\Psi: \mathbf{XMod}_k \longrightarrow \mathbf{2Alg}$$

3. Homotopies of Crossed Modules and 2-Algebras

The notion of homotopy for morphisms of crossed modules over commutative algebras is given in [2]. In this section, we explain the relation between homotopies for crossed modules over commutative algebras and homotopies for 2-algebras. The formulae given below are playing important role in our study.

Definition 3.1. [2] Let $\mathscr{A} = (E, R, \partial)$ and $\mathscr{A}' = (E', R', \partial')$ be crossed modules and $f_0 : R \longrightarrow R'$ be an algebra morphism. An f_0 -derivation $s : R \longrightarrow E'$ is a k-linear map satisfying for all $r, r' \in R$,

$$s(rr') = f_0(r) \triangleright s(r') + f_0(r') \triangleright s(r) + s(r)s(r').$$

Let $f = (f_1, f_0)$ be a crossed module morphism $\mathscr{A} \longrightarrow \mathscr{A}'$ and s be an f_0 -derivation. If $g = (g_1, g_2)$ is defined as (where $e \in E$ and $r \in R$)

- $g_0(r) = f_0(r) + (\partial' s)(r)$ $g_1(e) = f_1(e) + (s\partial)(e),$

then g is also crossed module morphism $\mathscr{A} \longrightarrow \mathscr{A}'$. In such a case we write $f \xrightarrow{(f_0,s)} g$, and say that (f_0,s) is a homotopy connecting f to g.

If (f_0, s) and (g_0, s') are homotopies connecting f to g and g to u respectively, then $(f_0, s + s')$ is a homotopy connecting f to u, where $s + s' : R \longrightarrow E'$ is an f_0 -derivation defined by (s + s')(r) = s(r) + s'(r).

The notion of homotopy for 2-algebras is essentially a special case of 2-natural transformation due to Gray in [12].

Definition 3.2. Let $\mathbf{A} = (A_0, A_1, s, t, e, \circ, \bullet)$ and $\mathbf{A}' = (A'_0, A'_1, s', t', e', \circ', \bullet')$ be 2-algebras and let $F = (F_1, F_0)$ and $G = (G_1, G_0)$ be 2-algebra morphisms $\mathbf{A} \longrightarrow \mathbf{A}'$. A k-algebra morphism $\mu : A_0 \longrightarrow A'_1$ satisfying the following conditions is called a homotopy connecting F to G:

1) $s' \mu = F_0$ 2) $t' \mu = G_0$

3) $F_1 \circ' \mu t = \mu s \circ' G_1$. In such a case we write $F \stackrel{\mu}{\longrightarrow} G$.

Theorem 3.3. Let $\mathscr{A} = (A_0, A_1, s, t, e, \circ, \bullet)$, $\mathscr{A}' = (A'_0, A'_1, s', t', e', \circ', \bullet')$ be 2-algebras, $F = (F_1, F_0)$, $G = (G_1, G_0)$ and $U = (U_1, U_0)$ be 2-algebra morphisms $\mathscr{A} \longrightarrow \mathscr{A}'$ and μ be a homotopy connecting F to G, μ' be a homotopy connecting G to U. Then the map $\mu * \mu' : A_0 \longrightarrow A_1$ defined by $(\mu * \mu')(x) = \mu(x) + \mu'(x) - e'(t'\mu)(x)$ is a homotopy connecting F to U.

Proof. We first show that $\mu * \mu'$ is an algebra morphism. Since μ and μ' are algebra morphisms, $\mu(x \bullet x') = \mu(x) \bullet' \mu(x')$ and $\mu'(x \bullet x') = \mu'(x) \bullet' \mu'(x')$ for all $x, x' \in A_0$. Then we get

$$\begin{aligned} (\mu * \mu')(x \bullet x') &= \mu(x \bullet x') + \mu'(x \bullet x') - e'(t'\mu)(x \bullet x') \\ &= \mu(x \bullet x') + \mu'(x \bullet x') - e'(G_0)(x \bullet x') \\ &= \mu(x \bullet x') \circ' \mu'(x \bullet x') \\ &= (\mu(x) \bullet' \mu(x')) \circ' (\mu'(x) \bullet' \mu'(x')) \\ &= (\mu(x) \circ' \mu'(x)) \bullet' (\mu(x') \circ' \mu'(x')) \quad \text{(interchange law)} \\ &= (\mu(x) + \mu'(x) - e'(G_0)(x)) \bullet' (\mu(x') + \mu'(x') - e'(G_0)(x')) \\ &= (\mu * \mu')(x) \bullet' (\mu * \mu')(x'). \end{aligned}$$

For all $x \in A_0$

$$\begin{aligned} s'(\mu * \mu')(x) &= s'(\mu(x) + \mu'(x) - e'G_0(x)) \\ &= s'\mu(x) + s'\mu'(x) - s'e'G_0(x) \\ &= F_0(x) + G_0(x) - G_0(x) \\ &= F_0(x), \end{aligned}$$

$$\begin{aligned} t'(\mu * \mu')(x) &= t'(\mu(x) + \mu'(x) - e'G_0(x)) \\ &= t'\mu(x) + t'\mu'(x) - t'e'G_0(x) \\ &= G_0(x) + U_0(x) - G_0(x) \\ &= U_0(x), \end{aligned}$$

and since $F_1 \circ' \mu t = \mu s \circ' G_1$ and $G_1 \circ' \mu' t = \mu' s \circ' U_1$, we get

$$F_1 \circ' \mu t \circ' \mu' t = \mu s \circ' G_1 \circ' \mu' t$$

= $\mu s \circ' \mu' s \circ' U_1.$

Thus, we get

$$F_{1} \circ' (\mu * \mu')t = F_{1} \circ' (\mu t \circ' \mu' t)$$

= $(\mu s \circ' \mu' s) \circ' U_{1}$
= $(\mu * \mu')s \circ' U_{1}.$

Therefore $\mu * \mu' : A_0 \longrightarrow A_1$ is a homotopy connecting *F* to *U*.

Theorem 3.4. Let Γ :: **2Alg** \longrightarrow : **XMod**_k be the functor as mentioned in Teorem 1.4 and μ be homotopy connecting *F* to *G*. *Then*

$$\Gamma(\mu) = h : A_0 \longrightarrow Kers'$$
$$x \longmapsto h(x) = \mu(x) - e'(s'\mu)(x)$$

is a homotopy of corresponding crossed module morphisms.

Proof. We first show that h is an f_0 -derivation where $f_0: A_0 \longrightarrow A'_0$ defined by $f_0(x) = F_0(x)$. For $x, x' \in A_0$,

$$\begin{array}{lll} f_0(x) \blacktriangleright h(x') \\ +f_0(x') \blacktriangleright h(x) + h(x) \bullet' h(x') &= F_0(x) \blacktriangleright (\mu(x') - e'(s'\mu)(x')) \\ &+ F_0(x') \blacktriangleright (\mu(x) - e'(s'\mu)(x)) \\ &+ (\mu(x) - e'(s'\mu)(x)) \bullet' (\mu(x') - e'(s'\mu)(x')) \\ &= e'(F_0(x)) \bullet' (\mu(x) - e'F_0(x')) \\ &+ e'(F_0(x')) \bullet' (\mu(x) - e'F_0(x)) + \mu(x) \bullet' \mu(x') \\ &- \mu(x) \bullet' e'F_0(x') - e'F_0(x) \bullet' \mu(x') + e'F_0(x) \bullet' e'F_0(x') \\ &= \mu(x \bullet x') - e'(s'\mu)(x \bullet x') \\ &= h(x \bullet x'). \end{array}$$

Therefore *h* is an f_0 -derivation.

Now we show that

 $g_0(x) = f_0(x) + \partial' h(x)$ $g_1(n) = f_1(n) + h \partial(n)$

for $x \in A_0$ and $n \in Kers$.

$$\begin{array}{lll} \partial' h(x) &=& \partial'(\mu(x) - e'f_0(x)) \\ &=& \partial'(\mu(x)) - \partial'(e'f_0(x)) \\ &=& (t'\mu)(x) - (t'e')f_0(x) \\ &=& g_0(x) - f_0(x) \end{array}$$

and we get $g_0(x) = f_0(x) + \partial' h(x)$.

Since $A_1 \simeq Kers \rtimes A_0$, we take a = (n, x) for $a \in A_1$ where $n = a - es(a) \in Kers$ and $x = s(a) \in A_0$. We define $\mu^* : A_0 \longrightarrow Kers' \rtimes A'_0$, as $\mu^*(x) = (\mu(x) - e's'(\mu(x)), s'\mu(x))$ and $h^* : A_0 \longrightarrow Kers' \rtimes A'_0$, as $h^*(x) = (h(x), F_0(x))$. Therefore

for $(F_1, F_0)(n, x), (\mu^* t)(n, x) \in A_1 \simeq Kers' \rtimes A'_0$ such that $t(F_1, F_0)(n, x) = s(\mu^* t)(n, x)$, we have $(F_1, F_0)(n, x) \circ' \mu^* t(n, x) = (F_1(n) + \mu t(n), F_0(x))$ and $-(F_1, F_0)(n, x) = (-F_1(n), t'F_1(n) + F_0(x))$ and then, since

$$(F_1,F_0)(n,x) \circ' \mu^* t(n,x) = \mu^* s(n,x) \circ' (G_1,G_0)(n,x)$$

we have

$$\mu^* t(n,x) = -(F_1,F_0)(n,x) \circ' \mu^* s(n,x) \circ' (G_1,G_0)(n,x)$$

= $(-F_1(n) + h(x) + G_1(n), t'F_1(n) + F_0(x))$

and

$$-e'F_0t(n,x) = (0,t'f_1(n) + f_0(x)).$$

Hence we get

$$\mu^* t(n,x) - e' F_0 t(n,x) = (I_{t'F_1(n) + F_0(x)} \circ \mu t)(n,x) = \mu^* t(n,x).$$

Then

$$\begin{aligned} h^*(t(n,x)) &= \mu^*(t(n,x)) - e^{'}(s'\mu^*)(t(n,x)) \\ &= \mu^*t(n,x) - e^{'}F_0t^*(n,x) \\ &= \mu^*t(n,x) \\ &= (-F_1(n) + h(x) + G_1(n), t^{'}F_1(n) + F_0(x)) \end{aligned}$$
(1)

and

$$\begin{aligned} h^*(t(n,x)) &= h^*(\partial(n)+x)) \\ &= (h(\partial(n)+x)), f_0(\partial(n)+x)) \\ &= (h(\partial(n))+h(x), f_0(\partial(n))+f_0(x)) \\ &= (h(\partial(n))+h(x), t^{'}F_1(n)+F_0(x)). \end{aligned}$$

Therefore from (1) and (2) we have

$$h(\partial(n)) + h(x) = -F_1(n) + h(x) + G_1(n)$$

and

$$h(\partial(n)) = -F_1(n) + G_1(n).$$

Then

$$g_1(n) = f_1(n) + h\partial(n).$$

Hence

$$\begin{array}{cccc} h: & A_0 & \longrightarrow & Kers' \\ & x & \longmapsto & h(x) = \mu(x) - e'F_0(x) \end{array}$$

is a homotopy connecting $f = (f_1, f_0) : (Kers \xrightarrow{\partial} A_0) \longrightarrow (Kers' \xrightarrow{\partial'} A'_0)$ to $g = (g_1, g_0) : (Kers \xrightarrow{\partial} A_0) \longrightarrow (Kers' \xrightarrow{\partial'} A'_0)$.

Let $F \xrightarrow{\mu} G$ and $G \xrightarrow{\mu'} H$. Then we have

$$\begin{split} \Gamma(\mu * \mu')(x) &= (\mu * \mu')(x) - e'(s'\mu * \mu')(x) \\ &= \mu(x) + \mu'(x) - e'(t'\mu)(x) - e'(s'\mu)(x) \\ &= \mu(x) + \mu'(x) - e'(s'\mu')(x) - e'(s'\mu)(x) \\ &= (\mu(x) - e'(s'\mu)(x)) + (\mu'(x) - e'(s'\mu')(x)) \\ &= \Gamma(\mu)(x) + \Gamma(\mu')(x) \end{split}$$

for all $x \in A_0$.

Theorem 3.5. Let Ψ : **XMod**_k \longrightarrow **2Alg** be the functor as mentioned in Theorem 1.4 and h be homotopy connecting f: $(G,C,\partial) \longrightarrow (G',C',\partial')$ to $g: (G,C,\partial) \longrightarrow (G',C',\partial')$. Then

$$\begin{split} \Psi(h) = \mu & : \quad C \quad \longrightarrow \quad G' \rtimes C' \\ & x \quad \longmapsto \quad \mu(x) = (h(x), f_0(x)) \end{split}$$

is a homotopy of corresponding 2-algebra morphisms.

Proof. We first show that μ is an algebra morphism. For $x, x' \in C$

$$\begin{aligned} \mu(xx') &= (h(xx'), f_0(xx')) \\ &= (f_0(x) \blacktriangleright h(x') + f_0(x') \blacktriangleright h(x) + h(x)h(x'), f_0(x)f_0(x')) \\ &= (h(x), f_0(x))(h(x'), f_0(x')) \\ &= \mu(x)\mu(x'). \end{aligned}$$

Now we show that

1) $s' \mu = F_0$ 1) For all $x \in C$, $f'(x, t) = G_0$ f'(x, t)

$$s' \mu(x) = s'(h(x), f_0(x))$$

= $f_0(x) = F_0(x),$

2)For all $x \in C$,

$$\begin{array}{rcl}t^{'}\mu(x) &=& t^{'}(h(x),f_{0}(x))\\ &=& t^{'}(h(x))+f_{0}(x)\\ &=& \partial^{'}h(x)+f_{0}(x)\\ &=& g_{0}(x)=G_{0}(x), \end{array}$$

3)For all $x \in C, a \in G$, since $t'(f_1(a), f_0(x)) = \partial' f_1(a) + f_0(x)$,

$$s'(\mu t(a,x)) = s'(\mu(\partial(a) + x)) = s'(h(\partial(a) + x), f_0(\partial(a) + x)) = f_0(\partial(a) + x) = f_0(\partial(a)) + f_0(x) = \partial' f_1(a) + f_0(x)$$

then $t'(f_1(a), f_0(x)) = s'(\mu t(a, x))$ and (f_1, f_0) , μt are composable pairs. Also since

$$t'(\mu s(a,x)) = t'(\mu(x)) = t'(h(x), f_0(x))$$

= $\partial'(h(x)) + f_0(x)$
= $g_0(x)$

and $s'(g_1(a), g_0(x)) = g_0(x)$ then $t'(\mu s) = s'(g_1, g_0)$ and $\mu s, (g_1, g_0)$ are composable pairs. Therefore we get

$$(f_1(a), f_0(x)) \circ' \mu t(a, x) = (f_1(a) + h(\partial(a) + x), f_0(x))$$

and

$$\mu s(a,x) \circ' (g_1(a), g_0(x)) = (f_1(a) + h(\partial(a) + x), f_0(x)).$$

Then $(f_1, f_0) \circ' \mu t = \mu s \circ' (g_1, g_0)$. So

$$\begin{array}{rccc} \mu: & C & \longrightarrow & G' \rtimes C' \\ & c & \longmapsto & \mu(x) = (h(x), f_0(x)) \end{array}$$

is a homotopy connecting $F = ((f_1, f_0), f_0)$ to $G = ((g_1, g_0), g_0)$.

Let $f \xrightarrow{h} g$ and $g \xrightarrow{h'} u$. Then we have

$$\begin{split} \Psi(h+h')(x) &= ((h+h')(x), f_0(x)) \\ &= (h(x)+h'(x), f_0(x)) \\ &= (h(x), f_0(x)) + (h'(x), g_0(x)) - (0, g_0(x)) \\ &= \Psi(h)(x) + \Psi(h')(x) - e'(t'(\Psi)(h))(x) \\ &= (\Psi(h) * \Psi(h))(x). \end{split}$$

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- ^[1] İ. Akça, U. E. Arslan, *Categorification of algebras:2-algebras*, Ikonion J. Math., Submitted.
- [2] İ. Akça, K. Emir, F. M. Martins, *Pointed homotopy of maps between 2-crossed modules of commutative algebras*, Homol. Homotopy Appl., 18(1)(2016), 99-128.
- ^[3] Z. Arvasi, U. Ege, Annihilators, multipliers and crossed modules, Appl. Categ. Struct., 11 (2003), 487-506.
- ^[4] J. C. Baez, A. S. Crans, *Higher dimensional algebra VI: Lie 2-Algebras*, Theory Appl. Categ., **12**(15) (2004), 492-538.
- ^[5] H. J. Baues, *Combinatorial Homotopy and 4-Dimensional Complexes*, Berlin etc.: Walter de Gruyter, 1991.
- [6] R. Brown, M. Golasinski, A model structure for the homotopy theory of crossed complexes, Cah. Topologie Geom. Différ. Catégoriques, 30(1) (1989),61-82.
- [7] R. Brown, C. Spencer, *G-groupoids, crossed modules and the fundamental groupoid of a topological group*, Proc. Kon. Ned. Akad.v. Wet, **79** (1976), 296-302.
- ^[8] F. Borceux, Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge, Cambridge U. Press, 1994.
- [9] J. G. Cabello, A. R. Garzón, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra, 103(3) (1995), 287-302.
- ^[10] C. Ehresmann, *Categories structures*, Ann. Ec. Normale Sup., **80** (1963).
- [11] C. Elvira-Donazar, L. J. Hernandez-Paricio, *Closed model categories for the n-type of spaces and simplicial sets*, Math. Proc. Camb. Philos. Soc., **118**(7) (1995), 93-103.
- ^[12] J. W. Gray, Formal Category Theory Adjointness for 2-Categories, Lecture Notes in Math 391, Springer-Verlag, 1974.
- ^[13] İ. İçen, *The equivalence of 2-groupoids and crossed modules*, Commun. Fac. Sci, Univ. Ank. Series A1, **49** (2000), 39-48.
- ^[14] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst., 159 (2012), 57-64.
- ^[15] J. L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Alg., 24 (1982), 179-202.
- ^[16] A. S. T. Lue, *Semi-complete crossed modules and holomorphs of groups*, Bull. London Math. Soc., **11** (1979), 8-16.
- ^[17] S. Mac Lane, *Extension and obstructures for rings*, Illinois J. Math., **121** (1958), 316-345.
- ^[18] K. J. Norrie, Actions and automorphisms of crossed modules, Bull. Soc. Math. France, **118** (1990), 129-146.
- ^[19] T. Porter, *Some categorical results in the theory of crossed modules in commutative algebras*, J. Algebra, **109** (1987), 415-429.
- ^[20] T. Porter, *The Crossed Menagerie: An Introduction to Crossed Gadgetry and Cohomology in Algebra and Topology*, http://ncatlab.org/timporter/files/menagerie10.pdf

- ^[21] J. H. C. Whitehead, On adding relations to homotopy groups, Ann. Math., **42**(2) (1941), 409-428.
- [22] J. H. C. Whitehead, Note on a previous paper entitled On Adding Relations to Homotopy Groups, Ann. Math., 47(2) (1946), 806-810.
- ^[23] J. H. C. Whitehead, *Combinatorial homotopy I and II*, Bull. Amer. Math. Soc., **55** (1949), 231-245 and 453-456.