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Abstract
In the present work, we introduce the nth-Order subfractional Brownian motion Sn

H =
{Sn

H(t), t ≥ 0} with Hurst index H ∈ (n − 1, n) and order n ≥ 1; then we examine some
of its basic properties: self-similarity, long-range dependence, non Markovian nature and
semimartingale property. A local law of iterated logarithm for Sn

H is also established.
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1. Introduction
The self-similarity and long range-dependence have become two important aspects of

stochastic models. The first one means that as scale is changing, the process looks like
identical. For this reason, it has been applied in image processing for modeling texture
having multiscale patterns such as natural scenes [13, 19], bone texture radiographs [16],
or rough surfaces [28]. The long range-dependence is strongly related to long memory
phenomena arising in a variety of different scientific fields, including hydrology [18], biology
[5], medicine [14], economics [11] or traffic network [25]. The fractional Brownian motion
(fBm) is the best known and most widely used self-similar process that exhibits the long-
range dependence. Thus, it is not surprising that a large number of publications are
devoted to the study of fBm and its generalizations (see, e.g., [7–10] and references therein).
The two-sided fBm with Hurst index H ∈ (0, 1) is formally defined as a centered Gaussian
process BH = {BH(t), t ∈ R} having the covariance function

E (BH(t)BH(s)) = 1
2

(
|t|2H + |s|2H − |t − s|2H

)
, for all t, s ∈ R.

The fBm is of stationary increments and reduces to the standard Brownian motion (Bm)
in the case H = 1/2. Compared to the extensive studies on fBm, there has been little
systematic investigation on other self-similar Gaussian processes. The main reason for
this is the complexity of dependence structures for self-similar Gaussian processes which
do not have stationary increments. As an extension of Brownian motion, the authors in
[2] introduced and studied a rather special class of self-similar Gaussian processes which
they call sub-fractional Brownian motions (sub-fBm). As mentioned by the authors, these
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processes have properties analogous to those of fBm, and they are intermediate between
Bm and fBm in the sense that their increments on nonoverlapping intervals are more
weakly correlated and their covariance decays faster than for fBm. The sub-fBm is formally
defined as a zero mean Gaussian process S1

H , H ∈ (0, 2) with covariance

R1
H(t, s) = (2 − 2H)

(
t2H + s2H − 1

2

[
(t + s)2H + |t − s|2H

])
, for all t, s ≥ 0.

The existence of S1
H for all H ∈ (0, 1) follows from the equality in distribution (S1

H(t))t≥0 ≜
cH (BH(t) + BH(−t))t≥0, where BH is a two-sided fBm and cH is some nonnegative con-
stant. It is important to note that S1

H is semimartingale if H = 1/2 or H ∈ (1, 2). This
kind of processes arises from occupation time fluctuations of branching particle systems
with Poisson initial condition. More works on sub-fBm can be found in [2–4, 22–24]. In
[20], the authors introduced nth-order fBms as extensions of the standard fBm. Such ex-
tensions are very smooth as the order n increases and they exhibit long-range dependence;
while the stationarity of increments is achieved at the order n. One of the main features of
nth-order fBm’s is their ability to describe a wide class of 1/fα-nonstationary signals with
the range α ∈ (1, ∞). It is shown in [9] that nth order fBm’s are semimartingales whenever
n ≥ 2. Some extensions of them can be found in [8, 9]. Motivated by this kind of pro-
cesses we introduce the nth-order sub-fBm Sn

H and establish some of its basic properties.
In comparison with the fBm, Sn

H extendes the usual sub-fBm and share many properties
with the nth-order fBm. Especially, the semimartingale property required for modeling
fluctuations in movement of stock prices with arbitrage opportunities being excluded.

The rest of the paper is organized as follows: In Section 2, we recall the definition and
some properties of the nth-order fBm; while Section 3 is devoted to our main results. The
following notations are systematically used: x+ = max(x, 0), x− = max(−x, 0) for all
x ∈ R and the symbol ≜ denotes the equality in terms of finite dimensional distributions;
while g(x) = O(f(x)) and g(x) ∼ f(x) (as x → x∗) are respectively used to say that
x 7→ g(x)/f(x) is bounded on neighbourhood of x∗ and lim

x→x∗
g(x)/f(x) = 1.

2. nth-order fractional Brownian motion
In [20], the nth-order fBm (hereafter Bn

H , H ∈ (n − 1, n), n ≥ 1 is integer) is defined as
a zero mean Gaussian process starting at zero with the integral representation

Bn
H(t) = 1

Γ(H + 1/2)

∫ 0

−∞

(t − s)H−1/2 −
n−1∑
j=0

(
H − 1/2

j

)
(−s)H−1/2−jtj

 dB(s)

+ 1
Γ(H + 1/2)

∫ t

0
(t − s)H−1/2 dB(s), (2.1)

where B(t) is two-sided standard Brownian motion (Bm), Γ(x) stands for the usual
Gamma function and(

α
j

)
= α(α − 1) · · · (α − (j − 1))

j!
,

(
α
0

)
= 1 (by convention).

In the case n = 1, the standard fBm is retrieved, as formula (2.1) reduces to the Mandelbrot-
Van Ness representation [17] of the fBm. The process Bn

H satisfies the following properties
(for more details and proofs, see [8, 9, 20]).

(i) Bn
H is self-similar with exponent H, i.e., Bn

H(ct) ≜ cHBn
H(t), for every c > 0.

(ii) Bn
H has derivatives up to order n−1 vanishing at zero and the (n−1)th derivative

coincides with the standard fBm, that is, dn−1

dtn−1 (Bn
H(t)) = B1

H−(n−1)(t).
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(iii) Bn
H exhibits long-range dependence and stationarity of increments is achieved at

order n, that is, the increments ∆k
sBn

H , s > 0, k = 0, · · · , n − 1 are nonstationary
and ∆n

s Bn
H is a stationary process. Here ∆k

l g(x) stands for increments of a function
g(x) at order k with explicit form

∆k
l g(x) =

k∑
j=0

(−1)k−j
(

k
j

)
g (x + jl) and ∆0

l g(x) = g(x).

(iv) The covariance function of the process Bn
H is given by

GH,n(t, s) = (−1)n Cn
H

2

|t − s|2H −
n−1∑
j=0

(−1)j
(

2H
j

)[(
t

s

)j

|s|2H +
(

s

t

)j

|t|2H

] , (2.2)

where Cn
H is a nonnegative constant defined recursively by

C1
H = 1/ (Γ(2H + 1) sin(πH))

and for n ≥ 2

Cn
H =

C1
H−(n−1)

(2H)(2H − 1) · · · (2H − (2n − 3))
. (2.3)

In particular,

Var (Bn
H(t)) = Cn

H

(
2H − 1
n − 1

)
|t|2H .

(v) For any n ≥ 2 the process Bn
H is a special semimartingale with finite variation.

(vi) Bn
H is a Markov process if and only if n = 1 and H = 1/2.

(vii) Bn
H can be extended to an α-order fBm Uα

H (see [8]) defined as

Uα
H(t) = 1

Γ(α + 1)

∫ t

0
(t − s)αdBH(s), H ∈ (0, 1), α ∈ (−1, ∞), (2.4)

whenever this integral exists. Here BH denotes a one-sided fBm. In the case
α = 0, we retrieve the standard fBm BH . If α = n − 1, then Uα

H coincides with
the nth-order fBm with Hurst parameter H ′ = H + (n − 1) .

3. Main results
We define the nth-order sub-fBm Sn

H as Sn
H(t) = (Bn

H(t) + Bn
H(−t)) /

√
2, for all t ≥ 0

and H ∈ (n − 1, n), where Bn
H is a two-sided nth-order fBm defined as centered Gaussian

with covariance function (2.2). Clearly, the case n = 1 corresponds to the usual sub-fBm.
Before we establish some properties of Sn

H that are of great importance, we introduce a
definition of long-range dependence for non stationary processes.

Definition 3.1. Let s > 0 be fixed and t > s. Then a process X is said to have long-range
dependence property if

Corr (X(s), X(t)) ∼ c(s)t−d, as t → ∞,

where c(s) is a constant depending on s and d ∈ (0, 1). Here Corr (X(s), X(t)) stands for
the correlation function of the process X.

Theorem 3.2. Let Sn
H be the nth-order sub-fBm with H ∈ (n − 1, n). The following

statements hold.
(i) Sn

H is a centered Gaussian process with the covariance function

Rn
H(t, s) = (−1)nCn

H

2

|t − s|2H + |t + s|2H − 2
b n−1

2 c∑
j=0

(
2H
2j

)[
t2js2H−2j + s2jt2H−2j

] ,

for all t, s ≥ 0, where Cn
H is a nonnegative given in (2.3).
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(ii) The process Sn
H is self-similar with index H. i.e.,

{Sn
H(at), t ≥ 0} ≜

{
aHSn

H(t), t ≥ 0
}

, for every a > 0.

(iii) The process Sn
H is differentiable for any n ≥ 2 and can be rewritten as

Sn
H(t) =

∫ t

0

∫ s

0
Sn−2

H−2(u)duds, for all t ≥ 0 and n ≥ 3.

(iv) The process Sn
H is semimartingale for any n ≥ 2.

(v) The process Sn
H admits the following representation Sn

H(t) =
∫
R

KH(t, s)dB(s),
where

KH(t, s) = 1√
2Γ(H − 1/2)

(t − s)2H
+ + (t + s)2H

− − 2
b n−1

2 c∑
j=0

(
H − 1/2

2j

)
(−s)H−1/2−2j

+ t2j

 .

(vi) The process Sn
H has long-range dependence property in terms of Definition 3.1 for

all n ≥ 1 and H ∈ (n − 1, n).

Proof.
- The first statement (i) follows by definition of the process Sn

H and the use of
equation (2.2); while the statement (ii) can be readily verified by using the form
of its covariance function given in (i). In fact, one has Rn

H(ct, cs) = c2HRn
H(t, s),

for all t, s ≥ 0 and any c > 0.
- (iii)-(iv): First, note that Sn

H is differentiable for every n ≥ 2 (this is inher-
ited from Bn

H), and simple computations leads to (iii). This suggests that Sn
H is

semimartingale. Indeed, one can prove this property in the same way as in [9, The-
orem 2.1]. Finally, to get (v) it sufficies to combine the the Mandelbrot-Van Ness
repesentations of both Bn

H(t) and Bn
H(−t).

- (vi): Let t > s and s > 0 fixed. By expanding both
(

1 − s

t

)2H

and
(

1 + s

t

)2H

in the correlation form of Sn
H(t), it follows that as t → ∞

Corr (Sn
H(s), Sn

H(t)) = Rn
H(t, s)√

Rn
H(t, t)Rn

H(s, s)

∼


−2dn,H

(
2H

n − 1

)(
s

t

)H−(n−1)
, when n is odd,

2dn,H

(
2H

n

)(
s

t

)n−H

, when n is even

where dn,H =

22H − 4
b n−1

2 c∑
j=0

(
2H
2j

)
−1

and n − 1 < H < n.

□
Theorem 3.3. The nth order sub-fBm Sn

H is Markovian if and only if (n, H) = (1, 1/2).

Since our processes of interest are centered Gaussian, we will use the following lemma,
for which the proof can be found separately in [21, (1.13)-Chapter III] and [12].

Lemma 3.4. Let X = {X(t), t ≥ 0} be a centered Gaussian process with covariance
function R(t, s). The following statements hold.

(i) The process X is Markovian if and only if R(t, s)R(u, u) = R(t, u)R(u, s), for every
t > u > s.
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(ii) If X is a Markov process then we have R(t, s) = R(t, u)R(s, s)
R(u, u)

, for every t > u > s.

Proof of Theorem 3.3. In the case n = 1 we retrieve the usual sub-fBm S1
H , H ∈ (0, 1),

which is known to be Markovian if and only if H = 1/2 (e.g., [2]). We shall only prove
that Sn

H with H ∈ (n − 1, n) is not a Markov process for every n ≥ 2. To do so we follow
[9] and establish the following statements:

(i) If the process Sn
H , H ∈ (n − 1, n) is Markovian, then the processes Sn−2k

H−2k with
n − 2k ≥ 1 and k is an integer, are Markovian as well.

(ii) The processes S2
H and S3

5/2 are non Markovian.
The use of the covariance function Rn

H(t, s) as given in (i)-Theorem 3.2 will complicate
our computations. Instead, we shall use its integral form which follows from (iii)-Theorem
3.2. We have

Rn
H(t, s) =

∫ t

0

∫ s

0

∫ x

0

∫ y

0
Rn−2

H−2(ξ, ζ)dξdζdxdy.

If Sn
H is Markovian, then by (i)-Lemma 3.4 we have

Rn
H(t, s)Rn

H(u, u) = Rn
H(t, u)Rn

H(u, s), for all t > u > s;

or∫ t

0

∫ s

0

∫ x

0

∫ y

0
Rn−2

H−2 (ξ, ζ) dξdζdxdy = 1
Rn−2

H−2 (u, u)

[∫ t

0

∫ u

0

∫ x

0

∫ y

0
Rn−2

H−2 (ξ, ζ) dξdζdxdy

]
×
[∫ s

0

∫ u

0

∫ x

0

∫ y

0
Rn−2

H−2 (ξ, ζ) dξdζdxdy

]
. (3.1)

Differentiating equality (3.1) twice with respect to t and twice with respect to s, we obtain

Rn−2
H−2 (t, s) = 1

Rn−2
H−2 (u, u)

[∫ u

0

∫ x

0
Rn−2

H−2 (t, ξ) dξdx

]
×
[∫ u

0

∫ y

0
Rn−2

H−2 (s, ζ) dζdy

]
, for all t > u > s. (3.2)

Let a, b be nonnegative numbers such that s < a < u < b < t, then from (3.2) we get

Rn−2
H−2 (a, b) = 1

Rn−2
H−2 (u, u)

[∫ u

0

∫ x

0
Rn−2

H−2 (b, ξ) dξdx

]
×
[∫ u

0

∫ y

0
Rn−2

H−2 (a, ζ) dζdy

]
. (3.3)

Multiplying equations (3.2) and (3.3), side by side, we obtain

Rn−2
H−2 (t, s) .Rn−2

H−2 (a, b) =

[
1

Rn−2
H−2 (u, u)

∫ u

0

∫ y

0
Rn−2

H−2 (s, ζ) dζdy ×
∫ u

0

∫ x

0
Rn−2

H−2 (b, ξ) dξdx

]

×

[
1

Rn−2
H−2 (u, u)

∫ u

0

∫ x

0
Rn−2

H−2 (t, ξ) dξdx ×
∫ u

0

∫ y

0
Rn−2

H−2 (a, ζ) dζdy

]
,

and this implies

Rn−2
H−2 (t, s)Rn−2

H−2 (a, b) = Rn−2
H−2 (t, a)Rn−2

H−2 (b, s) , (3.4)

using the fact that the covariance function is continuous and taking the limit (a → u; b →
u) in (3.4) we obtain

Rn−2
H−2 (t, s)Rn−2

H−2 (u, u) = Rn−2
H−2 (t, u)Rn−2

H−2 (u, s) ,
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thereby Sn−2
H−2 is Markovian and (i) is then established.

Let n = 2 and H ∈ (1, 2). After some computations it follows from Theorem 3.2-(i)

R2
H(t, s) = C2

H

2

[
|t − s|2H + (t + s)2H − 2

(
t2H + s2H

)]
.

For t > 0 fixed, we set Ψt : s 7−→ R2
H (t, s) /R2

H (s, s). If S2
H is Markovian then by virtue

of (ii)-Lemma 3.4, we get
R2

H (t, s)
R2

H (s, s)
= R2

H (t, u)
R2

H (u, u)
, for all t > u > s,

which means that Ψt must be a constant function on the interval (0, t). Observe that

Ψt(s) = 1
(22H − 4)

[(
t

s
+ 1

)2H

+
(

t

s
− 1

)2H

− 2
(

t

s

)2H

− 2
]

.

By standard calculas we check that the function Ψt is not canstant, and this yields a
contradiction. Hence S2

H is non Markovian. Finally, the covariance of S3
5
2

has an explicit
form as

R3
5
2

(t, s) = C3
5
2

[
(t ∧ s)5 − 5(t ∧ s)4(t ∨ s) + 10(t ∧ s)3(t ∨ s)2

]
, for all t, s ≥ 0.

For t = 2 , u = 1 and s = 1
2

; with simple calculations we find

R3
5
2

(
2,

1
2

)
R3

5
2

(1, 1) 6= R3
5
2

(2, 1)R3
5
2

(
1,

1
2

)
.

□

Theorem 3.5. Consider the nth order sub-fBm Sn
H .Then, with probability one, the fol-

lowing limit

cn
H := lim sup

u→0+

|Sn
H(ut)|

ΦH(u)
, exists for all t, ∈ (0, T ], (3.5)

where ΦH is (n − 1)-times continuously differentiable function such that

Φ(n−1)
H (u) = uH−n+1

(
2 log log(u−1)

)1/2
, for all u > 0.

Proof. We split the proof of this theorem into three steps. First, we show that (3.5) holds
in the case n = 1, which corresponds to the usual sub-fBm with
ΦH(u) = uH

(
2 log log(u−1)

)1/2
, H ∈ (0, 1). Note that another form of the law of it-

erated logarithm for the sub-fBm can be found in [26]. Second, we establish the statement
(3.5) for every n ≥ 3 odd. Finally, we show (3.5) for every n ≥ 2 in a similar fashion as
done in the previous steps.

Step 1. Let n = 1 and H ∈ (0, 1). In this case, we adopt Arcones’s notations [1] and
verify the conditions (i)-(ix) of [1, Theorem 4.1]. Let u ∈ [0, 1], t ∈ T = [0, T ] and
consider the pseudometric ρ(u, v) =

√
E
(
S1

H(u) − S1
H(v)

)2. Set τ(u) = u and w(u) = uH .

Clearly, ρ(0, T ) =
√
E
(
S1

H(T )
)2 =

√
2 − 22H−1T H < ∞, thus (v) follows immediately. It

is not hard to see that the conidtions (i), (vii)-(ix) are satisfied. For the condition (ii)
let t, s ∈ T and u ∈ (0, 1] . By self-similarity of the process S1

H we have

lim
u→0+

E
[

S1
H(τ(u)s)S1

H(τ(u)t)
w2(u)

]
= lim

u→0+

E
(
S1

H(us)S1
H(ut)

)
u2H

,

= E
(
S1

H(s)S1
H(t)

)
= R1

H(t, s),
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(iii) Let m ≥ 1 (integer), r > ε > 0, t1, · · · , tm ∈ T \ {0} and λ1, · · · , λm ∈ R. Set
I+ := {the set of pairs (j, k), 1 ≤ j, l ≤ m for which λjλk ≥ 0}. For

v ∈
[
ue−(log(u−1))r

, ue−(log(u−1))ε]
,

we have

A
r,ε
j,k := E

(
S1

H(utj)S1
H(vtk)

w(u)w(v)

)
= R1

H(utj , vtk)
uHvH

,

= (tjtk)H
[
x2H

jk + x−2H
jk − 1

2

(
(xjk + x−1

jk )2H +
∣∣∣xjk − x−1

jk

∣∣∣2H
)]

, with xjk =
√

utj

vtk
,

≤ (tjtk)H
(

x2H
jk + x−2H

jk −
∣∣∣xjk − x−1

jk

∣∣∣2H
)

≤ 3(tjtk)H
(
xjk ∧ x−1

jk

)2H∧(2−2H)
,

≤ 3(tjtk)H

(
utj

vtk
∧ vtk

utj

)H∧(1−H)

. (3.6)

The two inequalities in (3.6) are justified by the following facts, respectively: a ∧ b ≤
(a + b)/2 ≤ a ∨ b, for all a, b ∈ R and x2H + x−2H −

∣∣∣x − x−1
∣∣∣2H

≤ 3(x ∧ x−1)2H∧(2−2H),
for all x > 0 and H ∈ (0, 1). Since v/u ≤ e−(log(u−1))ε we get

A
r,ε
j,k ≤ 3(tjtk)H

(
tj ∨ tk

tj ∧ tk

)H∧(1−H) (
u

v
∧ v

u

)H∧(1−H)
,

≤ 3(tj ∨ tk)2H
(

v

u

)H∧(1−H)
≤ 3(tj ∨ tk)2He−(H∧(1−H))(log(u−1))ε

,

−→ 0, as u → 0+. (3.7)
Observing that A

r,ε
j,k ≥ 0 and using (3.7) we obtain

sup
ue−(log(u−1))r ≤v≤ue−(log(u−1))ε

m∑
j,k=1

λjλkA
r,ε
j,k ≤ sup

ue−(log(u−1))r ≤v≤ue−(log(u−1))ε

∑
(j,k)∈I+

λjλkA
r,ε
j,k,

≤ 3
∑

(j,k)∈I+

λjλk(tj ∨ tk)2He−(H∧(1−H))(log(u−1))ε
,

−→ 0, as u → 0+ and r → 1−.

(iv) Let ϵ > 0 and recall that τ(u) = u, w(u) = uH . We know that S1
H is self-similar

with index H and σ2
T := sup

{
E[S1

H(τ(u)t)]2, t ∈ T
}

= (uT )2HE
∣∣∣S1

H(1)
∣∣∣2, therefore by

[6, Lemma 12.18] we assert that there is a nonnegative constant C (depending only on T )
such that

P
(

sup
t∈T

∣∣S1
H(τ(ut))

∣∣
w(u) (2 log log(u−1))1/2 > ϵ

)
≤ C exp

[
− log log(u−1)ϵ2

2T 2HE
∣∣S1

H(1)
∣∣2
]

,

−→ 0, as u → 0+.

(vi) Let η > 0 and δ > 0 (to be chosen later). Straightforward computations lead to∥∥∥S1
H(θnt) − S1

H(θns)
∥∥∥2

= (θn)2Hρ(t, s)2. Thereby sup
ρ(t,s)≤δ

t,s∈T

∥∥∥S1
H(θnt) − S1

H(θns)
∥∥∥2

= (θn)2Hδ2.

Hence,

∞∑
n=1

exp

 −η(w2(θn) log(n)
supρ(t,s)≤δ

t,s∈T

∥∥S1
H(θnt) − S1

H(θns)
∥∥2

 =
∞∑

n=1

1
nη/δ2 < ∞.
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We choose δ <
√

η so that the last inequality holds true. At this stage, we assert that all
conditions of [1, Theorem 4.1] are fulfilled and the statement (3.5) holds for n = 1.

Step 2. For the case n ≥ 2 (odd) we apply the generalized L’hôpital’s rule (e.g., [15] or
[27, Theorem 6]) recursively to get

0 ≤ lim sup
u→0+

|Sn
H(ut)|

ΦH(u)
≤ lim sup

u→0+

∫ ut
0
∫ x

0

∣∣∣Sn−2
H−2(y)

∣∣∣ dydx

ΦH(u)
,

≤ t2 lim sup
u→0+

∣∣∣Sn−2
H−2(tu)

∣∣∣
Φ(2)

H (u)
≤ · · · ≤ tn−1 lim sup

u→0+

∣∣S1
H′(tu)

∣∣
Φ(n−1)

H (u)
,

H ′ = H − (n − 1) ∈ (0, 1),

= tn−1 lim sup
u→0+

∣∣S1
H′(tu)

∣∣
uH′ (2 log log(u−1))1/2 < ∞.

Hence, the statement (3.5) holds true for every n ≥ 1 odd.

Step 3. When n is even, we shall consider R2
H(t, s) at first stage, then use L’hôpital’s

rule and the recurrent form of the covariance Rn
H(t, s) to get the general result for an even

integer n ≥ 2. For n = 2, the conditions (i)-(ii) and (iv)-(ix) of [1, Theorem 4.1] can
be verified in similar fashion as done in Step 1. For the condition (iii), using the same
notations, the terms A

r,ε
j,k are of the form

A
r,ε
j,k := E

(
S2

H(utj)S2
H(vtk)

w(u)w(v)

)
= R2

H(utj , vtk)
uHvH

,

= C2
H

2
(tjtk)H

[∣∣∣yjk − y−1
jk

∣∣∣2H
+ (yjk + y−1

jk )2H − 2
(
y2H

jk + y−2H
jk

)]
,

with yjk =
√

vtk

utj
, H ∈ (1, 2)

= C2
H(tjtk)H

[
y−2H

jk

∞∑
l=1

(
2H
2l

)
y4l

jk − y2H
jk

]
,

≤ C2
H(tjtk)H

(
H(2H − 1)y4−2H

jk + O(y8−2H
jk )

)
−→ 0, as u → 0+.

The last two inequalities follow by expanding |1 − yjk|2H , (1 + yjk)2H and the fact that
v/u → 0 implies yjk → 0. By observing that A

r,ε
j,k ≥ 0 in this case, we conclude that (iii)

holds true as well. The proof of Theorem 3.5 is then complete. □

Proposition 3.6. The limit given in (3.5) is strictly positive.

Proof. Unlike the fBm (e.g., [6, Proposition 12.19]) for which we know that

lim sup
u→0+

|BH(u)|
uH (2 log log u−1)1/2 = 1,

it is not clear how to specify the value of cn
H (3.5). This is due to the complexity of

covariance structure of Sn
H . Note that Theorem 3.5 states that cn

H ∈ [0, ∞). To establish
Proposition 3.6 we split the proof into three steps:
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Step 1. If n = 1, then the process of interest reduces to the usual sub-fBm S1
H with

ΦH(u) = uH
(
2 log log(u−1)

)1/2
, H ∈ (0, 1). Observe that

c1
H = lim sup

u→0+

∣∣S1
H(ut)

∣∣
ΦH(u)

,

≥ lim sup
k→∞

∣∣∣S1
H(trk)

∣∣∣
rkH

√
2 log (−k log(r))

, for som fixed r ∈ (0, 1),

≥ lim sup
k→∞

ξk√
2 log(k)

, where ξk := S1
H(trk)/rkH .

In the last inequality we used the fact that log (−k log(r)) ∼ log(k), as k → ∞. To
conclude we shall show that

lim sup
k→∞

ξk√
2 log(k)

≥
√
R1

H(t, t) > 0. (3.8)

Consider the sequence {ζk = R1
H(t, t)−1/2ξk : k ≥ 1}. It is not hard to see that {ζk}k is

jointly normal with E(ζk) = 0 and Var(ζk) = 1 (this is inherited from the Gaussianity of
S1

H). For k, m ∈ (p, 2p] with k < m we have

E (ζkζm) = Corr
(
S1

H(rk), S1
H(rm)

)
,

= r(m−k)H + r(k−m)H − 1
2

[(
r(m−k)/2 + r(k−m)/2

)2H
+
∣∣∣r(m−k)/2 − r(k−m)/2

∣∣∣2H
]

,

≤ r(m−k)H + r(k−m)H −
∣∣∣r(m−k)/2 − r(k−m)/2

∣∣∣2H
,

≤ 3r(m−k)(H∧(1−H)) ≤ 3rH∧(1−H) −→ 0, as r → 0.

The last three inequalities are justified by the following facts, respectively: a ∧ b ≤ (a +
b)/2 ≤ a ∨ b, for all a, b ∈ R and x2H + x−2H −

∣∣∣x − x−1
∣∣∣2H

≤ 3(x ∧ x−1)2H∧(2−2H), for all
x > 0, H ∈ (0, 1), and (m − k) ∈ {1, · · · , p − 1}. As result we can choose r small enough
so that

lim sup
p→∞

max{E (ζkζm) : k, m ∈ (p, 2p], k 6= m} <
δ

2
,

with δ ∈ (0, 1). According to [6, Lemma 12.20], it follows that with probability one

lim sup
k→∞

ζk√
2 log(k)

≥ 1−δ or equivalently lim sup
k→∞

ξk√
2 log(k)

≥
√
R1

H(t, t)(1−δ) > 0. Hence,

(3.8) follows by the arbitrariness of δ.

Step 2. In the case n = 2, the normalizing function is defined as

ΦH(z) =
∫ z

0
xH−1

(
2 log log(x−1)

)1/2
dx,

and for every r ∈ (0, e−1), we have

ΦH(rk) =
∫ rk

0
xH−1

(
2 log log(x−1)

)1/2
dx, with H ∈ (1, 2),

= rkH
∫ 1

0
yH−1

(
2 log log((rky)−1)

)1/2
dy, (By change of variables y = x/rk),

≤ rkH

(∫ r∗

0
+
∫ 1

r∗

)
yH−1

√
2 log (−k log(r) − log(y))dy, (3.9)

where r∗ = e−a(r) and a(r) = − log(r)/(− log(r) − 1).
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Let k > 1/(− log(r)). On the set {y ≤ r∗} we have{
log(u + v) ≤ log(u) + log(v)
with u = −k log(r) and v = − log(y).

(3.10)

Just observe that u > 1 and
v = − log(y) ≥ − log(r∗) = a(r),

= − log(r)
− log(r) − 1

≥ − log(r)
− log(r) − 1/k

,

≥ u

u − 1
.

On the set {y > r∗} we have −k log(r) − log(y) < −k log(r) + a(r). Combining this fact
with (3.9) and (3.10) yields

ΦH(rk) ≤ rkH

{∫ r∗

0
yH−1

√
2 log (−k log(r))dy +

∫ r∗

0
yH−1

√
2 log log(1/y)dy

+
∫ 1

r∗
yH−1

√
2 log (−k log(r) + a(r))dy

}
,

≤ rkH
{

2H−1
√

2 log (−k log(r) + a(r)) + ΦH(1)
}

,

Now using the fact: log (−k log(r) + a(r)) ∼ log(k) as k ↑ ∞, we can find k0 ≥ 1 and
C > 0 such that ΦH(rk) ≤ CrkH

√
2 log(k) for all k ≥ k0. Using this inequality we obatin

c2
H = lim sup

u→0+

∣∣S2
H(ut)

∣∣
ΦH(u)

,

≥ C−1 lim sup
k→∞

∣∣∣S2
H(trk)

∣∣∣
rkH

√
2 log(k)

, for som fixed r ∈ (0, 1).

Once again, we consider the sequence {ηk = R2
H(t, t)−1/2S2

H(trk)/rkH : k ≥ 1} and show
that lim sup

k→∞

ηk√
2 log(k)

≥ 1 − δ. This follows immediately by [6, Lemma 12.20]. In fact,

for r ∈ (0, 1/2), k, m ∈ (p, 2p] with k < m and by straightforward computations we get
E (ηkηm) = Corr

(
S2

H(rk), S2
H(rm)

)
,

=
∣∣r(m−k)/2 + r(k−m)/2

∣∣2H +
∣∣r(m−k)/2 − r(k−m)/2

∣∣2H − 2
(
r(m−k)H + r(k−m)H

)
22H − 4

=
r(k−m)H

[(
1 + r(m−k))2H +

(
1 − r(m−k))2H − 2

(
1 + r2H(m−k))]

22H − 4
≤ Lr(2−H)(m−k) ≤ Lr2−H −→ 0, as r → 0,

where L = 2(22H −4)−1

H(2H − 1) +
∞∑

j=2

(
2H
2j

)(1
2

)2j−2
 , which implies the condition

(12.31) in [6, Lemma 12.20]. Now, we can conclude that c2
H ≥ C−1

√
R2

H1(t, t) > 0.

Step 3. (General Case) Fix n ≥ 3 (odd or even). We shall suppose that cn
H given

in (3.5) equals zero and obtain a contradiction. Clearly, the aforementioned hypothesis

implies lim
u→0+

Sn
H(ut)

ΦH(u)
= 0, then by using the usual L’hôpital’s rule recursively we obtain

c1
H′ = 0 (if n is odd with c1

H′ being the quantity associated with S1
H′ , H ′ ∈ (0, 1)) or

c2
H′ = 0 (if n is even with c2

H′ being the quantity associated with S2
H′ , H ′ ∈ (1, 2)). This
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clearly contradicts results of the two previous cases. Note that the process of differentiation
should occur according to (iii)-Theorem 3.2. □
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