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Abstract. In the paper, the authors discuss some extended results involving the Catalan numbers and establish
an integral representation of the Catalan numbers in terms of the (α, k)-gamma and (α, k)-beta function. We refer to
the results available in the literature by giving special values to the parameters in the obtained theorems.
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1. Introduction

The first few Catalan numbers Cn for 0 ≤ n ≤ 14 are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440.

The Catalan numbers are defined by means of the following generating functions

1 −
√

1 − 4x
2x

=

∞∑
n=0

Cnxn

= 1 + x + 2x2 + 5x3 + 14x4 + 42x5...

One of explicit formulas of Cn for n ≥ 0 reads that

Cn =

4nΓ

(
n +

1
2

)
√
πΓ (n + 2)

=
1

n + 1

(
2n
n

)
.

For more information on the Catalan numbers Cn, please see ( [4, 9, 12]).
In [8], the classical gamma function is given by

Γ (x) =

∫ ∞

0
tx−1e−tdt, x > 0,

and the classical beta function is defined by

B (x, y) =

∫ 1

0
tx−1 (1 − t)y−1 dt, x, y > 0.
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Relationship between beta function and gamma function in [2] is given by

B (x, y) =
Γ (x) Γ (y)
Γ (x + y)

, x, y > 0.

The rising factorial, denoted by (x)n or x(n), is defined by [3]

x(n) = x (x + 1) ... (x + n − 1) .

The following definitions and theorems with respect to conformable fractional derivative and integral were referred
in ( [1, 5, 6]).

Definition 1.1. (Conformable fractional derivative) Given a function f : [0,∞) → R. Then, the “conformable
fractional derivative” of f of order α is defined by

Dα ( f ) (t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε

for all t > 0, α ∈ (0, 1) . If f is α−differentiable in some (0, a) , α > 0, lim
t→0+

f (α) (t) exist, then define

f (α) (0) = lim
t→0+

f (α) (t) .

We can write f (α) (t) for Dα ( f ) (t) to denote the conformable fractional derivatives of f of order α. In addition, if the
conformable fractional derivative of f of order α exists, then we simply say f is α−differentiable. For 2 ≤ n ∈ N, we
denote Dn

α ( f ) (t) = DαDn−1
α ( f ) (t) (t) .

Theorem 1.2. Let α ∈ (0, 1] and f , g be α−differentiable at a point t > 0. Then,

i. Dα (a f + bg) = aDα ( f ) + bDα (g) , for all a, b ∈ R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα ( f g) = f Dα (g) + gDα ( f ) ,

iv. Dα

(
f
g

)
=

f Dα (g) − gDα ( f )
g2 .

If f is differentiable, then

Dα ( f ) (t) = t1−α d f
dt

(t) .

Definition 1.3 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b.A function f : [a, b]→ R is α-fractional
integrable on [a, b] if the integral ∫ b

a
f (x) dαx :=

∫ b

a
f (x) xα−1dx

exists and is finite.

Remark 1.4.
Ia
α ( f ) (t) = Ia

1

(
tα−1 f

)
=

∫ t

a

f (x)
x1−α dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

In [11], Sarıkaya et al. introduced Pochhammer (p)αn,k-symbol as follows

(p)αn,k = (p + α − 1) (p + α − 1 + αk) ... (p + α − 1 + (n − 1)αk) .

Setting α = 1 and k → 1 one obtains the usual Pochhammer symbol (x)n.
The (α, k)-gamma functions is defined by [11]

Γαk (p) =
∫ ∞

0 tp−1e−
tαk
αk dαt = lim

n→∞

n!αnkn (nαk)
p+α−1
αk −1

(p)αn,k
.

The (α, k)-Gamma function Γαk (p) satisfies the following identities
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(1) Γαk (p + αk) = (p + α − 1) Γαk (p) ,
(2) Γαk (p + nαk) = (p)αn,k Γαk (p) ,

(3) Γαk (p) = (αk)
p+α−1
αk −1 Γ

(
p+α−1
αk

)
,

(4) Γαk (p) = α
p+α−1
αk −1Γk

(
p+α−1
α

)
,

(5) Γαk (αk + 1 − α) = 1,

(6) Γαk (p) = a
p+α−1
αk

∫ ∞
0 tp−1e−a tαk

αk dαt.
This gives rise to (α, k)-beta function defined by [11]

Bαk (p, q) =
1
αk

∫ 1

0
t

p
αk−1 (1 − t)

q
αk−1 dαt, p, q, k > 0,

also

Bk (p + αk (1 − α) , q) =
Γαk (p) Γαk (q)

Γαk (p + q + 1 − α)
. (1.1)

2. Main Results

In this section, we will give some generalized results for the Cn numbers known as Catalan numbers in the literature.
We will give some new formulas for Catalan numbers, their integral representation, and a parametric integral notation
such as the (α, k)−gamma and (α, k)−beta functions. We will show that the obtained results with their special selection
give the current results in the literature.

Theorem 2.1. Let k > 0, α ∈ (0, 1] and n ∈ N+,

Γαk

(
(2n + 1)αk

2
+ 1 − α

)
= (αk)

2n−1
2

(2n)!
√
π

4nn!
,

and

Cα
n,k =

4n(αk)
3
2

√
π

Γαk

(
(2n+1)αk

2 + 1 − α
)

Γαk ((n + 2)αk + 1 − α)
. (2.1)

Proof. From Γαk (p) = (αk)
p+α−1
αk −1 Γ

(
p+α−1
αk

)
, we have

Γαk

(
(2n + 1)αk

2
+ 1 − α

)
= (αk)

(2n+1)αk+1−α+α−1
2αk −1Γ

(
(2n + 1)αk + 1 − α + α − 1

2αk

)

= (αk)
2n−1

2 Γ

(
n +

1
2

)

= (αk)
2n−1

2
(2n)!

√
π

4nn!
.

And, so

Γαk

(
(2n+1)αk

2 + 1 − α
)

Γαk ((n + 2)αk + 1 − α)
=

(αk)
2n−1

2
(2n)!

√
π

4nn!

(αk)n+1 (n + 1)!

= (αk)−
3
2

(2n)!
√
π

4nn! (n + 1)!

= (αk)−
3
2

√
πCα

n,k

4n ,

in this way

Cα
n,k =

4n(αk)
3
2

√
π

Γαk

(
(2n+1)αk

2 + 1 − α
)

Γαk ((n + 2)αk + 1 − α)
.

The proof is completed. �



A. Akkurt, H. Yıldırım, Turk. J. Math. Comput. Sci., 15(1)(2023), 164–170 167

Remark 2.2. If we choose α = 1 in (2.1), we have the following equality [10],

C1
n,k =

4nk
3
2

√
π

Γk

(
(2n+1)k

2

)
Γk ((n + 2) k)

.

Remark 2.3. If we choose α = k = 1 in (2.1), we have the following equality [7],

C1
n,1 =

4n

√
π

Γ
(

2n+1
2

)
Γ (n + 2)

.

Theorem 2.4. Let a, k > 0, α ∈ (0, 1] and n ≥ 0, the following equality holds;

In,k (a) =

a∫
0

x(n+1)αk−α
(
a2αk − x2αk

) 1
2 dαx

=
a(n+2)αk

2
Bαk

(
(n + 1)αk

2
+ (1 − α)αk,

3αk
2

)

=
a(n+2)αk

2

Γαk

(
(n+1)αk

2

)
Γαk

(
3αk

2

)
Γαk

(
(n+4)αk

2 + 1 − α
) .

Proof. We use the substitution x = at
1

2αk , so this transforms the integral:

Iαn,k (a) =

1∫
0

(
at

1
2αk

)(n+1)αk−1 (
a2αk −

(
at

1
2αk

)2αk) 1
2 a

2αk
t

1
2αk−1dt

=
a(n+2)αk

2αk

1∫
0

t
(n+1)αk

2αk −1 (1 − t)
1
2 +1−1 dt

=
a(n+2)αk

2αk

1∫
0

t
(n+1)αk

2 +(1−α)αk
αk −1 (1 − t)

3k
2k−1 dαt

=
a(n+2)αk

2
Bαk

(
(n + 1)αk

2
+ (1 − α)αk,

3αk
2

)
.

So, from (1.1) we obtain

Iαn,k (a) =
a(n+2)αk

2

Γαk

(
(n+1)αk

2

)
Γαk

(
3αk

2

)
Γαk

(
(n+4)αk

2 + 1 − α
) .

This is the proof of Theorem 2.4. �

Remark 2.5. If we choose α = 1 in Theorem 2.4, we get Theorem 1.2 in [10]. This theorem;

I1
n,k (a) =

a∫
0

x(n+1)k−1
(
a2k − x2k

) 1
2 dx

=
a(n+2)k

2

Γk

(
(n+1)k

2

)
Γk

(
3k
2

)
Γk

(
(n+4)k

2

) .
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Remark 2.6. If we choose k = 1 in Theorem 2.4, we get Theorem 2.1 in [9]. This theorem;

In (a) =

a∫
0

xn
(
a2 − x2

) 1
2 dx

= an+2

√
πΓ

(
n
2 + 1

2

)
4Γ

(
n
2 + 2

) .

Theorem 2.7. Let a, k > 0, α ∈ (0, 1] and r, s > −1, then

Iαr,s,k (a) =

a∫
0

x(r+1)αk−α
(
a2αk − x2αk

)s
dαx

=
a(r+2s+1)αk

2
Bαk

(
r + 1

2
αk + (1 − α)αk, (s + 1)αk

)
.

Proof. To prove this theorem, by changing variable x = a sin
1
αk θ for θ ∈

[
0, π2

]
;

Iαr,s,k (a) =

a∫
0

x(r+1)αk−α
(
a2αk − x2αk

)s
dαx

=

π
2∫

0

(
a (sin θ)

1
αk

)(r+1)αk−1 (
a2αk − a2αk sin2 θ

)s a
αk

(sin θ)
1
αk−1 cos θdθ

= a(r+2s+1)αkαk

π
2∫

0

(sin θ)r (cos θ)2s+1 dθ (2.2)

=
a(r+2s+1)αk

αk

π
2∫

0

(sin θ)
2αk(r+1)

2αk −1 (cos θ)
2αk(s+1)

αk −1 dθ

=
a(r+2s+1)αk

2
Bαk

(
r + 1

2
αk + (1 − α)αk, (s + 1)αk

)
.

To get (2.2), we used

Bαk (p, q) =
1
αk

1∫
0

x
p
αk−1 (1 − x)

q
αk−1 xα−1dx

=
1
αk

π
2∫

0

(
sin2 θ

) p
αk−1 (

1 − sin2 θ
) q
αk−1

(sin2 θ)α−1(2 sin θ cos θ)dθ

=
2
αk

π
2∫

0

(sin θ)2 p+(α−1)αk
αk −1(cos θ)2 q

αk−1dθ.

That is,
π
2∫

0

(sin θ)2 p+(α−1)αk
αk −1(cos θ)2 q

αk−1dθ =
αk
2

Bαk (p, q) .

Thus, the proof of Theorem 2.7 is completed. �
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Remark 2.8. If we choose α = 1 in Theorem 2.7, we get Theorem 1.2 in [10]. This theorem;

I1
r,s,k (a) =

a∫
0

x(r+1)k−1
(
a2k − x2k

)s
dx

=
a(r+2s+1)k

2
Bk

(
r+1

2 k, (s + 1) k
)
.

Remark 2.9. If we choose α = 1 and k = 1 in Theorem 2.7, we get Theorem 5.1 in [9]. This theorem;

I1
r,s,1 (a) =

a∫
0

xr
(
a2 − x2

)s
dx

=
ar+2s+1

2
B

(
r+1

2 , s + 1
)
.

Remark 2.10. If we choose k = 1, r = n and s = 1
2 in Theorem 2.7, we get Remark 6.1 in [9]. This Remark;

I1
n, 1

2 ,1
(a) =

an+2

2
B

(
n+1

2 , 3
2

)
.

Remark 2.11. If we choose α = 1, r = n and s = 1
2 in Theorem 2.7, we obtain the results [10];

I1
n, 1

2 ,k
(a) =

a∫
0

x(n+1)k−1
(
a2k − x2k

) 1
2 dx

=
a(n+2)k

2
Bk

(
(n+1)k

2 , 3
2 k

)

=
a(n+2)k

2

Γk

(
(n+1)k

2

)
Γk

(
3
2 k

)
Γk

(
(n+4)k

2

) .

Remark 2.12. If we choose α = k = 1, r = 2n and s = 1
2 in Theorem 2.7, we get Remark 6.2 in [9]. This Remark;

Cn =
1
π

I1
2n, 1

2 ,1
(2) =

22n+1

π
B

(
2n+1

2 , 3
2

)
.

Remark 2.13. If we choose α = 1, r = n and s = − 1
2 in Theorem 2.7, we get Theorem 1.2 in [10]. This Theorem;

a∫
0

x(n+1)k

√
a2k − x2k

dx =
ank

2
Bk

(
(n + 1)k

2
,

k
2

)
.

Remark 2.14. If we choose α = k = 1, r = n and s = − 1
2 in Theorem 2.7, we get Remark 6.3 in [9]. This Remark;

a∫
0

xn

√
a2 − x2

dx =
an

2
B

(
n + 1

2
,

1
2

)
.
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