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Abstract
A permutation σ = σ1σ2 · · · σn has a descent at i if σi > σi+1. A descent i is called a peak
if i > 1 and i − 1 is not a descent. The size of the set of all permutations of n with a
given descent set is a polynomials in n, called the descent polynomial. Similarly, the size
of the set of all permutations of n with a given peak set, adjusted by a power of 2 gives a
polynomial in n, called the peak polynomial. In this work we give a unitary expansion of
descent polynomials in terms of peak polynomials. Then we use this expansion to give an
interpretation of the coefficients of the peak polynomial in a binomial basis, thus giving a
constructive proof of the peak polynomial positivity conjecture.
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1. Introduction
Denote by Sn the symmetric group of permutations σ = σ1σ2 · · · σn of [n] = {1, 2, . . . , n}

written in one-line notation. We will draw the graph of σ by plotting points (i, σi) and
connecting consecutive points.

We define the descent set of σ as follows:
Des(σ) = {i | σi > σi+1} ⊂ [n − 1].

Every element of Des(σ) is called a descent of σ. Note that the descents of σ are exactly
the x-coordinates of the points (i, σi) followed by decreasing lines in the graph of σ (See
Figure 1 below for an example).
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Figure 1. The graph of σ = 24315678 with descents marked by stars.

We use the notation max(S) to denote the maximum element of finite set S of integers.
For a given set S ⊂ N and n > max(S), we let D(S, n) be the set of all permutations in
Sn with descent set S, and set d(S, n) = |D(S, n)|. In 1915, it was shown by MacMahon
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[5] that this is a polynomial in n. More recently, Diaz-Lopez et al. [4] proved this poly-
nomial expands into the binomial basis around n − m, where m = max(S), and gave a
combinatorial interpretation for the coefficients. Using the notation σ|i = {σ1, σ2, . . . , σi},
we give a version of their result slightly altered to include the case m > max(S) as follows:

Theorem 1.1 ([4]). For any finite set of positive integers S with max(S) ≤ m we have:

d(S, n) = a0(S)
(

n − m

0

)
+ a1(S)

(
n − m

1

)
+ · · · + am(S)

(
n − m

m

)
, (1.1)

where the constant ak(S) is the number of σ ∈ D(S, 2m) such that:

σ|m ∩ [m + 1, 2m] = [m + 1, m + k].

The underlying idea is quite elegant and will be useful when we are proving a similar
result for peak polynomials. Simply put, if σ ∈ D(S, n) has {σ1, σ2, . . . , σm}∩[m+1, n] = A
for some k element set A, and B is any other k element subset of [m+1, n], then exchanging
elements of A and B while preserving the orders gives another permutation with descent
set S. Therefore, for each k, it is enough to count for the simplest k-element subset of
[m + 1, n] and multiply with

(n−m
k

)
.

For example, there are 3 elements in D({2, 3}, n) satisfying σ|m ∩ [5, 8] = ∅ : 14325678,
24315678, 34215678. So we have a0({2, 3}) = 3 for m = 4. Calculating the other coeffi-
cients similarly, we obtain:

d({2, 3}, n) = 3
(

n − 4
0

)
+ 8

(
n − 4

1

)
+ 7

(
n − 4

2

)
+ 2

(
n − 4

3

)
+ 0

(
n − 4

4

)
. (1.2)

Another well studied permutation statistic is given by peak point. Here we define the
peak points and their counterpart valley points of the partition to be the points higher
and lower than their neighbors respectively:

Peak(σ) = {σ | σi > σi+1, σi−1} ⊂ [n − 1]\{1},

Valley(σ) = {σ | σi < σi+1, σi−1} ⊂ [n − 1]\{1}.

The example σ = 34215678 from Figure 1 has Peak(σ) = {2} and Valley(σ) = {4}. We
also set Spike(σ) = Peak(σ) ∪ Valley(σ) to be the set of all extremal points that are not
corner points.

For a given set I and n > max(I), we let P (I, n) be the set of permutations in Sn with
peak set I, and set p(I, n) = 2−n+|I|+1|P (I, n)|. Note that peaks are more restrictive in
the sense that p(I, n) = 0 if I contains 1 or any consecutive entries. For the rest of this
work, we will focus our attention to admissible peak sets I: I ⊂ [n − 1]\{1} such that
i ∈ I ⇒ i + 1 /∈ I.

In [2] Billey, Burzdy and Sagan proved that p(I, n) is a polynomial in n, and conjectured
that the coefficients of this polynomial in a binomial basis centered at max(I) are non-
negative. Their conjecture was proved in 2017 by Diaz-Lopez et al. [3] using the recursion
of peaks, without describing the actual coefficients.

In this work, we tie the theory of peak and descent polynomials together by giving a
binary expansion of d(S, n) in terms of peak polynomials. We use this expansion to give
a description of the peak polynomial coefficients analogous to the one in Theorem 1.1. In
Section 2, we extend our notions of descents and peaks to Bn, the set of marked permu-
tations of n with 2nn! elements. The added exponent of 2 cancels out with the 2−n+|I|+1

from the peak polynomial definition, giving us a way to expand descent polynomials in
terms of peak polynomials. In Section 3, we define involutions on permutations that flip
the descents on an initial section and we use them to partition permutations with a given
descent set to calculate the coefficients for the peak polynomial.
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2. Descents and Peaks of Marked Permutations
We start our section by tweaking our notation a little bit to express our formulas easier.

Note that the peaks and valleys of a permutation only depend on its descent set. In fact
for any S ⊂ [n − 1], we can talk about the peaks and valleys of S:

Peak(S) = {1 < i ≤ n − 1 | i ∈ S, i − 1 /∈ S},

Valley(S) = {1 < i ≤ n − 1 | i /∈ S, i − 1 ∈ S}.

Note that with this notation, Peak(σ) = Peak(Des(σ)) and Valley(σ) = Valley(Des(σ)) as
expected. We also set Spike(S) := Peak(S) ∪ Valley(S).

Denote by Bn the set of signed permutations:

Bn := {ρ = ρ1ρ2 . . . ρn | ∀i ≤ n, ∃k : ρk = i or ρk = −i}.

Note that the definitions of descent, peak, spike and valley naturally extend to signed
permutations by saying i is a descent of ρ if ρi > ρi+1.

Lemma 2.1 ([1]). Let σ ∈ Sn have Peak(σ) = I. Denote by Mark(σ) the 2n element
subset of Bn that give σ when marks are erased. Then, for all ρ ∈ Mark(σ), Spike(ρ) ⊃ I.
Conversely, for any S ⊂ [n − 1] satisfying Spike(S) ⊃ I, there are exactly 2|I|+1 elements
in Mark(σ) with descent set equal to S.

Theorem 2.2. We have d(S, n) =
∑

I⊂Spike(S)
p(I, n).

Proof. As any marking of the images of 1, 2, . . . , n is essentially just a reordering of [n],
the number of elements of Bn with a given descent set S is simply 2nd(S, n). Also note
that for all ρ ∈ Bn with descent set S, ρ is in Mark(σ) for some σ with P (σ) ⊂ D(I, n).

2nd(S, n) =
∑

I⊂Spike(S)
2|I|+1|Peak(I, n)| =

∑
I⊂Spike(S)

2np(I, n).

�

For example:
• d(∅, n) = p(∅, n) = 1.
• d({1}, n) = p({2}, n) + p(∅, n).
• For 1 < k < n, d({k}, n) = p({k}, n) + p({k + 1}, n) + p(∅, n).
• d({k, k+1, . . . , k+j}, n) = p({k, k+j+1}, n)+p({k}, n)+p({k+j+1}, n)+p(∅, n).

For any set I ∈ [n]\{1}, we will let SI denote the unique subset of [n]\{n} satisfying
Spike(SI) = I, constructed by alternating the elements of I to be peaks and valleys such
that the rightmost one is not a peak. For example, for I = {2, 4} we have SI = {2, 3}:
the descent set with a peak at 2 and a valley at 4 (Figure 2).

Figure 2. For I = {2, 4}, SI = {2, 3} as seen above.

Corollary 2.3. For any admissible set I, p(I, n) =
∑
J⊂I

(−1)|I|−|J |d(SJ , n).
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Proof. The formula holds for I = ∅ as S∅ = ∅ and p(∅, n) = d(∅, n) = 1 for all
n. Assume inductively that the formula holds for all admissible sets with less than k
elements. Let |I| = k. By Theorem 2.2,

d(SI , n) =
∑
J⊂I

p(I, n) = p(I, n) −
∑
J(I

∑
H⊂J

(−1)|J |−|H|d(SH , n),

p(I, n) = d(SI , n) −
∑
H(I

d(SH , n)
∑

t≤|I|−|H|−1

(
|I| − |H|

t

)
(−1)t

= d(SI , n) −
∑
H(I

d(SH , n)(−(−1)|I|−|H|).

�

If we consider our running example I = {2, 4}, we get the following formulas from
Theorem 2.2 and Corollary 2.3 respectively:

d({2, 3}, n) = p({2, 4}, n) + p({2}, n) + p({4}, n) + p(∅, n), (2.1)
p({2, 4}, n) = d({2, 3}, n) − d({1}, n) − d({1, 2, 3}, n) + d(∅, n). (2.2)

3. A combinatorial expression for peak coefficients
We start with defining an operation on permutations that ’flips’ the orders of some

initial coordinates.

Definition 3.1. Let σ ∈ Sn. Let i ≤ n, and σ|i = {a1 < a2 < · · · < ai}. We define the
involution Fli as follows:

Fli(σ)j =
{

ai−k+1 j ≤ i, σj = ak

σj j > i.

2
4

3 1
5 6 7 8

Fl2
−→ 4 2 3 1

5 6 7 8

y Fl4
y Fl4

3 1 2
4 5 6 7 8

Fl2
−→

1
3

2
4 5 6 7 8

Figure 3. Operations Fl2 and Fl4 on σ = 24315678.

See Figure 3 for examples.

Remark 3.2. The involution Fli satisfies the following:
• Fli(σ)|i = σ|i.
• For k < i, k is a descent of Fli(σ) iff it is not a descent of σ.
• For k > i, k is a descent of Fli(σ) iff it is a descent of σ.
• Fli exchanges all the peaks less than i with valleys, and all the valleys less than i

with peaks.
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In Figure 3, we see an instance of operations Fl2 and Fl4 commuting. Now we will prove
that this is the case in general.

Proposition 3.3. For all i, j, Fli and Flj commute.

Proof. Assume without loss of generality that σ|j = [j], so that Flj(σ)k = j − σk + 1.
Set σ|i = {a1 < a2 < · · · < ai}.

Fli(σ)j =
{

ai−k+1 ifσj = at for some t

σj otherwise.

As Flj(σ)|i = {j − ai + 1 < j − ai−1 + 1 < . . . < j − a1 + 1}, we have

(Fli ◦ Flj(σ))k =
{

j − ai−t+1 + 1 if j − σk + 1 = j − at + 1 for some t

j − σk + 1 otherwise

=
{

j − ai−t+1 + 1 if σk = at for some t

j − σk + 1 otherwise
= (Flj ◦ Fli(σ))k.

�

Definition 3.4. For i ∈ Spike(σ), σ is said to admit an i+-flip if Spike(Fli(σ)) =
Spike(σ)/{i}. Similarly, it is said to admit an i−-flip if Spike(Fli−1(σ)) = Spike(σ)/{i}.
We say σ is admits an i-flip if it admits an i+- or i−- flip. For σ that admits and i-flip,
we set

Ψi(σ) =
{

Fli(σ) σ admits an i+-flip,
Fli−1(σ) otherwise.

Visually, this means that Fli or Fli−1 straightens out the peak or valley point at i. For
example, 24315678 from Figure 3 admits a 4-flip, but not a 2-flip.

Proposition 3.5. For all i, j such that |i− j| > 1, σ admits an i+-flip if and only if Ψj(σ)
admits an i+-flip. Similarly, σ admits an i−-flip if and only if Ψj(σ) admits an i−-flip.

Proof. Assume j < i. Note that whether a permutation σ with a spike at i admits an i+

or i−-flip only depends on the images of i − 1, i and i + 1 in Fli(σ) and Fli−1(σ). As Flj
and Flj−1 do not alter these images, Ψj does not change whether σ admits an i+ or i−

flip. The case j < i follows by Proposition 3.3. �

For any admissible set I = {i1, i2, . . . , ik}, we set ΨI := Ψi1 ◦ Ψi2 ◦ · · · ◦ Ψik
. This

operation is well-defined by Proposition 3.3, and the corollary above.

Lemma 3.6. For any admissible set I and any J ⊂ I, ΨJ induces a bijection between
elements of D(SI , n) that admit a j-flip for all j ∈ J and elements of D(SI/J , n). In
particular, for any m ≥ max(I) we have:

σ|m ∩ [m + 1, 2m] = [m + 1, m + k] ⇐⇒ ΨJ(σ)|m ∩ [m + 1, 2m] = [m + 1, m + k].

Proof. Assume σ ∈ D(SI , n) admits a j-flip for each j ∈ J . Then ΨJ(σ) has spike set
I/J by definition. As max(Des(ΨJ(σ))) ≤ max(I/J), its descent set is the set SI/J .

For the converse, let ρ ∈ D(SI/J , n), and j ∈ J . If Flj(ρ) has a spike point at j,
then Flj(ρ) ∈ D(SI/J∪{j}, n). If, on the other hand Flj(ρ) has a spike point at j, note
that as I is an admissible set, neither j − 1 nor j + 1 are spike points, so j, j − 1 and
j − 2 are either all descents or all non-descents. Assume without generality that all are
descents, the other case being symmetrical. Then, as Flj(ρ) has no spike at j, we have
(Flj(ρ))j−2 < (Flj(ρ))j−1 < (Flj(ρ))j < ρj+1 < ρj . As (Flj(ρ))j−1 < ρj , (Flj−1(ρ))j−2 =
(Flj−1(ρ)j−1) < (Flj(ρ))j−1 < ρj , Flj−1(ρ) has spikes at I/J ∪{j}. It also admits a j−-flip
but not a j+ flip.
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Doing Flj if Flj(ρ) has a spike point at j, and Flj−1 otherwise gives an element σ(j) of
D(SI/J∪{j}, n) with Ψj(σ(j)) = ρ. So, by Lemma 3.6, we have an element σ ∈ D(SI , n)
with ΨJ(σ)) = ρ. The second part follows as σ|m = Fli(σ)|m for any i ≤ n. �

Theorem 3.7. For any admissible set of I with max(I) ≤ m we have

p(I, n) = b0(I)
(

n − m

0

)
+ b1(I)

(
n − m

1

)
+ · · · + bm(I)

(
n − m

m

)
, (3.1)

where the constant bk(I) is the number of σ ∈ D(SI , 2m) such that:

σ|m ∩ [m + 1, 2m] = [m + 1, m + k],

and σ does not admit any i-flips.

Proof. Let I be an admissible set with max m. Note that for any J ⊂ I, max(SJ) ≤
max(J) − 1 ≤ m. Fix k ≤ n.

For any J ⊂ I, we use the notation BI/J to denote the set of σ ∈ D(S, 2m) such that:
σ|m ∩ [m + 1, 2m] = [m + 1, m + k] and σ admits j flips for all j ∈ J .

Recall from Corollary 2.3 that we have:

p(I, n) =
∑
J⊂I

(−1)|I|−|J |d(SJ , n). (3.2)

Combining this with Theorem 1.1 we get:

ak(I) =
∑
J⊂I

(−1)|I|−|J |bk(J)

=
∑
J⊂I

(−1)|I|−|J ||BJ |

= bk(I) − | ∪J BJ |.

by Lemma 3.6 and the inclusion-exclusion principle. �

2-flip 4-flip
14325678 7 3
24315678 7 3
34215678 3 3

k = 0

2-flip 4-flip
57612348 7 7
675123478 3 7

2-flip 4-flip
15324678 7 3
15423678 7 7
25314678 7 7
25413678 7 7
35214678 3 7
35412678 7 7
45213678 3 7
45312678 3 7

2-flip 4-flip
16523478 7 7
26513478 7 7
36512478 7 7
46512378 7 7
56213478 3 7
56312478 3 7
56412378 3 7

k = 3 k = 1 k = 2

Table 1. The elements σ ∈ D({2, 3}, 8) satisfying σ|4 ∩ [5, 8] = [5, 4 + k].

We will end this section by calculating the expansion of p({2, 4}, n). Recall that S{2,4} =
{2, 3}. For all elements σ ∈ D({2, 3}, 8) satisfying σ|4 ∩ [5, 8] = [5, 4 + k] for some k we
need to check if σ admits a 2-flip or a 4-flip. Checking for 2-flips is very straightforward,
we just need to check whether σ1 > σ3. 4-flips are slightly more tricky as Fl4 does not
simply exchange a pair of coordinates, and we actually need to calculate Fl4(σ) to see if
Fl4(σ)3 is smaller than σ5. For each k, the related permutations σ can be found in Table
1, along with the information on whether they admit 2 or 4-flips.
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Counting the elements that admit neither 2 nor 4-flips from Table 1 gives us the following
formula:

p({2, 4}, n) = 0
(

n − 4
0

)
+ 4

(
n − 4

1

)
+ 4

(
n − 4

2

)
+ 1

(
n − 4

3

)
.

In fact, the inclusion-exclusion principle allows us to read the coefficients for p(2, n)(ones
that admit only 4-flips), p(4, n)(ones that admit only 2-flips) and p(∅, n)(ones that admit
only 4-flips) from Table 1:

p({2}, n) = 2
(

n − 4
0

)
+ 1

(
n − 4

1

)
+ 0

(
n − 4

2

)
+ 0

(
n − 4

3

)
,

p({4}, n) = 0
(

n − 4
0

)
+ 3

(
n − 4

1

)
+ 3

(
n − 4

2

)
+ 1

(
n − 4

3

)
,

p(∅, n) = 1
(

n − 4
0

)
+ 0

(
n − 4

1

)
+ 0

(
n − 4

2

)
+ 0

(
n − 4

3

)
.

Note that p({2, 4}, n) + p({2}, n) + p({4}, n) + p(∅, n) = d({2, 3}, n) as required.
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