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Abstract
In this article, we consider and discuss some properties of the positive solutions to the fol-
lowing rational nonlinear DE xn+1 =

αxn−m+ηxn−k+δxn
β+γxn−kxn−l(xn−k+xn−l)

, n = 0,1, ..., where the parameters
α,β ,γ,δ ,η ∈ (0,∞), while m,k, l are positive integers, such that m < k < l and the initial conditions
x−m, ...,x−k, ...,x−l , ...,
x−1, ...,x0 are arbitrary positive real numbers, we will give also, some numerical examples to illustrate our results.
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1. Introduction
The study of the solution of nonlinear rational sequence of high order is quite challenging and rewarding. Every dynamical
system bn+1 = f (bn) determines DE and vice versa. An interesting class of nonlinear DE is the class of solvable DEs, and
one of the interesting problems is to find equations that belong to this class and to solve them in closed form or in explicit
form [1]-[14], [16]-[26]. Note that most of these Eq. often show increasingly complex behavior such as the existence of a
bounded. The qualitative study of difference equations is a fertile research area and increasingly attracts many mathematicians.
This topic draws its importance from the fact that many real life phenomena are modeled using difference equations. The
applications of these difference equations can be found on the economy, biology and so on. It is known that nonlinear difference
equations are capable of producing a complicated behavior regardless its order. The aim of this paper is to investigate some
qualitative behavior of the solutions of the nonlinear DE

xn+1 =
αxn−m +ηxn−k+δxn

β + γxn−kxn−l (xn−k + xn−l)
, n = 0,1,2, ... (1.1)

where the parameters α, β , γ, δ , η ∈ (0,∞), while m, k, l, are positive integers, such that m < k < l and the initial
conditions x−m, ...,x−k, ...,x−l , ...,x−1, ...,x0 are arbitrary positive real numbers. Equation (1.1) has been discussed in [15],
when m = 1, k = 2 and l = 4, and in [28], when δ = 0, where some global behavior of the more general nonlinear rational Eq.
(1.1), we need the following well-known definitions and results [29]-[34].
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Definition 1.1. A difference equation of order (k+1) is of the form

xn+1 = F(xn,xn−1, ...,x−k), n = 0,1,2, ..... (1.2)

where F is a continuous function which maps some set Jk+1 into J and J is a set of real numbers. An equilibrium point
x̃ of this equation is a point that satisfies the condition x̃ = F (x̃, x̃, ...., x̃) . That is, the constant sequence {xn}∞

n=−k with
xn = x̃ f or all n≥−k is a solution of that equation.

Definition 1.2. Let x̃∈ (0,∞) be an equilibrium point of the difference equation (1.2). Then
(i) An equilibrium point x̃ of the difference equation (1.2) is called locally stable if for every ε > 0 there exists δ > 0 such that,
if x−k, ..., x−1,x0 ∈ (0,∞) with |x−k− x̃|+ ...+ |x−1− x̃|+ |x0− x̃|< δ , then |xn− x̃|< ε for all n≥−k.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called locally asymptotically stable if it is locally stable
and there exists γ > 0 such that, if x−k, ..., x−1, x0 ∈ (0,∞) with |x−k− x̃|+ ...+ |x−1− x̃|+ |x0− x̃|< γ , then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a global attractor if for every x−k, ..., x−1, x0 ∈ (0,∞) we
have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.2) is called globally asymptotically stable if it is locally stable and a global
attractor.

(v) An equilibrium point x̃ of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A sequence {xn}∞

n=−k is said to be periodic with period p if xn+p = xn for all n≥−k. A sequence {xn}∞

n=−k
is said to be periodic with prime period p if p is the smallest positive integer having this property.

Definition 1.4. We say that a sequence {xn}∞
n=−l is bounded and persisting if , there exists positive constants m and M such

that

m≤ xn ≤M, f or all n≥−k.

Definition 1.5. A positive semicycle of {xn}∞
n=−k consists of ”a string” of terms xl ,xl+1, ...,xm all greater than or equal to x̃,

with l ≥−k and m≤ ∞ such that

either l =−k or l >−k and xl−1 < x̃,

and

either m = ∞ or m < ∞ and xm+1 < x̃.

A negative semicycle of {xn}∞
n=−k consists of ”a string” of terms xl ,xl+1, ...,xm all less than x̃, with l ≥−k and m≤ ∞ such

that

either l =−k or l >−k and xl−1 ≥ x̃,

and

either m = ∞ or m < ∞ and xm+1 ≥ x̃.

Definition 1.6. The linearized Eq. of Eq. (1.2) about the equilibrium point x̃ is the linear Eq.

yn+1 =
k

∑
i=0

∂F (x̃, x̃, ..., x̃)
∂xn−i

yn−i. (1.3)

Now, assume that the characteristic Eq. associated with Eq. (1.3) is

p(λ ) = p0λ
k + p1λ

k−1 + ...+ pk−1λ + pk = 0, (1.4)

where

pi = ∂F (x̃, x̃, ..., x̃)/∂xn−i.
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Theorem 1.7. Let pi ∈ R, i = 1,2, ..., and k ∈ {0,1,2, ...}, then

k

∑
i=1
|pi|< 1,

is sufficient condition for asymptotic stability of difference equation

xn+k + p1xn+k−1 + .....+ pkxn = 0, n = 0,1,2, ...

Theorem 1.8 (The Linearized Stability Theorem).
Suppose that F is a continuously differentiable function defined on an open neighbourhood of the equilibrium x̃. Then the
following statements are true.
(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute value less than one, then the
equilibrium point x̃ is locally asymptotically stable.
(ii) If at least one root of Eq.(1.4) has an absolute value greater than one, then the equilibrium point x̃ is unstable.

2. Change of Variables

By using the change of variables xn =
(

β

γ

) 1
3
yn, the equation (1.1) reduces to the following difference equation

yn+1 =
ryn−m+tyn−k+syn

1+yn−kyn−l (yn−k + yn−l)
, n = 0,1,2, ... (2.1)

where r = α

β
> 0, s = δ

β
> 0, t = η

β
> 0, and the initial conditions y−l , ...,y−k, ...,y−m, ...,y−l ,y0 ∈ (0,∞). In the next section,

we shall study the global behavior of Eq. (2.1).

3. The Dynamics of Eq. (2.1)
The equilibrium points ỹ of Eq. (2.1) are the positive solutions of equation

ỹ =
[r+s+t]ỹ
1+2ỹ3 . (3.1)

Thus ỹ1 = 0, is always an equilibrium point of the equation (2.5). If (r+s+t)> 1, then the only positive equilibrium point ỹ2
of equation (2.1) is given by

ỹ2 =

(
[r+s+t]−1

2

) 1
3
. (3.2)

Let us introduce a continuous function F : (0,∞)4→ (0,∞), which is defined by

F(v0,v1,v2,v3) =
rv0+sv1+tv2

1+ v2
2v3 + v2v2

3
. (3.3)

Consequently, we get

∂F(v0,v1,v2,v3)

∂v0
=

r
1+ v2

2v3 + v2v2
3
,

∂F(v0,v1,v2,v3)

∂v1
=

s
1+ v2

2v3 + v2v2
3
,

∂F(v0,v1,v2,v3)

∂v2
=

t(1+ v2
2v3 + v2v2

3)−(rv0+sv1+tv2)(2v2v3 + v2
3)

(1+ v2
2v3 + v2v2

3)
2 ,
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∂F(v0,v1,v2,v3)

∂v3
=
−(rv0+sv1+tv2)(v2

2 +2v2v3)

(1+ v2
2v3 + v2v2

3)
2 .

At ỹ1 = 0, we have ∂F(0,0,0,0)
∂v0

= r, ∂F(0,0,0,0)
∂v1

= s, ∂F(0,0,0,0)
∂v2

= t, ∂F(0,0,0,0)
∂v3

= 0, and the linearized equation of Eq. (2.1) about
ỹ1 = 0, is the equation

zn+1−ρ0zn−ρ1zn−m−ρ2zn−k = 0, (3.4)

where ρ0 = s, ρ1 = r, ρ2 = t. At ỹ2 =
(
[r+s+t]−1

2

) 1
3
, we have

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v0
=

r
1+2ỹ3

2
=

r
1+([r+s+t]−1)

=
r

[r+s+t]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v1
=

s
1+2ỹ3

2
=

s
1+([r+s+t]−1)

=
s

[r+s+t]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v2
=

2t−3([r+s+t]−1)
2 [r+s+t]

,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v3
=
−3([r+s+t]−1)

2 [r+s+t]
.

And the linearized equation of Eq. (2.1) about ỹ2 =
(
[r+s+t]−1

2

) 1
3

is the equation

zn+1−ρ0zn−ρ1zn−m−ρ2zn−k−ρ3zn−l = 0, (3.5)

where ρ0 =
s

[r+s+t] , ρ1 =
r

[r+s+t] , ρ2 =
2t−3([r+s+t]−1)

2[r+s+t] , ρ3 =
−3([r+s+t]−1)

2[r+s+t] .

Theorem 3.1. (i) If [r+s+t]< 1, then the equilibrium point ỹ1 = 0 is locally asymptotically stable.
(ii) If [r+s+t]> 1, then the equilibrium point ỹ1 = 0 is unstable.

(iii) If [r+s+t]> 1, 2t > 3([r+s+t]−1) , then the equilibrium point ỹ2 =
(
[r+s+t]−1

2

) 1
3

is unstable.

Proof. With reference to Theorem 1.1, we deduce from Eq. (3.4) that |ρ0|+ |ρ1|+ |ρ2|= [r+s+t]< 1, and then the proof of
parts (i), (ii) follow. Also, from Eq. (3.5) we deduce for [r+s+t]> 1 that |ρ0|+ |ρ1|+ |ρ2|+ |ρ3|= 1+ 3([r+s+t]−1)

[r+s+t] > 1, and
hence the proof of part (iii) follows.

Theorem 3.2. Assume that [r+s+t]> 1, and let {yn}∞
n=−l be a solution of Eq. (2.1) such that

y−l ,y−l+2, ...,y−l+2n, ...,y−k,y−k+2, ...,y−k+2n, ...,

y−m+1,y−m+3, ...,y−m+2n+1, ...,y0 ≥ ỹ2

and

y−l+1,y−l+3, ...,y−l+2n+1, ...,y−k+1,y−k+3, ...,

y−k+2n+1, ...,y−m,y−m+2, ...,y−m+2n, ...,y−1 < ỹ2.

(3.6)

Then {yn}∞
n=−l oscillates about ỹ2 =

(
[r+s+t]−1

2

) 1
3

with a semicycle of length one.

Proof. Assume that (3.6) holds. Then

y1 =
ry−m+sy0+ty−k

1+ y−ky−l(y−k + y−l)
<

ry−m+sy0+ty−k

1+2ỹ3
2

<
[r+s+t] ỹ2

1+([r+s+t]−1)
= ỹ2,

and

y2 =
ry−m+1+sy1+ty−k+1

1+ y−k+1y−l+1(y−k+1 + y−l+1)
≥ ry−m+1+sy1+ty−k+1

1+2ỹ3
2

≥ [r+s+t] ỹ2

1+([r+s+t]−1)
= ỹ2,

and hence the proof follows by induction.



On the Global of the Difference Equation xn+1 =
αxn−m+ηxn−k+δxn

β+γxn−kxn−l(xn−k+xn−l)
— 193/198

Theorem 3.3. Assume that [r+s+t]< 1, then the equilibrium point ỹ1 = 0 of Eq. (2.1) is globally asymptotically stable.

Proof. We have shown in Theorem 3 that if [r+s+t]< 1 then the equilibrium point ỹ1 = 0 is locally asymptotically stable. It
remains to show that ỹ1 = 0 is a global attractor. To this end, let {yn}∞

n=−l be a solution of Eq. (2.1). It suffics to show that
lim
n→∞

yn = 0. Since

0≤ yn+1 =
ryn−m+syn+tyn−k

1+ yn−kyn−l(yn−k + yn−l)
≤ ryn−m+syn+tyn−k < yn−k.

Then we have lim
n→∞

yn = 0. This completes the proof.

Theorem 3.4. Assume that [r+s+t]> 1, then Eq. (2.1) possesses an unbounded solution.

Proof. With the aid of Theorem 3.3, we have

y2n+2 =
ry−m+2n+1+sy2n+1+ty−k+2n+1

1+ y−k+2n+1 y−l+2n+1(y−k+2n+1 + y−l+2n+1)
>

ry−m+2n+1+sy2n+1+ty−k+2n+1

1+2ỹ3
2

>
ry−m+2n+1+sy2n+1+ty−k+2n+1

1+([r+s+t]−1)
=

ry−m+2n+1+sy2n+1+ty−k+2n+1

[r+s+t]
,

and

y2n+3 =
ry−m+2n+2+sy2n+2+ty−k+2n+2

1+ y−k+2n+2 y−l+2n+2(y−k+2n+2 + y−l+2n+2)
≤ ry−m+2n+2+sy2n+2+ty−k+2n+2

1+2ỹ3
2

≤ ry−m+2n+2+sy2n+2+ty−k+2n+2

1+([r+s+t]−1)
=

ry−m+2n+2+sy2n+2+ty−k+2n+2

[r+s+t]
.

From which it follows that

lim
n→∞

y2n = ∞ and lim
n→∞

y2n+1 = 0.

Hence, the proof of Theorem 3.4 is now completed.

Theorem 3.5. (1) If m is odd, and k, l are even, Eq. (2.1) has prime period two solution if (r− [s+t])< 1 and has not prime
period two solution if (r− [s+t])≥ 1.
(2) If m is even and k, l are odd, Eq. (2.1) has not prime period two solution.
(3) If all m,k, l are even, Eq. (2.1) has prime period two solution.
(4) If all m,k, l are odd, Eq. (2.1) has prime period two solution if (r− [s+t])> 1, and has not prime period two solution if
(r− [s+t])≤ 1.
(5) If m,k are even and l is odd, Eq. (2.1) has not prime period two solution.
(6) If m,k are odd and l is even, Eq. (2.1) has prime period two solution if (r− [s+t]) > 1, and has not prime period two
solution if (r− [s+t])≤ 1.
(7) If m, l are odd and k is even, Eq. (2.1) has prime period two solution if (r− [s+t]) > 1, and has not prime period two
solution if (r− [s+t])≤ 1.
(8) If m, l are even and k is odd, Eq. (2.1) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

...,φ ,ψ,φ ,ψ, ...

of prime period two of Eq. (2.1).
(1) If m is odd, and k, l are even, then yn+1 = yn−m and yn = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
rφ +[s+t]ψ

1+2ψ3 , ψ =
rψ +[s+t]φ

1+2φ 3 .

Consequently, we have

0 < 2φψ(φ +ψ) = 1− (r− [s+t]) . (3.7)
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We deduce that (3.7) is always true if (r− [s+t])< 1 and hence Eq. (2.1) has prime period two solution. If (r− [s+t])≥ 1, we
have a contradiction, and hence Eq. (2.1) has not prime period two solution.
(2) If m is even, and k, l are odd, then yn = yn−m,and yn+1 = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
[r+s+t]ψ

1+2φ 3 , ψ =
[r+s+t]φ
1+2ψ3 .

Consequently, we have

0 < 2(φ +ψ)(φ 2 +ψ
2) =−([r+s+t]+1) . (3.8)

Since [r+s+t]> 0, we have a contradiction. Hence Eq. (2.1) has not prime period two solution.
(3) If all m,k, l are even, then yn = yn−m = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
[r+s+t]ψ
1+2ψ3 , ψ =

[r+s+t]φ
1+2φ 3 .

Consequently, we get

0 < 2φψ(φ +ψ) = [r+s+t]+1. (3.9)

Since [r+s+t]> 0, the formula (3.14) is always true. Hence Eq. (2.1) has prime period two solution.
(4) If all m,k, l are odd, then yn+1 = yn−m = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
rφ + sψ

1+2φ 3 , ψ =
rψ + sφ

1+2ψ3 .

Consequently, we get

0 < 2(φ +ψ)(φ 2 +ψ
2) = (r− [s+t])−1. (3.10)

If (r− [s+t])> 1, the formula (15) is always true, and hence Eq. (2.1) has prime period two solution. If (r− [s+t])≤ 1, we
have a contradiction and hence Eq. (2.1) has not prime period two solution.
(5) If m,k are even, and l is odd, then yn = yn−k = yn−m, and yn+1 = yn−l . It follows from Eq. (2.1) that

φ =
[r+s+t]ψ

1+ψ2φ +ψφ 2 , ψ =
[r+s+t]φ

1+φ 2ψ +φψ2 .

Consequently, we have

0 < φψ(φ +ψ) =−([r+s+t]+1). (3.11)

Since [r+s+t]> 0, we have a contradiction. Hence Eq. (2.1) has not a prime period two solution.
(6) If m,k are odd, and l is even, then yn+1 = yn−m = yn−k, and yn = yn−l . It follows from Eq. (2.1) that

φ =
[r+t]φ + sψ

1+φ 2ψ +φψ2 , ψ =
[r+t]ψ + sφ

1+ψ2φ +ψφ 2 .

Consequently, we have

0 < φψ(φ +ψ) = ([r+t]− s)−1. (3.12)

If ([r+t]− s)> 1,the formula (3.17) is always true, and hence Eq. (2.1) has prime period two solution. If ([r+t]− s)≤ 1, we
have a contradiction. Hence Eq.(2.5) has not a prime period two solution.
(7) If m, l are odd, and k is even, then yn+1 = yn−m = yn−l , and yn = yn−k. It follows from Eq. (2.1) that

φ =
rφ +[s+t]ψ

1+ψ2φ +ψφ 2 , ψ =
rψ +[s+t]φ

1+φ 2ψ +φψ2 ,

which give the same results of case (6).
(8) If m, l are even, and k is odd, then yn = yn−m = yn−l , and yn+1 = yn−k. It follows from Eq. (2.1) that

φ =
[r+ s]ψ + tφ

1+ψ2φ +ψφ 2 , ψ =
[r+ s]φ + tψ

1+φ 2ψ +φψ2 ,

which give the same results of case (5). Hence the proof of Theorem 3.5 is now completed.
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4. Numerical Examples
In order to illustrate the results of the previous section and to support our theoretical discussions, we consider some numerical
examples in this section. These examples represent different types of qualitative behavior of solutions of Eq. (2.1).

Example 4.1. Figure 4.1, shows that the solution of Eq. (2.1) is bounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1, k =
2, l = 3, r = 0.1, s = 0.2, t = 0.3, i.e [r+s+t]< 1.

Figure 4.1. The solution of Eq. (2.1) is bounded.

Example 4.2. Figure 4.2, shows that the solution of Eq. (2.1) is unbounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1, k =
2, l = 3, r = 1, s = 2, t = 3, i.e [r+s+t]> 1.

Figure 4.2. The solution of Eq. (2.1) is unbounded.

Example 4.3. Figure 4.3, shows that Eq. (2.1) is globally asymptotically stable if x−4 = 1, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5,
m = 2, k = 3, l = 4, r = 0.1, s = 0.5, t = 0.2, i.e [r+s+t]< 1.
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Figure 4.3. The solution of Eq. (2.1) is globally asymptotically stable.

Example 4.4. Figure 4.4, shows that Eq. (2.1) has no positive prime period two solutions if x−3 = 1, x−2 = 2, x−1 = 3, x0 =
4, m = 2, k = 1, l = 3, r = 100, s = 300, t = 400.

Figure 4.4. The solution of Eq. (2.1) is globally asymptotically stable.
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5. Conclusions

In this article, we have shown that Eq. (2.1) has two equilibrium points ỹ1 = 0 and ỹ2 =
(
[r+s+t]−1

2

) 1
3
. If [r+s+t] < 1, we

have proved that ỹ1 = 0 is globally asymptotically stable, while if [r+s+t]> 1, the solution of Eq. (2.1) oscillates about the

point ỹ2 =
(
[r+s+t]−1

2

) 1
3

with a semicycle of length one. When [r+s+t]> 1, we have proved that the solution of Eq. (2.1) is
unbounded. The periodicity of the solution of Eq. (2.1) has been discussed in details in Theorem 3.5.
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