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ABSTRACT

In this study, two lagged fractional order singular neutral differential equations are considered. Using the advantage
of the association property of the Riemann -Liouville derivative, the derivative of the appropriate Lyapunov function
is calculated. Then, with the help of LMI, sufficient conditions for asymptotic stability of zero solutions are

obtained.
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Gecikmeli Riemann-Liouville Kesirli Singiiler Sistemlerin Kararhhk Analizi

0z

Bu ¢alismada gecikmeli kesirli mertebeden singiiler nétr iki diferansiyel denklem ele alinir. Riemann-Liouville
tirevin birlesme 06zelliginin avanataji kullanilarak uygun Lyapunov fonksiyonun tiirevi hesaplanir. Sonra LMI
yardimryla sifir ¢6ziimlerin asimptotik kararlilig1 icin yeter sartlar elde edilir.

Anahtar Kelimeler: Asimptotik kararlilik, Kesirli singiiler denklemler, Lyapunov metodu

INTRODUCTION

It is thought that the fractional derivative was first
introduced in 1695 with the question asked by the
Marquis de L'Hospital in the letter he sent to Gottfried
Wilhelm Leibniz [1]. Books with a very high impact
factor have been written on the fractional derivative and
are the inspiration for the studies in the literature [1-4].
Especially in the last 20 years, studies on fractional
derivatives continue to increase. A summary of some of
these studies is given below.

In [5], Heymans and Podlubny show, through a series of
examples in the field of viscoelasticity, that it is possible
to attribute physical meaning to initial conditions
expressed in terms of Riemann-Liouville fractional
derivatives. In [6], Deng et al. consider the stability of a
time-delayed n-dimensional fractional linear differential
equation system by using the Laplace transform. In [7-
9], the authors give sufficient conditions for the stability
of certain fractional differential equation systems with
the help of LMI. In [10,11] the authors investigate the
stability of certain systems of fractional differential
equations by using Lyapunov's second method. In [12],
Aguila-Camacho et al. prove the

1
Eththz(t) < x(0)§,Dix(t), Vq € (0,1)

inequality for the Caputo derivative. This inequality
facilitates the application of Lyapunov's second method.
In [13-27], the authors apply the Lyapunov method,
which is generally an effective method, by considering
the behavior of solutions of certain differential
equations with or without fractional delay. Researchers

can refer to references and their references for more
information.

Preliminaries

In this section, definitions of the Riemann-Liouville
fractional derivative and integral and some lemmas
which will be used in the proof of the main results are
given. The Riemann-Liouville fractional integral is

defined as
t

D7Ix(t) =
x =
ot O

The Riemann-Liouville fractional derivative is defined
as

tngx(t) =
n).

(t — )7 x(s)ds, (g >0)

1 an .t x(s)
['(n—q) dt" Yty (t—-s)9+t1-n

ds, (n—-1<¢g<

Lemmal ([4]) If p > q > 0, then

tthq( tth_px(t)) =t th_px(t) 1)
holds for “’sufficiently good’” functions x(t). In
particular; this relation holds if x(t) is integrable.

Lemma 2 ([18]) Let x(t) € R™ be a vector of
differentiable function. Then the following relationship
holds for vq € (0,1)

~ o DE (AT (©OPx(1)) < xT ()P, Dix(), VE = t,  (2)
where P € R™™ s a constant, square, symmetric and
positive semi definite matrix.

Lemma 3 ([3]) Let us first define ®: d(x,) = x(t) —
Cx(t — 7). The operator @ is said to be stable if the zero
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solution of the homogeneous difference equation
®(x,) =0, t=0 is uniformly asymptotically stable.
Note that the operator @ is stable if || C |I< 1.

MAIN RESULTS

In this section, two different equation models of
singular fractional order with delay arguments are
discussed. The first of these equations;
E;,Dfx(t) = Ax(t) + Bx(t — 7, (t))
+Ce, DEx(t — 72(1)) @)

where 0 <a <1, x(t)€R™ is the state vector
E, A, B,C € R™"™ are constant matrices, for all
t > tg, T1(t),T,(t) > 0 aretime-varying delays.
The second equation is considered that
E, Dfx(t) = Ax(t) + le(t - rl(t))

+B,x(t — 7,(t)) + Cy D x(t — 75(8))  (4)
where 0<a <1, x(t) €R™ is the state vector
E,A,B;,B,,C € R™™ are constant matrices and
7,(t), T5(t), 75(t) > 0 are time-varying delays for all
t >t

Theorem 4 The trivial solution of system (3) is
asymptotically stable, if for all ¢t > ¢t,, 7;(t) <d; <
1 (i = 1,2), 1,(t) is a bounded function and there exist
positive and symmetric definite matrices P,Q,R;, R,
such that the following LMI holds:

Mll
Mi;
M

M12
M22
M3;

M13
M23
M33

M= <0, %)

Where

My, = PA+ ATP 4+ Q + AT(R, + mR,)A,
My, = PB + AT (R, + mR,)B,

Mys = PC + AT (R, + mRy)C

My, = BT(Ry + mR;)B — (1 —d)Q,
M,; = BT (R, + mR,)C,

Ms; = C"(Ry + mR;)C — (1 — d3)Ry,

and m is a constant such that |z, (t)| < m.

Proof. Let the Lyapunov-Krasovskii functional is
defined by:
V(t) = ( ,DEH(xT(OPTEx(L))

0
+ f (Ee,DEx(t + 5))" Ry (E, Dfx(t + 5))ds
—T2(t)
t t
+f f (E¢,D&x(s))"R, (Etng‘x(s)) dsdo
t-75(6) /6
t
+f xT(s)Qx(s)ds. (6)
t-11(t)

With the help of Lemma 1, the derivative of I/ (t) along
the trajectories of (3) is obtained as follows:

V() = ( ,DE(xT(®PTEx(D)) + xT(£)Qx(t)
—(1 = (@)X (t — 7.()Qx(t — 74(1))

+(E, DEX(1))T Ry (B, DEX(D))

—(1 = 13()) (B¢, DEx(t — T2(t))) Ry (B, DEx(t

—15(1)))
+7(t) (E, DEX(£))" Ry (Er, Df (1))
t
—(1—73() (EyDEx(5))" Ry (Er, DEx(s))ds
t-72(8)

Using Lemma 2, it is written as

V(t) < 2xT(®)PTE, DEx(t) + xT (£)Qx(¢)

—(1 = d)x"(t — 1, ()Qx(t — 1(t))

+(E¢, DEX(6))" Ry (¢, DEX(2))

—(1 = dy)(Ee, Dfx(t — 7,(t)))" Ry (E D x(t
—12())

+1(Ee, DEx(£))T Ry (e, DEx()). Y

Note that

2xT ()PTE, Dfx(t)
= 2xT(O)PT[Ax(t) + Bx(t — 74(t)) + C;, Dfx(t
— 1,(1)]
=xT()(PTA+ ATP)x(t) + 2xT (t)PTBx(t — 1.(¢))
+2xT(t)PT Cy DEx(t — 7,(t)) 8

and
(E¢yDEx(£))" Ry (E¢, Dfx (1))
+ m(E;, Dfx(£))" Ry (Er, Df x (1))
= [Ax(®) + Bx(t — 7, ())+Ce, DEx(t — 7,(0))] (R,
+mR,)
[Ax(t) + Bx(t — 7, (t)) + C, DEx(t — 7,(1))]
= xT()AT (R, + mR,y)Ax(t) + xT ()AT (R,
+ mR,)Bx(t — 71(t))
+xT (AT (R, + mRz)Cton‘x(t —1,(0))
+xT(t — 7,(t))BT (R, + mR,)Ax(t)
+xT(t — t,(t))BT(R; + mR,)Bx(t — 7,(t))
+x7(t — 7,(£))BT (R; + mR,)C, DEx(t — T,(t))
+(¢o Dfx(t — 1,(£)))"CT (R, + mR,)Ax(t)
+(, DEx(t — 12(0)))"CT(Ry + mRy)Bx(t — 741(¢))
+(, DEx(t — T2(O)TCT(Ry +
mR,)C, DEx(t — 7,(1)). 9)
By substituting the equations (8) and (9) in (7), it is
obtained as

V(t) < xT(t)(PTA+ ATP)x(t)
+2xT(t)PTBx(t — 1,(t))
+2xT(t)PTCtODf‘x(t —1,(0) + xT()Qx(¢)
—(1 = d)x"(t — 1, ()Qx(t — 71(t))
—(1 = dy) (B¢, DEx(t — 12())) Ry (B DEX(t
—72(1)))
+xT (AT (R, + mRy)Ax(t) + xT (t)AT (R,
+ mR,)Bx(t — t,(t))

970



+xT()AT (R, + mR,)C, Dfx(t — T,(t))

+xT(t — 7,(t))BT (R, + mR,)Ax(t)

+xT(t — t,(t))BT(R; + mR,)Bx(t — 7,(t))

+x7(t — 7,(£))BT (R; + mR;)Cy DEx(t — T,(t))

+(eo DEX(t — 72(£)))"CT (Ry + mR,)Ax(t)

+(gDEx(t — 12(0)))"CT (Ry + mR2)Bx(t — 74(t))

+(e, DEx(t — T2(O))TCT(Ry + mR,)C, D x(t
—1,(1).

Thus it is written as

V(t) < ETME
where

&= ("), x"(t = 711(0), (¢, D x(t = T, (DN

(10)

From (5) it is said that V(t) is negative definite, which
means that the trival solution of system (3) is
asymptotically stable.

Theorem 5 The trivial solution of system (3) is
asymptotically stable, if for all t > ty, 7;(t) < d; <
1 (i =1,2), 1,(t) bounded function and there exists
positive and symmetric definite matrices P,Q4,Q,, R
such that the following LMI satisfies:

Niy Nip Nig
N=|N{; Ny Ny |<0,

N1T3 NZTS N33

(11)
where

Ny, = ETPA + ATPE + Q, + Q, + mATRA,
N,, = ETPB + mATRB,

N3 = —ATPC,
Ny, = mBT"RB — (1 —d)Qy,
N,; = —BTPC,

N33 = —(1—-d3)0Q,,

and m is a constant such that |z, (t)| < m.

Proof. Let the Lyapunov-Krasovskii functional is
defined by:

V(&) = ;,DEH((Ex() — Cx(t — 72(0))"PT (Ex(D)

= Cx(t — 12(1))))
t t
+f xT(s)Qx(s)ds +f xT(s)Q,x(s)ds
t—14(t) t—12(t)

e Jo (DS (Ex(s) = Cx(s =
T2()))TR (e, D (Ex () = Cx(s = 7(s))))dsdo. (12)

With the help of Lemma 1, the derivative of V (t) along
the trajectories of (3) is obtained as follows:
V() = ¢ DE((Ex(t) — Cx(t — 72(6)))" P(Ex(t)

= Cx(t = 12(1))))

+xT(®)Qx(t) — (1 — 1 (0)xT (t — 71(£)) Q1 x(t
—11(1))

+xT(£)Qx(t) — (1 — 1())xT (t — T,(£)) Q2x(t
—1,(1))

+7,(t) (¢, DFF (Ex(t) — Cx(t — 72(£)))) R (¢, D (Ex(t)
—Cx(t—1; (t)g))
~(1=1(0) fi_, oy GeoDE(Ex(s) —

Cx(s = 12(s)))"R(¢, D& (Ex(s) — Cx(s — 12(5))))ds

Using Lemma 2 it is written as

V(t) < 2(Ex(t) — Cx(t — 15(t)))" P, DE(Ex(t)
— Cx(t —12(1)))
+xT(0)Qux(t) — (1 — d)x" (t — 71(£)Q1x(t — 7,(t))
+xT(£)Qxx(t) — (1 — dp)x" (t — 7,(£))Qxx(t
—1,(1))
+m(e, DF (Ex(t) — Cx(t — 12(t))))"R(¢, D& (Ex(t) —
Cx(t — 72(1)))). (13)

Note that

2(Ex(t) — Cx(t — 12(1)))" P D (Ex(t) — Cx(t
—12(t)))

= 2(Ex(t) — Cx(t — 1,(t))TP(Ax(t) + Bx(t
—17,(¢)))

=xT(t)(ETPA + ATPE)x(t) — 2xT(t
—1,(t))CTPAx(t)

+2xT()ETPBx(t — t,(t)) — 2xT(t —

7,(t))CTPBx(t — 7,(t)) (14)

and

m(e, Dff (Ex(t) — Cx(t — 72(£))))"R(;, D (Ex (L)
= Cx(t — 15(1))))
= m[Ax(t) + Bx(t — 71 (£))]"R[Ax(t) + Bx(t
- 7(1)]
= mxT (t)ATRAx(t) + mxT (t)ATRBx(t — t,(t))
+ mxT(t — 7,(t))BTRAx(t)
+mxT (t — 7,(t))BTRBx(t — 7,(t)) (15)
By substituting the equations (14) and (9) in (13), it is
obtained as

V(t) < xT(t)(ETPA + ATPE)x(t)
=2xT(t — 7,(£))CTPAx(t)
+2xT(OETPBx(t — 7,(D))
=2xT(t — 1,(£))CTPBx(t — 7,(t))
+xT () Qrx(t) — (1 — dx" (t — 71(£)) Qx(t — 74(1))
+xT () Q2x(t) — (1 — dp)x" (t — 72 (£)) Qzx(t
— 12(t))
+mxT (t)ATRAx(t) + mxT (©)ATRBx(t — 7,(t))
+ mxT(t — 7,(t))BTRAx(t)
+mxT(t — 7,(£))BTRBx(t — 7,(1)).

Thus it is written as

V(t) < ETME (16)
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where

§=(T(@®),x"(t — 1 (), x"(t — ()"
From (11) it is said that V(t) is negative definite, which
means that the trival solution of system (3) is
asymptotically stable.

Theorem 6 The trivial solution of system (4) is
asymptotically stable, if for all ¢ > t,, 7{(t) <d; <
1 (i = 1,2,3), 75(t) bounded function and there exists
positive and symmetric definite matrices P,Q,R;, R,
such that the following LMI satisfies:

Mll
M1
Mis
Mi,

My,
My,
M
M3,

<0, (17)

where

M;; = PA+ ATP 4+ 2Q + AT(R; + mR,)A,

My, = PB, + AT(R, + mR,)B,,

Mys = PB, + AT(R, + mR,)B,,

My, = PC + AT(R, + mR,)C,

My, = B (Ry + mR;)B; — (1 — d1)Q,

M3 = B{ (R + mR;)B,

M, = BI (R; + mR,)C,

M3 = B] (R; + mR;)B, — (1 - dy)Q,

M, = Bj (R + mR,)C,

Mys = CT(Ry + mR)C — (1 —d3)Ry,
and m is a constant such that |75 (t)| < m.

Proof. Let the Lyapunov-Krasovskii functional is
defined by:

V(t) = . DEH(xT(O)PTEx(D)) +

ft xT(s)Qx(s)ds + ft xT(s)Qx(s)ds
t-4(8) t

—=72(t)

0
+ f (Ee, DEx(t + )Ry (E¢, Dfx(t + 5))ds
-73(t)

+ 0o Jy (BeyDEX($))R, (B, DEx(s)) dsde. (18)

With the help of Lemma 1, the derivative of V (t) along
the trajectories of (4) is obtained as follows:

V(6) = ( ,DE(xT(®PTEx(D)) + xT(£)Qx(¢)

—(1 =7 (O)x" (t — 71 ()Qx(t — 7,(t))

+xT(©)Qx(t) — (1 — 15(0)x" (t — 72(£)Qx(t
—1,(1))

+(E, DEX())" Ry (E, DEx(1))

—(1 = 73()) (B¢, DEx(t — T3(t))) Ry (B, DEX(t
—13(0)))

+73(t) (E¢, Dfx(£))" Ry (E¢y DEX (1))

A=) [ e )R, (B, DEx() s

t-13(t)

Using Lemma 2 it is written as

V(t) < 2xT()PTE, DEx(t) + 2xT (£)Qx(¢)

—(1 = d)x" (t — 7,()Qx(t — 71(t))

—(1 = d)x" (t — 1) Qx(t — 7,(1))

+(Ee, DEx(£))" Ry (E¢, DEx (1))

—(1 = d3)(E, DEx(t — t3(t)))" Ry (B¢, DEx(t
—73(8)))

+m(E, Dfx(t))" Ry (Ee, DEX(L))

Note that

(19)

2xT (t)PTE, Dfx(t)

= 2xT(£)PT[Ax(t) + Byx(t — T1(t)) + Box(t — 75(t))
+ Ce, DEx(t — 13(1))]

=xT()(PTA + ATP)x(t) + 2xT (t)PTByx(t — 7,(t))
+2xT(t)PTB,yx(t — 1,(t)) +

2xT(t)PTCt0D;"x(t —13(t)) (20)

and

(E¢, DEx (1)) Ry (Ee, DEX(L))
+ m(E, Dfx(t))" Ry (E¢, DEx(t))
= [Ax(t) + Byx(t — 71 (t)) + Box(t — 15(t))
+ C, DEx(t — 73(1))] (R, + mRy)
[Ax(t) + Byx(t — 71()) + Box(t — 72(1))
+ Co,DEx(t — 13(D)]
= xT()AT (R, + mR,y)Ax(t) + xT ()AT (R,
+ mRy)Bx(t — t.(t))
+xT()AT (R, + mR,)B,x(t — 1,(t)) + xT (t)AT (R,
+ mRy)Cy, D x(t — 73(1))
+xT(t — 7,(t))BT (R, + mR,)Ax(t) + xT (¢t
—1,(8))B] (R, + mRy)Byx(t
—74(t))
+xT(t — 7.(£))B] (R, + MR,)B,x(t — 7,(1)))
+x7(t — 7,())B (R; + mR,)C, DEx(t — 75(t))
+xT(t — 1,(t))BI (R, + mR,)Ax(t) + xT (¢t
—17,(t))B] (R; + mR;)B; x(t
—74(1))
+x7(t — 72(£))B] (Ry + mRy)B,x(t — 7,(t))
+xT(t = 12(8))B; (Ry + mRy)Ce DEx(t — 73(1))
+(¢o Dfx(t — 13(t)))"CT (R, + mR,)Ax(t)
+(eDEx(t — 73(0)))"CT(Ry + mRy)Byx(t — 74(t))
+(eo Dfx(t — 13(t)))"CT (R, + mR,)B,x(t — 7,(t))
+(, DEx(t — 13(0)))TCT(Ry + mR,)C, Dfx(t —

73(1)). (21)

By substituting the equations (20) and (21) in (19), it is
obtained as

V(t) < xT(t)(PTA+ ATP)x(t) + 2xT (t)PTB,x(t
—17,(t)) + 2xT(£)PTB,x(t — T,(t))

972



+2xT ()P C,, DEX(t — 13(8)) + 2xT ()Qx(t) — (1
—d)x"(t —7.(£)Qx(t — 7,(1))
—(1 = d)x" (t — 7,(£)Qx(t — 72(t))
—(1 = d3)(E;, Dfx(t — 13(t)))" Ry (E D x(t
—73(1)))
+xT()AT (R, + mRy)Ax(t) + xT () AT (R,
+ mRy)B1x(t — t.(t))
+xT(£)AT (R, + mR,)B,x(t — 1,(t)) + xT (£)AT (R,
+ mR,)Ce D x(t — T5(t))
+xT(t —1,(t))BT (R, + mR,)Ax(t) + xT(t
= 11(t))BT (Ry + mR,) B x(t
—7,(1))
+x7(t — 1,(0))B] (Ry + mRy)B,x(t — 7,(t)))
+xT(t — 71())B] (Ry + mR,)Cy DEx(t — T5(t))
+xT(t — 7,(t))BI (R, + mRy)Ax(t) + xT(t
—17,(t))B3 (R + mR;)B; x(t
—71(1))
+x7(t = 12(£))B; (R, + mRy)Byx(t — 75(1))
+xT(t = 72(t))B] (R, + mRy)C DEX(t — T5(1))
+(e, Dffx(t — 13(£)))" CT (Ry + mRy) Ax(t)
+(ey D x(t — 73(£)))"CT (Ry + mR2)Byx(t — 74(t))
+(¢o Dfx(t — 13(£)))TCT (Ry + mR,)Box(t — 7,(1))
+(e, DEx(t — T3(D))TCT(Ry + mR,)C, D x(t
- 73(1)).
Thus it is written as
V(t) < ETME

(22)
where

&= (xT(t),xT(t - Tl(t)),xT(t -1, (t)), (tODf‘x(t
— T (O)N"
From (17) it is said that VV(t) is negative definite, which
means that the trival solution of system (4) is
asymptotically stable.

Theorem 7 The trivial solution of system (23) is
asymptotically stable, if for all t > ty, 7;(t) < d; <
1 (i =1,2), t53(t) bounded function and there exists
positive and symmetric definite matrices P,Q;,Q,, R
such that the following LMI satisfies:

Ny Niz Ny
N=[N; Ny Np|<O0

N1T3 NérB N33

(23)

where

Ny, = ETPA + ATPE + Q, + Q, + mATRA,
N,, = ETPB + mA"RB,

N13 = _ATPC,
Ny, =mB"RB — (1 —d,)Qy,
N23 = _BTPC,

N33 = —(1—-d;)Q,,

and m is a constant such that |z5(t)| < m.

Proof. Let the Lyapunov-Krasovskii functional is
defined by:

V(t) = ¢, DFH(Ex(t) — Cx(t — 73(0))"PT (Ex(D)
— Cx(t = 7:(0))

+J xT(s)Q,x(s)ds +] xT(s)Q,x(s)ds
t-71(t) t

; —T2(t)
+f xT(s)Qsx(s)ds
t-73(t) . .
+ e Jo (oDEEX() = Cx(s =
73(s))))"R(¢, D (Ex(s) — Cx(s — T5(s))))dsdb.
With the help of Lemma 1, the derivative of V (t) along
the trajectories of (4) is obtained as follows:
V(t) = 1, DF (Ex(t) — Cx(t — 73(£)))"P(Ex(t)

= Cx(t —13(1))))
+xT(0)Qx(t) — (1 — T1())xT (t — 7, (£)) Q1 x(t

—71(1))

+xT () Qzx(t) — (1 — T5(0)x" (t — 72()) Q2 x(t
—12(8))

+xT()Qzx(t) — (1 — T3(0)x" (t — 73()) Q2 x(t
—13(8))

+73(6) (¢, DE(BX () = Cx(t = T3(6)))) R (¢, DE(Ex(2)
— Cx(t = 7(t))))
—(1 =750 f_,, ) o DEER(S) =
Cx(s = T3())))R(;, DE (Ex(s) = Cx(s — T3(5))))ds

Using Lemma 2 it is written as

V(t) < 2(Ex(t) — Cx(t — 13(t)))" P, DE(Ex(t)
— Cx(t —13(1)))

+xT(0)Qux(t) — (1 — d)x" (t — 71(£)Q:x(t — 74(t))

+xT(£)Qx (1) — (1 — dp)x" (t — 7,(t))Qox(t
—75(8))

+xT(0)Qsx(t) — (1 — d3)x" (t — 73(t))Q3x(t
—15(8))

+m(e, D (Ex(t) — Cx(t — 73(t))))"R(;, Df (Ex(t) —

Cx(t — 73(t))). (24)
Note that
2(Ex(t) — Cx(t — 13(t))) P, Df (Ex(t) — Cx(t
= 13(1)))
= 2(Ex(t) — Cx(t — t3(t)))TP(Ax(t) + Byx(t
= 11(1)) + Box(t — 7,(1)))
=xT(t)(ETPA + ATPE)x(t) — 2xT(t
—13(t))CTPAx(t)
+2xT(6)ETPByx(t — T,(t)) + 2xT (t)ETPB,x(t
—72(t))
—2xT(t — 13(£))CTPBx(t — 1,(t)) — 2xT(t —
73(t))CTPByx(t — T5(t)) (25)

and
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m(e, D (Ex(t) — Cx(t — 13(£))))" R(¢, DF (Ex(t)

— Cx(t — 73(1))))
= m[Ax(t) + Byx(t — 1.(t)) + Byx(t

— T (EODI"R[Ax(t) + Byx(t — 74(1))

+ Byx(t — 15(t))]
=mxT(t)ATRAx(t) + mxT (£)ATRB;x(t — 7,(t))

+ mxT()ATRB,x(t — 1,(t))
+mxT(t — 7, (£))BFRAx(t) + mxT(t

— 171(t))BI RByx(t — 74(t))
+mxT(t — 7, (6))BTRB,x(t — 1,(t)) + mxT (¢

— Tz(t))B%RAx(t)
+mxT(t — 7,(£))BIRBx(t — 7,(t)) + mxT (t —
7,())BI RBx(t — 7,(1)). (26)
By substituting the equations (25) and (26) in (24), it is
obtained as

V(t) < xT(t)(ETPA + ATPE)x(t)
—2xT(t — 15(£))CTPAx(t)
+2xT()ETPByx(t — 7,(t))
+2xT()ETPB,x(t — 1,(t))
—=2xT(t — 13(t))CTPB x(t — 7,(t)) — 2xT (¢t
— 13(t))CTPByx(t — 72(1))
+xT(©)Qux(t) — (1 — d)x" (t — 71(8))Qx(t — 74(t))
+xT(0)Qzx(t) — (1 — dp)x" (t — (1)) Q2x(t
—72(1))
+xT(©)Qsx(t) — (1 — d3)x"(t — 73(1))Qax(t
—13(1))
+mxT (£)ATRAx(t) + mxT (t)ATRB,x(t — 7,(t))
+ mxT()ATRB,x(t — 1,(t))
+mxT (t — 7,(t))BT RAx(t) + mxT (t
— 71(£)) BT RByx(t — 74(t))
+mxT (t — 7,())BT RB,x(t — 7,(t)) + mxT(t
— 7,(t))B; RAx(t)
+mxT (t — 7,(£))BIRB x(t — 7,(t)) + mxT (¢t
— 7,(t)) B3 RB,x(t — 7,(1))

Thus, it is written as
V(t) < &TM¢E

(27)
Where

&= ("), x"(t — (), x"(t — T2(8)), x" (¢
— (0"
From (23) it is said that V (t) is negative definite, which
means that the trival solution of system (4) is
asymptotically stable.
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