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 Abstract 

Article Info 
Soil standing may be studied indirectly using remote sensing through an assessment 
of state of the plants growing on it. The ability to evaluate the physiological state of 
plants using the hyperspectral survey data also provides a tool to characterize 
vegetation cover and individual samples of woody plants. In the present work the 
hyperspectral imaging was applied to identify the species of the woody plants 
evaluating the differences in their physiological state. Samples of Quercus macrocarpa 
Michx., Q. robur L. and Q. rubra L. were studied using Cubert UHD-185 hyperspectral 
camera over five periods with an interval of 7-10 days. In total, 80 vegetation indices 
(VIs) were calculated. Sample sets of values of VIs were analyzed using analysis of 
variance (ANOVA), principal component analysis (PCA), decision tree (DT), random 
forest (RF) methods. It was shown using the ANOVA, that the following VIs are the 
most dependent on the species affiliation of the samples: Carter2, Carter3, Carter4, 
CI, CI2, CRI4, Datt, Datt2, GMI2, Maccioni, mSR2, MTCI, NDVI2, OSAVI2, PRI, REP_Li, 
SR1, SR2, SR6, Vogelmann, Vogelmann2, Vogelmann4. VIs that are effective for the 
separation of oak species, were also revealed using the DT method – these are Boochs, 
Boochs2, CARI, CRI1, CRI3, D1, D2, Datt, Datt3; Datt4, Datt5, DD, DDn, EGFN, Gitelson, 
MCARI2, MTCI, MTVI, NDVI3, PRI, PSND, PSRI, RDVI, REP_Li, SPVI, SR4, Vogelmann, 
Vogelmann2, Vogelmann3. PCA and RF methods reliably differentiated Q. rubra from 
Q. robur and Q. macrocarpa. Q. rubra, unlike other species, was under stress from the 
impact of soil pH against the background of drought. This was manifested in leaf 
chlorosis. Influence of the environmental stress factors on the reliability and 
efficiency of species identification was demonstrated. Q. robur and Q. 
macrocarpawere were poorly separated by PCA and RF methods all over the five 
periods of the experiment. 

Keywords: Hyperspectral imaging, vegetation indices, Quercus macrocarpa, Quercus 
robur, Quercus rubra, environmental stress, drought stress, reflection spectra. 

© 2023 Federation of Eurasian Soil Science Societies. All rights reserved 

Received : 15.05.2022 
Accepted : 01.10.2022 
Available online : 03.10.2022 
 

Author(s)   

P.Dmitriev   
B.Kozlovsky   
A.Dmitrieva   
V.Lysenko   
V.Chokheli   
T.Minkina   
S.Mandzhieva   
S.Sushkova *   
T.Varduni   
   

* Corresponding author 

Introduction 
Remote sensing of Earth's surface allows to assess the state of vegetation and its species composition. The 
number of works devoted to establishing the species affiliation of woody plant samples using remote sensing 
methods has been steadily growing in recent years (Dainelli et al., 2021; Fassnachtet al., 2016).Various 
technologies and types of sensors are used to identify tree species, with great interest being shown in the 
possibilities of hyperspectral imaging (Cao et al., 2018; Tuominen et al., 2018; Saarinen et al., 2018; Nezami et 
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al., 2020; Miyoshi et al., 2020a,b; Sothe et al., 2020). However, many questions regarding the reliability of tree 
species identification by remote sensing remain open. 

In addition, the remote monitoring of soil, as a component of biogeocenoses, is a more complicated and 
difficult since it is hidden by vegetation in many areas. However, the assessment of the soil standing can be 
achieved indirectly through the state of plants growing on it. The values of vegetation indices (VIs) and 
spectral channels data primarily depend on the physiological state of plants (Oppelt and Mauser 2004; Ronay 
et al., 2021). Therefore, it is of great interest to study the spectral characteristics of a group of the related plant 
species having different responses to the specific soil and climatic conditions, varying from optimum to stress. 
Particularly, oak species Quercus macrocarpa Michx., Q. robur L. and Q. rubra L. are of interest considering 
their wide distribution and occurrence in the central and southern regions of Russia (Kozlovsky et al., 2009). 

In the Rostov region, oak forests from Q. robur L. are considered the most valuable formations of ravine and 
floodplain forests (Zozulin, 1992). Q. robur is the leading species in protective forest belts and plantations of 
settlements in the Rostov region of Russia (Kozlovsky et al., 2009). Q. macrocarpa Michx. – the most promising 
species from the genus Quercus for the regional culture according to the results of the introduction test. Q. 
rubra L. in its biological properties does not correspond to the climatic and soil conditions of the steppe zone 
- it does not tolerate drought well and needs the acidic soils (Kozlovsky et al., 2016). 

We propose that hyperspectral imaging can distinguish stressed Q. rubra from Q. robur and Q. macrocarpa, 
which grow under optimal conditions, but having differences in their physiological state. We evaluated the 
possibilities of using hyperspectral survey data (VIs values) to identify woody plant samples based on 
differences in their physiological state using the species of the genus Quercus as a test plants. Influence of soil 
pH and drought, as environmental stress factors, were studied in regard of such an identification. Performance 
of the studied VIs was discussed in the context of the various spectral ranges on the basis of which they are 
calculated. 

Material and Methods 
The research was performed in the Botanic Garden of the Southern Federal University (SFedU), Rostov-on-
Don, Russia (Figure 1). The climate of the Rostov region is temperate continental, arid, average annual rainfall 
– 548 mm, and most of the precipitation falls in the frost-free period. The summer is hot, the average 
temperature of July month is + 22 ... + 23 ºС., maximum +40 ºС. Winter is moderately mild, the average air 
temperature in January is -5 ºС, the average absolute temperature minimum is -20 ...- 25 ºС, the absolute 
minimum is -32 ºС. The growing season lasts 216 days (from April 1 to November 4), the frost-free period is 
258 days. 

 
Figure 1. Research region 

The objects of study were Q. macrocarpa, Q. robur and Q. rubra. The ecological and biological properties of 
these species under local culture conditions are given below (Kozlovsky et al., 2016). 

Q. robur is a species of native flora. In the regional culture, it reaches a height of 26 m. It grows relatively fast. 
The plant is winter-hardy and drought-resistant, leaves can be strongly affected by insects and fungal diseases. 
It bears fruit abundantly and regularly. The duration of ontogeny is on average 90 years. Q. robur is widely 
used in regional culture. 
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Q. macrocarpa is a species of North American flora. In the Botanical Garden of Southern Federal University it 
reaches a height of 26 m. In terms of ecological and biological properties, it is not inferior to the species of the 
local flora, Q. robur, while it is resistant to diseases and pests. Fruiting occurs with a frequency of 3-4 years. 
The duration of ontogeny is on average 90 years. It is a promising species for the creation of protective forest 
belts, artificial forests, and landscaping of settlements. 

Q. rubra is a species of North American flora. In the Botanical Garden it reaches a height of 15 m, growing 
slowly. This species is highly winter-hardy, but weakly drought-resistant – against the background of drought 
the growth processes are stopped, and the plant needs watering at the initial stages of ontogenesis. The tree 
is disease and pest resistant. It rarely bears fruit and grows poorly on the neutral and alkaline chernozems 
needing acidic soils. This species may often suffer from leaf chlorosis, especially during the drought period. 
The duration of ontogeny is about 60 years. 

All the studied oak seedlings were grown under the same soil and solar illumination conditions and according 
to one agricultural technique at the introduction nursery of the Botanical Garden. Their landings were 
oriented from north to south. At the time of the experiment, all seedlings of Q. macrocarpa, Q. robur, Q. rubra 
were at the same stage of ontogeny (virginile stage). 

For the experiment, five specimens of each species of oak were selected from the plantations. The crown 
section of each specimen was filmed 3 to 5 times. 

Hyperspectral images were obtained using a Cubert UHD-185 video camera in accordance with Aasen et al. 
(2015), Bareth et al. (2015). The shooting was carried out from 12 to 14 hours in sunny and cloudless weather. 
For shooting, the most sunlit part of the crown of the plant was chosen. The camera was located on the 
southeast side of the object at 90 cm. The light reflected from leaves was recorded in the range of 450-950 nm. 
Each image was represented as a single black-and-white image, 1000 × 1000 pixels in size. All the studied 125 
hyperspectral images, 50 × 50 pixels in size, had the square resolution up to 35 mm2. 

The experiment was repeated five times in 2021: Aug 22, Sept 05, Sept 13, Sept 20, and Sept 30.  

60 to 100 spectral profiles were randomly selected from each hyperspectral image. The number of spectral 
profiles were from 1500 to 2500 spectral profiles per one variant of the experiment. 

A Savitsky-Golay filter (length 12 nm) was used as a preprocessing step to reduce the measurement error and 
remove artifacts in the spectral data. 

For each variant of the experiment, 80 VIs were calculated (Dmitriev et al., 2022a,b). 

Sample sets of VIs values were analyzed using analysis of variance (ANOVA), principal component analysis 
(PCA), decision tree (DT), random forest (RF) methods. The data was processed in the environment for 
statistical calculations R (R Core Team) using the «hsdar» package (Lehnert et al., 2019). 

Results and Discussion 
ANOVA was used to determine the contribution of experimentally controlled factors («species», «sample», 
«snapshot») to the vegetation index (VI) value. The strength of the influence of factors (the ratio between 
deviation of the factor and the total deviation) of 80 VIs is shown in Figure 2. VI should be considered suitable 
for identification of oak species, if the value of the deviation of the factor «species» significantly exceeds the 
values of the deviation of «sample» and «snapshot», with a low value of the deviation of random factors (Table 
1 and Supplementary Table 1). This means that the value of the index depends more on species characteristics 
than on other factors. It should be noted that the results of the analysis of variance vary depending on the 
timing of the survey. For all survey periods, effective VIs were Carter2, Carter3, Carter4, CI, CI2, CRI4, Datt, 
Datt2, GMI2, Maccioni, mSR2, MTCI, NDVI2, OSAVI2, PRI, REP_Li, SR1, SR2, SR6, Vogelmann, Vogelmann2, 

Vogelmann4. As a positive fact, it should be noted the low value of the deviation of the «snapshot» 
factor for most VIs, as far as this value includes the operation errors of the instrument and errors of 
the operator’s work when selecting spectral profiles from the snapshot. 

Table 1. Results of a three-way ANOVA analysis of the statistical complex «species-sample-snapshot» for the Maccioni 
value 

ANOVA Df SumSq MeanSq F value Pr(>F) 
Species 2 51.044 25.522 12211.401 <2e-16* 
Sample 12 10.397 0.866 414.539 <2e-16* 
Snapshot 37 0.527 0.014 6.812 <2e-16* 
Intragroupvariance 3875 8.099 0.002   

 
Note: * significancelevel< 0.001 
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Figure 2. Strength of influence of the factors «species», «sample», «snapshot» on the VIs values of Acer species, Aug 22) 
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Thus, a set of VIs has been selected to be suitable for the identification of plant species in accordance with the 
aims of the present work. 

An important criterion for the objectivity of the data obtained is the reproducibility of the results of their 
processing over a time scale. Figure 3 presents the results of data analysis carried out by the PCA method for 
the five studied time periods. Projections of the values of 80 VIs on the main components showed that the 
location of oak species coincides in all periods (in some cases, the images are inverted mirrorwise about the 
first or second component). Projection of Q. rubra data is the most isolated, may be explained by its ecological 
and biological features (Kozlovsky et al., 2016). 

 
Figure 3. PCA of the 80 VIs values for Q. macrocarpa (1), Q. robur (2), Q. rubra (3) at different survey times. Dates of the 

experiments: a – Aug 22, b – Sept 05, c – Sept 13, d – Sept 20, e – Sept 30 

The proportion of dispersion of the first and second main components varies from 70.4 to 71.5%, the number 
of significant components (according to the Kaiser criterion) is from 6 to 7 (Table 2). 

Factor loads (by analogy with the value of the correlation coefficient) can be considered very weak in the range 
from 0 to 0.3, weak – from 0.3 to 0.5, medium - from 0.5 to 0.7 and high – from 0.7 to 0.9. VIs Factor loads on 
the main component are very weak and do not exceed 0.150. They change little depending on the VIs (Aug 22 
– Table 3, for other dates – Supplementary Table 2).  

Due to the large number of the statisticaly significant components and low factor loads, the PCA results cannot 
be considered to be satisfactory for the experiment.This problem can be solved by reducing the number of VIs, 
and by selecting indices that have the largest dispersion by oak species.In order to avoid a subjective approach 
when choosing such VIs, the DT method was used (Figure 4-8). 

The decision tree method divided samples of oak species by VI values in five levels. The division of oak samples 
into clades is not witout alternative. At the same time, most of the Q. rubra samples are grouped in one of the 
two clusters of the higher hierarchy, while Q. macrocarpa and Q. robur are grouped mainly in the alternative 
cluster. As a result, the DT method divided the oak samples at different survey times according to the following 
indices: 

 Aug 22 – Boochs2, Carter5, CRI3, Datt, Datt5, DPI, MCARI2, MTVI, PRI, SR8, TGI; 
 Sept 05 – Boochs2, CRI3, Datt4, Maccioni, MTCI, NDVI3, PSRI, RDVI, RDVI, REP_Li, SPVI, TCARI2; 
 Sept 13 – Boochs2, CRI3, CRI4, Datt5, DD, DWSI4, Gitelson, MCARI, PRI; 
 Sept 20 – Boochs, Carter3, D1, Datt, Datt3, Datt5, Gitelson2, MCARI2, Sum_Dr1, Vogelmann; 
 Sept 30 – Boochs2, Carter6, Datt5, NDVI3, PRI_norm, SPVI, SR5, Sum_Dr1, TCARI2, Vogelmann2. 
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Table 2. Dispersion values calculated for the main components of the projection of 80 VIs for Q. robur, Q. macrocarpa,       
Q. rubra 
Experimentdates Aug 22 Sept 05 Sept 13 Sept 20 Sept 30 
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Comp.1 6.595 0.544 0.544 6.704 0.562 0.562 6.503 0.529 0.529 6.954 0.605 0.605 5.482 0.376 0.376 

Comp.2 3.571 0.160 0.704 3.501 0.153 0.715 3.835 0.184 0.713 3.302 0.136 0.741 4.466 0.249 0.625 

Comp.3 3.083 0.119 0.823 2.895 0.105 0.820 3.392 0.144 0.856 2.886 0.104 0.845 2.972 0.110 0.736 

Comp.4 1.650 0.034 0.857 2.166 0.059 0.879 1.549 0.030 0.886 1.672 0.035 0.880 2.400 0.072 0.808 

Comp.5 1.444 0.026 0.883 1.381 0.024 0.902 1.229 0.019 0.905 1.339 0.022 0.902 2.053 0.053 0.860 

Comp.6 1.256 0.020 0.903 1.110 0.015 0.918 1.080 0.015 0.920 1.176 0.017 0.920 1.515 0.029 0.889 

Comp.7 1.058 0.014 0.917 1.000 0.012 0.930 1.000 0.013 0.932 1.000 0.013 0.932 1.049 0.014 0.903 

Comp.8 0.999 0.012 0.929    0.920 0.011 0.943    1.011 0.013 0.916 

Comp.9             1.000 0.012 0.928 

 

Table 3. VI factor loads on significant components for Q. robur, Q. macrocarpa, Q. rubra (Aug 22) 

Factors Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 
Boochs  0.239 0.133     0.209 
Boochs2 0.101 0.189   0.1    

CARI -0.131  0.112 0.152 -0.118    

Carter2 -0.146        

Carter3 -0.137    -0.183    

Carter4 -0.15        

Carter5  -0.101 0.21 0.106    -0.106 
Carter6 -0.125 0.133   -0.174 -0.111   

CI 0.121   -0.163    0.194 
CI2 0.148    -0.111    

ClAInt -0.113 0.168  0.11 -0.118    

CRI1  -0.194 0.176      

CRI2  -0.206 0.105     0.181 
CRI3 -0.144   -0.145    -0.112 
CRI4 -0.147    0.115    

D1 0.116    -0.241  0.184  

D2      -0.102 0.168 -0.96 
Datt 0.145     0.112   

Datt2 0.144    -0.147    

Datt3      -0.311 -0.609 -0.123 
Datt4 0.106 -0.114 -0.16      

Datt5   -0.254 0.169 0.106 0.132  0.107 
Datt6 0.115 -0.124   -0.188   0.175 
DD 0.145        

DDn  -0.211       

DPI     0.265 -0.302 -0.302 -0.354 
DWSI4   0.227 -0.382     

EGFN 0.127   0.17   -0.123  

EGFR 0.12   0.189   -0.147  

EVI       0.114 0.987 
GI   0.255 -0.321 -0.112    

Gitelson 0.121 -0.136   -0.117    

Gitelson2  0.172    0.324  -0.557 
GMI1 0.144   0.138    0.108 
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Table 3. Continue 
Factors Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 
GMI2 0.148    -0.114    

Green NDVI 0.145     0.114   

Maccioni 0.148        

MCARI -0.124  0.143 0.151 -0.112    

MCARI2 0.131 0.126      -0.147 
MPRI  0.176    -0.152   

MSAVI 0.104  0.218      

mSR2 0.148    -0.103    

MTCI 0.145    -0.106   -0.101 
MTVI  0.256  0.109 -0.12    

NDVI 0.137  0.117      

NDVI2 0.15        

NDVI3   -0.187 0.404     

OSAVI 0.105  0.219      

OSAVI2 0.15        

PARS 0.115  0.171 0.138     

PRI 0.116    0.201 -0.3 0.305  

PRI_norm -0.117    -0.15 0.319 -0.316  

PRI*CI2 0.106     -0.393 0.307 0.135 
PSRI -0.128   0.203 -0.129   -0.113 
PSSR 0.129  0.12     0.123 
PSND  -0.101 0.237 0.185 -0.13    

RDVI  0.232 0.131 0.132     

REP_Li 0.142    0.147 0.103   

SAVI 0.105  0.22      

SPVI  0.248  0.141     

SR 0.138  0.109      

SR1 0.148    -0.114    

SR2 0.147    -0.119    

SR3 0.144   0.138    0.108 
SR4  -0.1 0.247      

SR5   -0.277     -0.113 
SR6 0.148    -0.113    

SR8 0.102  -0.2  0.112  0.106  

Sum_Dr1  0.255  0.139 -0.126    

Sum_Dr2  0.253       

TCARI  0.175 -0.134 -0.131 -0.171  -0.104 0.153 
TCARI/OSAVI  0.161 -0.146 -0.121 -0.164   0.163 
TCARI2  0.219  -0.107 0.237 0.126   

TCARI2/OSAVI2  0.187   0.118   0.187 
TGI -0.134    -0.215 -0.129   

TVI  0.257 0.103 0.102     

Vogelmann 0.145    -0.135    

Vogelmann2 -0.133    0.207   0.129 
Vogelmann3 0.13     -0.149 -0.103 -0.156 
Vogelmann4 -0.133    0.212   0.128 

It should be noted that the VIs that are significant for clustering coincide at many times (for example, Boochs2, 
Datt5, CRI3) or are derived from the same index (for example, Carter3, Carter5, Carter6 or CRI3, CRI4, 
Vogelmann, Vogelmann2) or are close in the used spectral channels. 

Visualization of the results of species differentiation using PCA according to the value of VIs selected using DT 
is shown in Figure 9. The dispersion values of the first two principal components in all survey periods are from 
74 to 80% (Table 4). Factor loads of VI on the main components are on average doubled (in some cases they 
exceeded 0.4), but for most of the VI they remained low (Table 5). 

In more detail, the separation of oak species by PCA can be demonstrated by their samples. Projection of VI 
values Boochs2, Carter5, CRI3, Datt, Datt5, DPI, MCARI2, MTVI, PRI, SR8, TGI by main components for samples 
of oak species on the first survey date is shown in Figure 10, for other dates in Supplementary Table 3. 
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Figure 8. Decision tree of the 80 VIs values for Q. macrocarpa (1), Q. robur (2), Q. rubra (3) (Sept 30). Numerical 

designation, bottom digits: the first digit indicates the species; the second is the sample of the species. 

 
Figure 9. PCA of the VIs values selected by the DT method, Q. macrocarpa (1), Q. robur (2), Q. rubra (3) VIs at different 

survey times. Experiment dates: a – Aug 22, b – Sept 05, c – Sept 13, d – Sept 20, e – Sept 30. 

Table 4. Dispersions of the principal components of the projection of the values selected by the DT method, VI for Q. robur, 
Q. macrocarpa, Q. rubra 

Experimentdates Aug 22 Sept 05 Sept 13 Sept 20 Sept 30 

Statistics 
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Comp.1 2.510 0.573 0.573 2.283 0.434 0.434 2.247 0.561 0.561 2.365 0.559 0.559 2.130 0.454 0.454 

Comp.2 1.345 0.165 0.738 2.071 0.357 0.792 1.484 0.245 0.806 1.342 0.180 0.740 1.696 0.288 0.742 

Comp.3 1.087 0.108 0.845 1.221 0.124 0.916 1.005 0.112 0.918 1.118 0.125 0.865 1.069 0.114 0.856 

Comp.4 0.872 0.069 0.914 0.775 0.050 0.966 0.571 0.036 0.955 0.766 0.059 0.923 0.893 0.080 0.936 
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Table 5. Factor loads selected by the DT method, VI for significant components for Q. robur, Q. macrocarpa, Q. rubra 

Factors Comp.1 Comp.2 Comp.3 Comp.4 
Aug 22 

Boochs2 0.296 0.465   

Carter5 -0.318  -0.472  

CRI3 -0.343  0.280 -0.251 
Datt 0.372   0.253 
Datt5 0.269 -0.276 0.489 -0.213 
DPI 0.188  -0.401 -0.855 
MCARI2 0.351 0.293  0.146 
MTVI  0.687 0.303  

PRI 0.312 0.140 -0.293  

SR8 0.335 -0.214 0.243 -0.188 
TGI -0.339 0.256 0.241 -0.170 

Sept 05 
RDVI  0.467 0.141 0.211 
Boochs2 -0.267 0.363  -0.170 
CRI3 0.357  -0.340 -0.403 
Datt4 -0.304 -0.275 0.275 -0.151 
Maccioni -0.430    

MTCI -0.416  0.187  

NDVI3 0.176  0.635 -0.557 
PSRI 0.358  0.406  

RDVI.1  0.467 0.141 0.211 
REP_Li -0.423   -0.200 
SPVI  0.440 0.264  

TCARI2  0.390 -0.277 -0.573 
Sept 13 

Boochs2 0.319 0.178 0.616 0.173 
CRI3 -0.394  0.223 -0.665 
CRI4 -0.430   -0.238 
Datt5  -0.641 0.235  

DD 0.430   -0.180 
DWSI4 0.154 0.600  -0.306 
Gitelson 0.313 -0.104 -0.673  

MCARI -0.313 0.420  0.474 
PRI 0.391  0.215 -0.329 

Sept 20 
Boochs 0.352 0.313 0.177 0.153 
Carter3 -0.394  0.149 -0.219 
D1 0.325 -0.345 -0.200 -0.285 
Datt 0.347 -0.406   

Datt3 -0.178 -0.431 0.294 0.786 
Datt5 -0.272 -0.413 0.125 -0.369 
Gitelson2 0.103 -0.210 0.754 -0.292 
MCARI2 0.405 -0.117   

Sum_Dr1 0.238 0.400 0.463  

Vogelmann 0.396 -0.207 -0.137  

Sept 30 
Boochs2 0.288  0.548 0.537 
Carter6 0.303 -0.414  -0.198 
Datt5 -0.360 -0.325 0.175  

NDVI3 -0.337 -0.307 0.290 -0.197 
PRI_norm -0.306 -0.366  0.246 
SPVI 0.328 -0.399  -0.219 
SR5 -0.297 -0.351  0.398 
Sum_Dr1 0.325 -0.390 0.130 -0.266 
TCARI2 0.406 -0.107  0.447 
Vogelmann2 -0.146 0.208 0.741 -0.296 
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It can be seen on the projection (Figure 10), as well as in Figure.3 and 9, Q. rubra is well separated from Q. 
robur and Q. macrocarpa. At the same time, Q. robur and Q. macrocarpa are poorly separated by PCA. The good 
differentiation of Q. rubra is associated with its physiological state – soil pH stress, enhanced by drought, that 
is manifested by leaf chlorosis (Figure 11) (Dmitriev et al., 2022a). Stress may be detected by the configuration 
of the spectral profiles of oak crowns, which are built using the average values of the reflection coefficient 
(Figure 12). 

 
This configuration of the arrangement of objects on the projections persists throughout the period studied (in 
some cases, the images are inverted mirrorwise about the first or second component). 

RF is the next method used to separate species. In total, 500 trees have been analysed. (Figure 13). The number 
of variables tried at each separation was – 8. 

 
Figure 12. Spectral profiles of crowns of Q. macrocarpa, Q. robur and Q. rubra plants. Dates of the experiments: a – Aug 

22, b – Sept 05, c – Sept 13, d – Sept 20, e – Sept 30. Y-scales – reflectance, percent; X-scales – wavelength, nm. 
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Figure 13. Random forest matrix error depending on the number of trees 

OOB estimate of the matrix values error calculated for the 80 VIs of three oak species is low – 4.19%. This 
indicates a good differentiation of all three oak species by the RF method (Table 6). 

The RF method also makes it possible to determine what VIs are the most suitable for species identification. 
In Figure 14, VIs are arranged depending on their influence on the error value (Mean Decrease Accuracy) and 
the Gini criterion. 

As a result of the RF analysis, it was found that out of 80 VIs, the following VIs have the greatest influence on 
the accuracy of identification of Quercus species and the Gini index: 

 D1 D730 / D706 (Zarco-Tejada et al., 2003) 
 Datt3 D754 / D704 (Datt, 1999) 
 DPI D688 D710 / D2697 (Zarco-Tejada et al., 2003) 
 Vogelmann R740 / R720 (Vogelmann et al., 1993), 

where Rxxx: Reflectance at the wavelength “xxx”, Dxxx: First derivation of reflectance values at the wavelength 
“xxx”. 

Table 6. Error rates of the matrix of RF values of 80 VIs for Q. robur, Q. macrocarpa, Q. rubra 

Species Quercusmacrocarpa Quercusrobur Quercusrubra class.error 
Quercusmacrocarpa 3857 230 61 0.070154 
Quercusrobur 110 4610 51 0.033746 
Quercusrubra 41 107 5269 0.027321 

 
Figure 14. RF: Mean Decrease Accuracy and Mean Decrease Gini calculated for the 80 VIs of Acer species. 

http://ejss.fesss.org/10.18393/ejss.1183524


P.Dmitriev et al. Eurasian Journal of Soil Science 2023, 12(1), 37- 62 

 

49 

 

These VIs make it possible to separate quite well the stressed Q. rubra from Q. robur and Q. macrocarpa, which 
are found to be in our region under optimal conditions. At the same time, Q. robur and Q. macrocarpa are 
poorly separated. The following wavelengths are used in calculating these VIs: 698 nm,704 nm, 706 nm, 710 
nm, 720 nm, 730 nm, 740 nm, 754 nm. 

In order to find out how repeatable the result is at different shooting times, the scheme for forming the training 
and testing samples was as follows: 

1. The training sample is the data of 2 (Sept 05), 3 (Sept 13), 4 (Sept 20) and 5 (Sept 30) survey dates. The 
tested sample – data of the 1st (Aug 22) survey period; 

2. The training sample is the data of the 1st, 3rd, 4th, and 5th survey dates. The test sample – data from the 
2nd survey period; 

3. The training sample is the data of the 1st, 2nd, 4th, and 5th survey dates. The test sample – data from the 
3rd survey period; 

4. The training sample is the data of the 1st, 2nd, 3rd, and 5th survey dates. The test sample – data of the 4th 
survey period; 

5. The training sample is the data of the 1st, 2nd, 3rd and 4th survey dates. The test sample – data of the 5th 
survey period. 

According to the presented scheme the training sample matrices have a low OOB estimate of error rate (Table 
7). Despite the fact that it is not possible to simultaneously identify all three species by VIs values (Table 8), 
the result obtained should be considered good for field surveys with a hyperspectral camera of tree crowns. 
Q. rubra was well identified in all five terms. Q. robur was well identified in the second and third terms of 
survey, satisfactorily – in the first and fifth and was not identified in the 4th survey. Q. macrocarpa was 
satisfactorily identified only in the second survey period.Good reproducibility of the results (both positive and 
negative) in terms of timing was obtained, that can be seen from the values of the classification errors of the 
trained matrices (Table 7) and from the test results (Table 8).The results obtained with the RF method and 
the PCA method are similar. 

Table 7. Error rates of RF matrix of 80 VI values for Q. robur, Q. macrocarpa, Q. rubra, training samples. Number of trees: 
500; Number. of variables tried at each split: 8 

Training set 1 

Species Q. macrocarpa Q. robur Q. rubra class.error 

Q. macrocarpa 3672 157 41 0.051163 
Q. robur 84 4256 50 0.030524 
Q. rubra 48 98 4884 0.029026 

OOB estimate of error rate 3.60% 
Training set 2 

Species Q. macrocarpa Q. robur Q. rubra class.error 
Q. macrocarpa 2832 209 35 0.079324 
Q. robur 79 3477 24 0.028771 
Q. rubra 17 62 3857 0.020071 

OOB estimate of error rate 4.02% 
Training set 3 

Species Q. macrocarpa Q. robur Q. rubra class.error 
Q. macrocarpa 3096 130 35 0.050598 
Q. robur 75 3372 37 0.032147 
Q. rubra 23 59 4490 0.017935 

OOB estimate of error rate 3.17% 
Training set 4 

Species Q. macrocarpa Q. robur Q. rubra class.error 
Q. macrocarpa 3003 194 63 0.078834 
Q. robur 66 3562 47 0.030748 
Q. rubra 36 94 3544 0.035384 

OOB estimate of error rate 4.71% 
Training set 5 

Species Q. macrocarpa Q. robur Q. rubra class.error 
Q. macrocarpa 2847 212 66 0.08896 
Q. robur 107 3806 42 0.037674 
Q. rubra 39 80 4337 0.026706 

OOB estimate of error rate 4.73% 
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Table 8. Error rates of the matrix of RF values of 80 VIs for Q. robur, Q. macrocarpa, Q. rubra, tested samples 

Test sample 1 

Species Q. macrocarpa Q. robur Q. rubra 

Q. macrocarpa 112 156 10 
Q. robur 143 219 10 
Q. rubra 23 6 367 

Test sample 2 
Species Q. macrocarpa Q. robur Q. rubra 
Q. macrocarpa 632 225 133 
Q. robur 382 963 405 
Q. rubra 58 3 943 

Test sample 3 
 Q. macrocarpa Q. robur Q. rubra 

Q. macrocarpa 32 1 0 
Q. robur 658 1214 184 
Q. rubra 197 72 661 

Test sample 4 
Species Q. macrocarpa Q. robur Q. rubra 
Q. macrocarpa 422 611 57 

Q. robur 122 167 4 

Q. rubra 344 318 1682 
Test sample 5 

Species Q. macrocarpa Q. robur Q. rubra 
Q. macrocarpa 395 146 124 
Q. robur 0 464 60 
Q. rubra 628 206 777 

All methods of the data analysis used in the experiment clearly separate Q. rubra from Q. robur and Q. 
macrocarpa. This can be associated with a significant difference between the ecological and biological 
properties of Q. rubra and Q. robur, Q. macrocarpa.When using VI, it is not possible to reliably separate Q. robur 
and Q. macrocarpa.These species differ significantly in morphology, but are similar in ecological and biological 
properties. Most VIs have been developed to quantify the state (primarily the physiological state associated 
with photosynthetic pigments) of plants (Tucker, 1979; Blackburn 1998; Datt 1999; leMaireetal 2004; Zarco-
Tejada et al. 2003; Bolca et al., 2012). Therefore, in a specific period, species that differ significantly in 
physiology can be successfully separated using VIs. For woody plants that differ in phenology, it is possible to 
propose a search for VIs with unique seasonal dynamics, by analogy with the NDVI signature. 

Conclusion 
The ANOVA method applied to the hyperspectral data allows  to reveal VI, whose variation significantly 
depends on the species belonging to the sample.This also confirms the possibility of identifying oak species 
using VI.PCA and RF methods reliably differentiating Q. rubra from Q. robur and Q. macrocarpa. 

The results obtained suggest the possibility that droubt and impact of soil pH, being a factor of environmental 
stress, may influence the realibility of such an identification. It may be a consequence of a droubt-induced and 
pH-induced chlorosis that evidently influence leaf pigment composition and, therefore, VIs. It means that 
changes in the hyperspectral data caused by stress should be considered as a reflectance spectral "signature 
of stress" and should be an object of attention in the future researches.  
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Supplementary Tables 
Supplementary Table 1. Results of a three-way ANOVA of the statistical complex «species-sample-snapshot» 
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Supplementary Table 1. (Continue) 
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Supplementary Table 1. (Continue) 
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Supplementary Table 1. (Continue) 
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Supplementary Table 1. (Continue) 
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Supplementary Table 1. (Continue) 
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Supplementary Table 2. VI factor loads on significant components for Q. robur, Q. macrocarpa, Q. rubra 
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Supplementary Table 2. (Continue) 
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Supplementary Table 2. (Continue) 
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Supplementary Table 2. (Continue) 
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Supplementary Table 3. Projections of VI values for Q. robur, Q. macrocarpa, Q. rubra 
 

  
Figure 1. Projections of VI values for Boochs2, CRI3, Datt4, Maccioni, 

MTCI, NDVI3, PSRI, RDVI, RDVI, REP_Li, SPVI, TCARI2 for Q. 
macrocarpa (1), Q. robur (2), Q. rubra (3) samples (Sept 05). Numerical 

designation on the projection: the first digit indicates the view; the 
second is the sample of the species 

Figure 2. Projections of VI values for Boochs2, CRI3, CRI4, Datt5, DD, 
DWSI4, Gitelson, MCARI, PRI for Q. macrocarpa (1), Q. robur (2), Q. 

rubra (3) samples (Sept 13). Numerical designation on the projection: 
the first digit indicates the view; the second is the sample of the species 

  

  
Figure 3. Projections of VI values for Boochs, Carter3, D1, Datt, Datt3, 

Datt5, Gitelson2, MCARI2, Sum_Dr1, Vogelmann for Q. macrocarpa (1), 
Q. robur (2), Q. rubra (3) samples (Sept 20). Numerical designation on 

the projection: the first digit indicates the view; the second is the 
sample of the species 

Figure 4. Projections of VI values for Boochs2, Carter6, Datt5, NDVI3, 
PRI_norm, SPVI, SR5, Sum_Dr1, TCARI2, Vogelmann2 for Q. macrocarpa 
(1), Q. robur (2), Q. rubra (3) samples (Sept 30). Numerical designation 

on the projection: the first digit indicates the view; the second is the 
sample of the species 
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