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In this study, surface patterning with CNC vertical machining center 

was applied to the aluminum surface for the enhancement of the shear 

strength of the epoxy-bonded lap joints. It was found that the pattern 

shape affected shear strength and among vertical, square, horizontal, 45 

degree and diamond patterns, 45-degree provided the highest shear 

strength of 24.6 MPa. Moreover, the pattern features also affected the 

shear strength. A decrease in the depth led to slightly lower shear 

strength, whereas an increase in the depth gave a slight enhancement. 

The optimum depth was found as 300 μm and the obtained shear 

strength was calculated as 25.5 MPa. Additionally, an increase in the 

width length led to lower shear strength. On the other hand, a decrease 

in the width length provided higher shear strength. The increment 

became smaller as the width length increased. Also, after a point, the 

trend reversed and the shear strength decrease slightly. The optimum 

width length and the corresponding shear strength were found as 1.0 

mm and 28.0 MPa, respectively.  
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 Bu çalışmada, epoksi ile bağlanmış bindirmeli bağlantıların kayma 

mukavemetinin arttırılması amacıyla, alüminyum yüzeylere CNC ile 

yüzey desenleme işlemi uygulanmıştır. İşleme şeklinin kayma 

mukavemetini etkilediği görülmüş ve dikey, kare, yatay, 45 derece ve 

baklava şekillerinden 45 derece şeklinin 24,6 MPa ile en yüksek 

mukavemeti verdiği gözlenmiştir. Ayrıca şekil özelliklerinin de 

mukavemeti etkilediği anlaşılmıştır. Derinlikteki azalma daha düşük 

kayma mukavemetine yol açarken, artma ise daha yüksek değerler 

sağlamıştır. Optimum derinlik 300 μm olarak bulunmuş ve elde edilen 

kayma mukavemeti 25,5 MPa olarak hesaplanmıştır. Bunların yanı sıra, 

şekil genişliğinin artması daha düşük mukavemete yol açmıştır. Diğer 

yandan genişliğin azalması ise daha yüksek mukavemet sağlamıştır. 

Ayrıca, bir noktadan sonra trend tersine dönmüş ve mukavemette azalma 

gözlenmiştir. Optimum genişlik ve sağladığı kayma mukavemeti sırasıyla 

1,0 mm ve 28,0 MPa olarak bulunmuştur. 

Anahtar Kelimeler: 
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Yüzey deseni 
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1. Introduction 

Lap joints are more advantageous than traditional methods such as welding, riveting, or bolt joints 

since they provide lighter structure designs, good stress distribution, and short application time with 

lower costs (Hunter et al., 2017). Unlike the lap joints, the biggest disadvantage of bolted nut 

connections is that the fasteners increase the weight of the system. In addition, since the fasteners are 

generally made of steel and its alloys, they are subject to corrosion according to the working 

environments. This reduces the life of the connection system (Böhm et al., 2022).  

In lap joints, epoxy adhesives have been utilized to join the metal parts in various industries such as 

civil infrastructure, automotive, marine engineering, and aerospace (Ayatollahi et al., 2017). They 

have ease of application and can apply to large surface areas (Wang et al., 2016). However, they suffer 

from cracking both in the epoxy layer and between epoxy-substrate interfaces when they are exposed 

to shear strength. The most common cracking occurs in the interface.  Hence, it is important to 

enhance the epoxy-substrate surface interaction to increase the shear strength. Since it is well known 

that surface features and treatments play an important role in this interaction, various studies have 

been conducted on the surface treatments such as sandblasting, sandpaper polishing, sanding, shot 

blasting, surface patterning (longitudinal grooves, transverse grooves, dimples and grids), grit blasting, 

electrical discharge, plasma treatment, chemical (acid (HCl, nitric acid, sulfuric acid/sodium 

dichromate, chromic acid etchings), NaOH etching, photopolymerization grafting, polymer coating), 

electrochemical phosphoric acid anodizing, forest product laboratory etching, sulfuric acid anodizing, 

laser treatment (laser surface texturing, laser‐induced line patterning, fiber laser treatment), zirconium 

conversion treatment, silane treatment, alkaline degreasing, vibratory shot peening, anodizing with 

vibrational shot peening, aluminum patching, composite layer production by an in-situ reaction 

synthesis, embedding a wavy net-like thermoplastic insert, micro-mesh printing, surface 

functionalization (Wang et al., 2017; Nemati et al., 2018; Coban et al., 2019; Feng et al., 2019; Kwon 

et al., 2019; Mehr et al., 2019; Morfini et al., 2019; Pizzorni et al., 2019; Rudawska et al., 2019; 

Shokrian et al., 2019; Akiyama et al., 2020; Baby et al., 2020; Bangash et al., 2020; Bora et al., 2020; 

Delzendehrooy et al., 2020; Kanani et al., 2020; Li et al., 2020; Mandolfino et al., 2020; Pawlik et al., 

2020; Sim et al., 2020; Sorrentino et al., 2020; Sun et al., 2020; Van Dam et al., 2020; Xie et al., 2020; 

Yudhanto et al., 2020; Zhang et al., 2020; Suzuki et al., 2021; Tuovinen et al., 2021; Safari et al., 

2022). They have focused on increasing the surface roughness of the substrate and enhancing the 

mechanical interlocking between epoxy and substrate to improve their interaction by increasing the 

surface area of the substrate. Among these treatments, surface patterning is advantageous due to ease 

of application, high precision control on parameters, reproducibility, and cost-effectiveness.  It has 

been observed that generally sandblasting and chemical abrasions are used to increase the surface 

roughness. It was determined that the method of increasing the surface roughness with the surface 

pattern was not used. Surface patterning can be easily obtained by surface machining with a computer 
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numerical control (CNC) machine. Moreover, by CNC, different patterns can be applied to the surface. 

Furthermore, pattern features should be optimized since very small features prevent thick and viscous 

adhesive solution from penetrating microcavities on the surface during the curing period of the 

adhesive. Thus, dilution or pretreatment of the adhesive solution should be needed for these surfaces 

(Wang et al., 2017). To avoid this extra treatment, the feature size could be adjusted and full 

penetration of the adhesive into these features can be acquired. 

In this study, various surface patterns were processed with a CNC machine onto the aluminum surface 

to achieve high shear strength for the lap joints bonded with epoxy adhesives. The dependency of the 

shear strength to epoxy/hardener ratio, the pattern shape and features were also evaluated. The most 

suitable epoxy/hardener ratio and the most suitable surface pattern were determined. 

 

2. Materials and Methods  

2.1. Materials 

Lap joint test specimens were made from Al 7075-T6. Its chemical and mechanical properties can be 

seen in Table 1. The Demarin Epo 300 brand epoxy-based adhesive was utilized for the adhesion of 

the lap joints. Ethanol and acetone were obtained from Sigma-Aldrich (Merck) and used as received. 

 

Table 1. The chemical and mechanical properties of Al 7075-T6 

Mechanical Properties 
Chemical 

composition (%) 

Tensile stress 

(MPa) 
570 Zn 5.50 

Yield stress 

(MPa) 
505 Si 0.13 

Density (kg m-

3) 
2810 Mn 0.30 

Elongation (%) 11 Cr 0.28 

Hardness (HB) 102 Ti 0.20 

Elastic modulus 

(N mm-2) 
72000 Cu 2 

Poisson Ratio 0,33 Mg 2.9 

 Al 88.69 

 

2.2. Substrates and Surface Preparation  

The shear strength test specimens were produced from Al 7075-T6. The dimensions of the specimen 

can be seen in Fig. 1. 
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Figure 1. The sketch of the shear strength test specimen 

 

To achieve enhanced bonding strength, substrate surfaces were processed with Pro-X PPF-22020 2F 

spherical carbide end mill cutter having a diameter of 2 mm. For the cutting parameters, the cutting 

speed was adjusted as 58 m.min
-1,

 and the feed rate in the x, y, and z axis was utilized as 350, 350 and 

300 mm.min
-1

. The depth of the end mill cutter indentation was 0.2 mm. The surface patterns were 

processed with TAKUMA JVH-710 CNC vertical machining center (Fig. 2). The sketches of the 

surface patterns can be seen in Fig. 3. Burnishing was applied to the test specimen surface after surface 

patterning. The surface of the specimen was cleaned with ethanol and acetone before utilization to 

prevent dirt and oil occurrence on the test specimen surface. 

 

 

Figure 2. Machining of samples on CNC machine, a) the CNC vertical machining center utilized for the surface 

patterns, b) the image of the machining adherend 
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Figure 3. The sketches of the surface patterns 

 

2.3. Shear Strength Test 

The shear strength tests were conducted via the Alşa test machine (Fig. 4) with a displacement rate of 

2 mm min
-1

.  

 

Figure 4. The shear strength test machine 
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3. Results and Discussion 

  

 

 
Figure 5. The effect of epoxy/hardener ratio on the shear strength 

 

It is well known that surface characteristics have an important role in the adhesion of epoxy to the 

adherent surface. The mechanical interlocking between epoxy and an adherent surface interface can 

enhance adhesion strength. Thus, improving the mechanical interlocking can play an important role in 

the enhancement of joint strength. The improvement in mechanical interlocking can be obtained by 

surface treatment (Baburaj et al., 2007). Thus, for this purpose, various patterns were processed onto 

the aluminum surface to achieve higher adhesion strength between the epoxy and the aluminum 

surface for the enhancement of lap joint shear strength (Fig. 6). The shape and direction of the patterns 

were differentiated to find the best pattern that could demonstrate highest shear strength in the lap 

shear tests. Surface roughnesses against the shear stress direction increase the peel strength (Van Dam 

et al., 2020). Different shapes engraved on the surfaces change the surface roughness and shape of the 

roughness. The effects of pattern shape and direction could be easily seen in Fig. 7. The lowest shear 

strength was observed for the horizontal pattern and found as 16.9 MPa. Moreover, the shear strength 

increased as the pattern shape was changed to square, vertical, and diamond patterns, and it was 

calculated as 19.9, 21.9, and 23.0 MPa, respectively. The highest value was observed for 45-degree 

patterns and it was measured as 24.6 MPa. The results showed that surface patterning affected the 

shear strength of epoxy-bonded lap joints and the values depended on the pattern shape. With this 

result, the adhesion strength of sandpaper polished substrate was increased by 81% after being 

processed with 45-degree patterns. 
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Figure 6. The surface patterns of the lap joints 

 

 
Figure 7. Shear strength test results of various surface-shaped specimens 

 

Besides the surface pattern shape, the pattern dimensions could also affect the adhesion strength of the 

epoxy onto the aluminum surface. To examine the dimension effect, the pattern of 45 degrees that 

provided the highest shear strength was utilized with lower and higher widths and depths. It can be 

seen from Fig. 8 that, an increase in the depth provided slight enhancement whereas a decrease in the 

depth led to slightly lower shear strength. From this result, it could be concluded that the depth of the 

pattern affected the shear strength slightly and 300 μm could be regarded as the optimum depth for the 

epoxy application with a shear strength of 25.5 MPa. On the other hand, the width length 

demonstrated more effect on the shear strength. As the width length decreased, the roughness and area 

of the metal surface increased. Thus, the epoxy had more surface area to interact and the adhesion 
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between epoxy and metal surface was enhanced (Kanani et al., 2020). This increase provided a 

positive impact on the shear strength. When width lengths were 2.5, 2.0, 1.5, and 1.0 mm, the shear 

strengths were found as 20.3, 24.6, 27.1, and 28.0 MPa, respectively. Moreover, the increment became 

smaller as the width length increased. Also, after a point, the trend reversed and the shear strength 

decreased slightly. This may be due to the epoxy penetration problem into the channels having lower 

dimensions. When the dimensions decreased, the viscous epoxy could not effectively fill the channels 

and voids and air bubbles occurred. The epoxy-metal surface interaction suffered from this condition 

and the shear strength decreased (Rudawska et al., 2019). Moreover, the increase in the width length 

led to a decrease in the shear strength. Since fewer channels with higher dimensions provided lower 

roughness and surface area for the epoxy adhesion, the adhesion strength decreased and the shear 

strength value also showed decrement. 

 

 

Figure 8. Best shape with different channel widths and depth 

 

4. Conclusion 

Various surface patterns were processed with CNC vertical machining center on an aluminum surface 

to increase the shear strength of the lap joints bonded with epoxy adhesives. It was found that the 

shear strength was pattern-shape dependent. Among the patterns vertical, square, horizontal, 45 

degrees and diamond patterns, 45 degrees were utilized, and 45 degrees demonstrated the highest 

enhancement. The shear strength increased from 13.6 to 24.6 MPa after the application of 45-degree 

patterns. Moreover, it was found that the pattern features also affect the shear strength. A decrease in 

the depth led to slightly lower shear strength, whereas an increase in the depth provided slight 

enhancement.  
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The optimum depth was found as 300 μm and the obtained shear strength was calculated as 25.5 MPa. 

Furthermore, an increase in the width length led to a decrease in the shear strength. On the other hand, 

a decrease in the width length provided higher shear strength. The increment became smaller as the 

width length increased. Also, after a point, the trend reversed and the shear strength decrease slightly. 

The optimum width length and the corresponding shear strength were found as 1.0 mm and 28.0 MPa, 

respectively. These results showed that patterning can enhance the shear strength of the lap joints 

bonded with epoxy adhesives. 
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