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Abstract
Consider a single-server retrial queueing system with non-preemptive priority service,
where customers arrive in a Poisson process with a rate of λ1 for high-priority customers
(class 1) and λ2 for low-priority customers (class 2). If a high-priority customer is blocked,
they are queued, while a low-priority customer must leave the service area and return after
some random period of time to try again. In contrast with existing literature, we assume
different service time distributions for the two customer classes. This investigation pro-
poses a stochastic comparison method based on the general theory of stochastic orders to
obtain lower and upper bounds for the joint stationary distribution of the number of cus-
tomers at departure epochs in the considered model. Specifically, we discuss the stochastic
monotonicity of the embedded Markov queue-length process in terms of both the usual
stochastic and convex orders. We also perform a numerical sensitivity analysis to study
the effect of the arrival rate of high-priority customers on system performance measures.
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1. Introduction
Retrial queueing systems are a type of queueing models in which customers who are

unable to enter service upon arrival are placed in a retrial group (orbit). Specifically,
when the server is free, an arriving customer is immediately served. However, if the
server is already occupied, the customer is unable to enter service and joins the retrial
group, consisting of unsatisfied customers. Any customer in the retrial group generates a
stream of repeated service requests, which is independent of the other customers in the
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retrial group. Customer’s retrial phenomenon is common in various real-world systems,
such as manufacturing systems, computer systems, wireless sensor networks, call centers,
telecommunication networks, web access, switching networks, cognitive radio network, etc.
[27,33,40,44,52]. Therefore, retrial queue analysis becomes a crucial problem in queueing
theory. A comprehensive review on this topic can be found in [4–6,21–29,39,45,50,53].

Retrial queues with various types of customers have been extensively studied in the
literature [21, 29, 39, 41, 42, 45]. Priority discipline, which involves preemptive and non-
preemptive concepts, plays a crucial role in these queues [36]. Preemptive priority enables
customers with higher priority to receive immediate service, even if a lower priority cus-
tomer is currently being served. In this case, the lower priority service is preempted
and restarted after the higher priority service is completed. However, non-preemptive
priority allows higher priority customers to move to the front of the queue but must
wait until the service of the lower priority customer is finished. Priority retrial queues
have various applications, including real-time systems, operating systems, manufacturing
systems, simulation and medical service systems, cognitive radio systems, and computer
systems [22, 40, 46]. For a review of main results and methods, the reader is referred to
[3, 6, 18–20,28,30–32,36,49,51].

In this paper, we are interested in analyzing an M2/G2/1 queueing system with non-
preemptive priority at which in the case of blocking, the high-priority of customers can be
queued whereas the lower type of customers has to leave the service area and return after
some random period of time to retry their service. The contributions and advantages of
this paper are stated as follows:

1. Queueing model : The queueing model under consideration was proposed by [24]
as a natural extension of the classic M/G/1 retrial queue. However, this extension
introduces several complications. For example, the results obtained from the model are
complex and involve integrals of Laplace transforms, solutions of functional equations,
and so on. Unfortunately, these results are not easily exploitable from an application
point of view.

2. Methodology : Due to the priority mechanism, finding analytic results for the sys-
tem becomes more complicated. Such results are typically only available in the form
of Laplace transforms and generating functions, which cannot be used in practice due
to their complexity. To overcome this problem, we propose a monotonicity approach
that can be investigated using the stochastic comparison method based on the general
theory of stochastic orders. The stochastic comparison method allows us to produce
approximations and bounds for various performance measures of the system, enabling
us to study changes in performance due to parameter variations. The proposed ap-
proach is of interest as it allows for a trade-off between the role of qualitative bounds
and the complexity involved in resolving intricate systems with some parameters that
are not perfectly known. Specifically, our approach seeks to reveal the relationship
between performance measures and the parameters of the system. Notably, the sto-
chastic comparison method has been successfully applied in various queueing models,
including multi-class queueing systems [48], risk models [38], and performance eval-
uation of mobile networks [17, 37]. Additionally, it has been employed in studies of
partially ordered spaces [35] and applied probability [47]. Several previous works
have also applied the stochastic comparison method to queueing models, including
[1, 2, 7–16,34].

3. Motivation and main results : Our study is motivated by the need to establish
insensitive bounds on the performance measures of retrial queueing systems with non-
preemptive priority service, where high-priority customers can be queued but low-
priority customers must leave the service area and try again later. While previous
research has focused on quantitative approaches to analyzing such systems (see [24]),
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we propose a qualitative analysis in order to study the monotonicity properties of the
embedded Markov chain relative to stochastic and convex orderings.

By examining the relationship between performance measures and system param-
eters, our approach offers insights that complement existing quantitative methods.
Specifically, it provides a compromise between the role of qualitative bounds and
the complexity of resolving complicated systems where some parameters may not be
perfectly known. In this paper, we address two problems related to the embedded
Markov chain in the suggested queuing system. Firstly, we establish conditions for
the monotonicity of the transition operator associated with the embedded Markov
chain. Secondly, we compare the transition operators and joint stationary distribu-
tions of two embedded Markov chains, both having the same structure but different
parameters. We provide best insensitive stochastic bounds for the stationary distribu-
tion of the embedded Markov chain, using partial information on the ageing concepts
of the service time distributions. To complement our theoretical study, we also use a
discrete event simulation approach to analyze the impact of non-preemptive priority
customer arrival rate on system performance measures.

The results given in our research article may be employed to improve the functioning of
different real systems. Let us, in short, mention some of them.

- Wireless sensor networks : These systems have the capability to harvest energy
from external sources such as solar, radio frequency, or wind, which is then stored
in the form of energy units. To transmit one unit of information, multiple energy
units are required. The sensor in this system transmits two types of information
units to the central node: type 1 information units, which are of primary importance
and correspond to events such as intrusions or critical equipment failures, and type 2
information units, which provide routine information about the object’s parameters.
If a type 1 information unit arrives, the sensor interrupts the transmission of routine
information and switches to transmitting the important information. Thus, type 1
units have preemptive priority over type 2 units. Additionally, if a type 2 unit cannot
be transmitted upon arrival, it can be regenerated later (cf. [43]).

- Call centers : These systems are modeled as retrial queues with two types of calls:
customers can contact the call centers either over the phone (type 1 customers) or
via email (type 2 customers). In this system, higher priority is given to more impor-
tant customers or voice requests, while lower priority is attributed to less important
customers or email requests (cf. [33]).

- Cognitive radio systems: Cognitive radio systems are a form of wireless communi-
cation where a transceiver can intelligently detect which communication channels are
in use and which are not. In these systems, higher priority is attributed to primary
users (licensed customers), while lower priority is given to secondary users (unlicensed
customers). Arrival of primary users interrupts the service of secondary users (cf.
[22, 40,52]).

The remainder of this paper is structured as follows. In the next section, we briefly
describe the queueing model, and the embedded Markov chain is given. In Section 3,
we introduce some definitions of univariate and multivariate stochastic orders, as well
as ageing notions. Notations and some preliminary results are presented in Section 4.
Section 5 focuses on various monotonicity properties of the transition operator of the
Markov chain. In Section 6, comparability conditions of two embedded Markov chains
are given. Lower and upper stochastic bounds for the joint stationary distribution at a
departure epoch are discussed in Section 7. In Section 8, numerical results are provided
to illustrate the obtained theoretical results. Section 9 is devoted to the proof of the main
results. Finally, in Section 10, the paper is concluded.
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2. Queueing model description
Consider a non-preemptive priority retrial queue with a normal queue (high-priority)

and an orbit (low-priority). The server offers service to two types of customers viz: high-
priority (class 1) and low-priority (class 2) customers. Customers arrive in a Poisson
process with arrival rate λ1 for high-priority customers (class 1) and λ2 for low-priority
customers (class 2). We assume different service time distributions for the high and low-
priority customers. The main assumptions required for the formulation of our queueing
model are as follows :
� Customers are divided into two classes: high-priority (class 1) and ordinary (class 2).

Upon arrival, high-priority customers are immediately served if a server is available;
otherwise, they join the priority queue. Ordinary customers, on the other hand, are
sent back to the retrial orbit if they find the server busy with priority customers.
If a high-priority customer arrives and finds the server occupied with an ordinary
customer, they must wait until the service of the latter is finished, as the service of
ordinary customers cannot be interrupted by high-priority customers under the non-
preemptive priority scheme. Only when all priority customers have been served may
a new ordinary customer request service.

� Ordinary customers are treated as retrial customers. When a server is available, the
first customer in the queue is served immediately, while any remaining customers move
to a waiting area called the orbit. If a class 2 customer is not served upon their first
attempt, they return to the orbit and wait for the server to become available again.
This process is repeated until the customer is finally served. The retrial times are
assumed to be independent and exponentially distributed with parameter θ (θ > 0).

� Both priority and ordinary customers are served with a service process that has a gen-
eral distribution. The service times of priority customers and ordinary customers are
independent and identically distributed, with a general distribution function denoted
as B1(x) and B2(x), respectively. The Laplace-Stieltjes transform (LST) of B1(x)
is denoted as B̃1(s), and the first moment of B1(x) is as β1

1 . The load of priority
customers is ρ1 = λ1β1

1 . Similarly, the LST of B2(x) is denoted as B̃2(s), the first
moment of B2(x) is β2

1 , and the load of ordinary customers is given by ρ2 = λ2β2
1 .

Note that inter-arrival times of primary customers, intervals between repeated trials,
and service times are assumed to be mutually independent.

At time t, the state of the system can be described by the continuous time stochastic
process

X(t) = (A(t), C(t), N(t), ξ(t))t≥0,

where A(t) is the type of the customers in service, C(t) represents the number of customers
in queue (excluding the customer in service), N(t) denotes the number of customers in
orbit, and ξ(t) is the corresponding elapsed time. The transition diagram is illustrated in
Figure 1.

Remark 2.1. Note that A(t) = 0 when no customer is in service at time t, in this case
we have C(t) = 0.

Let ηd be the time of the dth departure. Clearly, a sequence of random vectors Xd =
(A(ηd − 0), C(ηd − 0), N(ηd − 0)) forms a Markov chain, which is the embedded Markov
chain for our queueing system. Its state space is {1, 2} × Z2

+ and its one-step transition
probabilities

r(k,n,m)(l,i,j) = P{Xd+1 = (l, i, j)|Xd = (k, n, m)}.

The embedded Markov chain Xd is ergodic if and only if ρ = ρ1 + ρ2 < 1.
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Figure 1. The state transition diagram

3. Some stochastic orders
Stochastic ordering is a valuable tool in analyzing changes in performance resulting from

variations in system parameters, comparing different systems, approximating complex
systems with simpler ones, and obtaining bounds for key performance measures. This
paper aims to explore several stochastic orders and ageing concepts that are particularly
relevant to the main results presented. The following sections provide a brief overview
of these key concepts, which will be used extensively throughout the paper. For further
reading, see [35,38,47], and the references therein.

Definition 3.1. Let X and Y be two non-negative random variables with distribution
functions F and G, respectively. X is said to be smaller than Y with respect to
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(1) Stochastic order (≤st):
X ≤st Y ⇔ F (x) ≥ G(x), ∀x ≥ 0.

(2) Convex order (≤v):

X ≤v Y ⇔
∫ ∞

x
(1 − F (t))dt ≤

∫ ∞

x
(1 − G(t))dt, ∀x ≥ 0.

(3) Laplace ordering (≤L):

X ≤L Y ⇔
+∞∫
0

e−sxdF (x) ≥
+∞∫
0

e−sxdG(x), ∀s ≥ 0.

If the random variables of interest are discrete and ω = (ωn)n≥0, ν = (νn)n≥0 are their
corresponding distributions. Then

(1) ω ≤st ν iff ωm =
∑

n≥m ωn ≤ νm =
∑

n≥m νn, ∀m.
(2) ω ≤v ν iff ωm =

∑
n≥m

∑
k≥n ωk ≤ νm =

∑
n≥m

∑
k≥n νk, ∀m.

(3) ω ≤L ν iff
∑

n≥0 ωnzn ≥
∑

n≥0 νnzn, ∀z ∈ [0, 1].

3.1. Some multivariate extensions
In this section, we recall some multivariate extensions of the stochastic orders that were

discussed in the previous section.

Definition 3.2. Given two random vectors X and Y , we say that X is less than Y in:
(1) Multivariate stochastic order iff E[ϕ(X)] ≤ E[ϕ(Y )],
(2) Multivariate increasing convex order iff E[ϕ(X)] ≤ E[ϕ(Y )],
(3) Multivariate Laplace ordering iff E[exp{−ST X}] ≥ E[exp{−ST Y }],

for all S ∈ Rn
+ and for all increasing function ϕ : Rn 7→ R, such that the previous

expectations exist.

Proposition 3.3. Let X be a random variable with distribution function F and finite
mean m.

(a) F is New Better than Used in Expectation (NBUE) iff F ≤v F ∗,
(b) F is New Worse than Used in Expectation (NWUE) iff F ∗ ≤v F ,

where F ∗ is the exponential distribution function with the same mean as F .

4. Preliminary comparison results
In this section, we introduce useful lemmas in establishing the main results of the paper.

Consider two M2/G2/1 retrial queueing systems with non-preemptive priority service with
the parameters λ

(p)
1 , λ

(p)
2 , θ(p), B

(p)
1 (x), and B

(p)
2 (x), where p = 1, 2. Let a

k,(1)
ij and a

k,(2)
ij

denote the probability that i priority and j ordinary customers arrive at the system during
a service interval of type k, (k = 1, 2), where

a
k,(p)
ij =

∫ ∞

0

(λ(p)
1 x)i

i!
e−λ

(p)
1 x (λ(p)

2 x)j

j!
e−λ

(p)
2 xdB

(p)
k (x), k = 1, 2, p = 1, 2.

Here, we employ the general theory of stochastic orderings in order to study the mono-
tonicity properties for our system, relative to stochastic, convex, and Laplace orderings,
respectively.

Lemma 4.1. If λ
(1)
1 ≤ λ

(2)
1 , λ

(1)
2 ≤ λ

(2)
2 and B

(1)
k ≤st B

(2)
k , then

{
a

k,(1)
ij

}
≤st

{
a

k,(2)
ij

}
.

Lemma 4.2. If λ
(1)
1 ≤ λ

(2)
1 , λ

(1)
2 ≤ λ

(2)
2 and B

(1)
k ≤v B

(2)
k , then

{
a

k,(1)
ij

}
≤v

{
a

k,(2)
ij

}
.

Lemma 4.3. If λ
(1)
1 ⩽ λ

(2)
1 , λ

(1)
2 ⩽ λ

(2)
2 , B

(1)
k ⩽L B

(2)
k , then

{
a

k,(1)
ij

}
⩽L

{
a

k,(2)
ij

}
.
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5. Monotonicity properties of the Markov chain {Xd}
In this section, we study the monotonicity properties of the transition operator of the

embedded Markov chain relative to the stochastic ordering and the convex ordering.
Let Θ be the transition operator of our embedded Markov chain {Xd}, which associates

to every distribution ϕ = (ϕ(k,n,m)), a distribution Θϕ = δ(l,i,j), l = 1, 2, such that

δ(l,i,j) =
∑
i≥0

∑
j≥0

ϕ(k,n,m)r(k,n,m)(l,i,j),

where r(k,n,m)(l,i,j) = P{Xd+1 = (l, i, j)|Xd = (k, n, m)} are one-step transition probabili-
ties of the considered Markov chain given by the formulas:

r(k,n,m)(1,i,j) =
{

λ1
λ1+λ2+mθ a

(1)
i,j−m, if n = 0,

a
(1)
i−n+1,j−m, n ≥ 1,

r(k,n,m)(2,i,j) =
{

λ2
λ1+λ2+mθ a

(2)
i,j−m + mθ

λ1+λ2+mθ a
(2)
i,j−m+1, if n = 0,

0, n ≥ 1.
− The transition operator Θ is monotone with respect to ≤st if and only if

r(k,n−1,m−1)(l,i,j) ≤ r(k,n,m)(l,i,j) for all i, j > 0 and l = 1, 2. (5.1)

− The transition operator Θ is monotone with respect to ≤v if and only if
2r(k,n,m)(l,i,j) ≤ r(k,n−1,m−1)(l,i,j) + r(k,n+1,m+1)(l,i,j), ∀i, j, and l = 1, 2. (5.2)

Here, we defined

r(k,n,m)(l,i,j) =
∞∑

s=i

∞∑
r=j

r(k,n,m)(l,s,r).

r(k,n,m)(l,i,j) =
∞∑

s=i

∞∑
r=j

r(k,n,m)(l,s,r).

The following Theorem presents the monotonicity condition of the transition operator
Θ with respect to stochastic orderings.

Theorem 5.1. The transition operator of the embedded Markov chain {Xd} is monotone
with respect to the order ≤so, that is, for any two distributions ϕ(1) and ϕ(2), the inequality
ϕ(1) ≤so ϕ(2) implies that Θϕ(1) ≤so Θϕ(2), where ≤so=≤st or ≤v.

6. Comparability bounds of two embedded Markov chains
In this section, we incorporate the transition operators Θ(1) and Θ(2) into models Σ(1)

and Σ(2), respectively. The following theorem provides comparability conditions for two
embedded Markov chains.

Theorem 6.1. If λ
(1)
1 ≤ λ

(2)
1 , λ

(1)
2 ≤ λ

(2)
2 , θ(1) ≥ θ(2), B

(1)
1 ≤so B

(2)
1 and B

(1)
2 ≤so B

(2)
2

then Θ(1) ≤so Θ(2), that is, for any distribution ϕ, one has Θ(1)ϕ ≤so Θ(2)ϕ, where ≤so is
either ≤st or ≤v.

7. Lower and upper stochastic bounds for the joint stationary distribu-
tion

Now, we establish the comparability conditions of the joint stationary distributions of
the number of customers for two M2/G2/1 retrial queueing systems with non-preemptive
priority service and different parameters, with respect to stochastic orders.

Theorem 7.1. If λ
(1)
1 ≤ λ

(2)
1 , λ

(1)
2 ≤ λ

(2)
2 , θ(1) ≥ θ(2), B

(1)
1 ≤so B

(2)
1 and B

(1)
2 ≤so B

(2)
2

then joint stationary distribution {π
(1)
ij } ≤so {π

(2)
ij }, where ≤so=≤st or ≤v.
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From Theorem 7.1, we can establish insensitive stochastic inequalities for the joint
stationary distribution of the number of customers in the system at a departure epochs.

Theorem 7.2. Assume that for a single server retrial queue with non-preemptive priority
customers, the service time distribution of the priority customers (class 1) B1(x) and the
service time distribution of ordinary customers (class 2) B2(x) are NBUE (or NWUE),
then the joint stationary distribution πn of the number of customers in the system at
a departure epoch is less (resp. greater), with respect to the convex ordering, than the
joint stationary distribution πexp

n of the number of customers at a departure epochs in the
M2/M2/1 retrial queue with non-preemptive priority customers.

8. Numerical illustration
In this section, we provide numerical examples to validate the results obtained in

Theorem 7.2 using tables and graphs. We develop a simulator, under Matlab environ-
ment, based on discrete event simulation, to investigate the performance measures of the
M2/G2/1 retrial queue with non-preemptive priority customers and to analyze the impact
of the arrival rate of priority customers (λ1) on the system’s performance measures. The
simulator is capable of estimating the joint stationary probabilities πn of the system when
the service time distributions of the priority customers (B1(x)) and the ordinary customers
(B2(x)) are either NBUE (New Better than Used in Expectation) or NWUE (New Worse
than Used in Expectation). We compare the outcomes with those of an M2/M2/1 retrial
queue with non-preemptive priority customers relative to the convex ordering.

Table 1. Different situations taken into consideration during the simulation
study.

πNBUE
lower πexp

n πNW UE
upper

λ1 E2 Wbl(α, β) exp(λ) H2 Γ(α, β)
0.6543 0.7027 0.7941 0.8017 0.8777
0.1772 0.1046 0.1813 0.1867 0.3273

0.1 0.0156 0.0173 0.0181 0.0962 0.0233
0.0003 0.0004 0.0014 0.0141 0.0055
0.4821 0.5019 0.5365 0.5967 0.6996
0.2554 0.2665 0.3334 0.3682 0.3862

0.3 0.0418 0.0766 0.0863 0.1003 0.1482
0.0033 0.0169 0.0243 0.0288 0.0325
0.3472 0.3684 0.4196 0.4870 0.5443
0.3377 0.3355 0.3993 0.4123 0.4122

0.5 0.1036 0.0928 0.1302 0.2135 0.1789
0.0136 0.0185 0.0307 0.0630 0.0540
0.1732 0.1855 0.1876 0.2122 0.2258

0.7 0.0732 0.0780 0.0932 0.1555 0.1283
0.0174 0.0327 0.0314 0.0731 0.0553
0.0041 0.0085 0.0109 0.0141 0.0184
0.2144 0.2151 0.2407 0.2413 0.2931

0.9 0.1648 0.1890 0.1950 0.1962 0.2002
0.0930 0.0854 0.1152 0.1324 0.1395
0.0432 0.0265 0.0403 0.0612 0.0633

To this end, we choose two probability laws of NBUE-type to calculate the lower bound
of the joint stationary distribution πNBUE

lower , namely, a Weibull distribution (Wbl(α, β); α >
1) and a two-step Erlang distribution (E2). Furthermore, we select two other probabil-
ity laws of NWUE-type to compute the lower bound of the joint stationary distribution
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πNW UE
upper , namely a Two-Stage Hyper-Exponential distribution (H2) and a Gamma distri-

bution (Γ(α, β); 0 < α < 1).
We provide a numerical example for a wide range of parameter values that satisfy the

ergodicity condition ρ = ρ1 + ρ2 < 1. Moreover, we assume that the arrival rate of the
ordinary customers is fixed at λ2 = 0.5, and the retrial rate is θ = 0.5. Table 1 summarizes
the considered scenarios in the simulation study.

Discussion of the results :
According to Table 1 and Figures 2–5, for different values of λ1, we have:

• The joint stationary distribution πn of the number of customers in the system at a
departure epochs in the M2/G2/1 retrial queue with non-preemptive priority customers
is greater (resp. lower) than the stationary distribution of the number of customers in
the M2/M2/1 retrial queue with non-preemptive priority customers, where the service
time distribution is NBUE (resp. NWUE). Succinctly, the following inequality holds:{

πNBUE
lower

}
≤v {πexp

n } ≤v

{
πNW UE

upper

}
.

The obtained results perfectly match with those given in Theorem 7.2. In other words,
these results give insensitive bounds for the joint stationary distribution of the consid-
ered embedded Markov chain.

• The impact of the arrival rate of priority customers (λ1) on the joint stationary distri-
bution of the number of customers at departure epochs is illustrated through Figures
2–5. The results show that λ1 has a significant influence on the behavior of the bounds.
Specifically, an increase in λ1 results in an increase in the bounds. It should be noted
that the lower and upper stochastic bounds presented in Theorem 7.2 are dependent
on the value of λ1.

• The behavior of the M2/G2/1 retrial queueing system with priority customers is com-
pared to an M2/M2/1 retrial queue with non-preemptive priority customers in Figures
4 and 5. The results show that when the arrival rate of priority customers, λ1, is
large (i.e., λ1 close to 1), the behavior of the M2/G2/1 retrial queueing system with
priority customers is similar to that of an M2/M2/1 retrial queue with non-preemptive
priority customers. On the other hand, when λ1 tends to 0, the system moves away
from an M2/M2/1 retrial queue with non-preemptive priority customers, as illustrated
in Figures 2 and 3. Consequently, the stochastic bounds presented in this study can
provide a good approximation of the joint stationary probabilities of the considered
model, regardless of the distribution of service times (i.e., NBUE or NWUE).

Remark 8.1. The qualitative bounds obtained in this study have important implications
for robustness analysis. Specifically, our results provide valuable information on the extent
to which deviations from the nominal model can be expected in the presence of input
uncertainty. Theorem 7.2, in particular, provides a uniform bound on the effect of model
insecurity.

In the context of gradient estimation, it is necessary to control the growth of the cycle
length as a function of changes in the model. The results established in this paper may
facilitate the derivation of quantitative estimates for the stationary distribution using
measure valued derivatives (MVD). Furthermore, these results can be translated into
unbiased higher-order derivative estimators with respect to specific parameters, such as
the arrival rate of priority customers (λ1). However, it should be noted that the primary
focus of this paper is not on the derivation of such estimators.
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Figure 2. Lower and upper stochastic bounds for the joint stationary distribution
when λ1 = 0.1.
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Figure 3. Lower and upper stochastic bounds for the joint stationary distribution
when λ1 = 0.3.
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Figure 4. Lower and upper stochastic bounds for the joint stationary distribution
when λ1 = 0.7.
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Figure 5. Lower and upper stochastic bounds for the joint stationary distribution
when λ1 = 0.9.

9. Technical proofs of the results
Proof of Lemma 4.1. By definition of the stochastic order ≤st, we have for a discrete
law, the following equivalence

{
a

k,(1)
ij

}
≤st

{
a

k,(2)
ij

}
⇔ ak

ij

(1)
=

∞∑
m=i

∞∑
n=j

ak,(1)
m,n ≤

∞∑
m=i

∞∑
n=j

ak,(2)
m,n = ak

ij

(2)
.

Equivalently, for k = 1, 2.

ak
ij

(1)
=

∞∑
m=i

∞∑
n=j

∫ ∞

0

(
λ

(1)
1 x

)m

m!
exp(−λ

(1)
1 x)

(
λ

(1)
2 x

)n

n!
exp(−λ

(1)
2 x)dB

(1)
k (x)

=
∫ ∞

0

∞∑
m=i

∞∑
n=j

(
λ

(1)
1 x

)m

m!
exp(−λ

(1)
1 x)

(
λ

(1)
2 x

)n

n!
exp(−λ

(1)
2 x)dB

(1)
k (x)

=
∫ ∞

0

 ∞∑
m=i

(
λ

(1)
1 x

)m

m!
exp(−λ

(1)
1 x)

  ∞∑
n=j

(
λ

(1)
2 x

)n

n!
exp(−λ

(1)
2 x)

 dB
(1)
k (x)

≤
∫ ∞

0

 ∞∑
m=i

(
λ

(2)
1 x

)m

m!
exp(−λ

(2)
1 x)

  ∞∑
n=j

(
λ

(2)
2 x

)n

n!
exp(−λ

(2)
2 x)

 dB
(2)
k (x)

= ak
ij

(2)
. (9.1)

Next, to prove inequality (9.1), we consider the following two functions

hi(x, λ1) =
∞∑

m=i

(λ1x)m

m!
exp(−λ1x), and gj(x, λ2) =

∞∑
n=j

(λ2x)n

n!
exp(−λ2x).
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By taking the derivatives of the function hi(x, λ1) with respect to x and λ1, we get

∂hi(x, λ1)
∂x

=
∞∑

m=i

λ1m
(λ1x)m−1

m (m − 1)!
exp(−λ1x) −

∞∑
m=i

λ1
(λ1x)m

m!
exp(−λ1x)

=
∞∑

m=i

λ1
(λ1x)m−1

(m − 1)!
exp(−λ1x) −

∞∑
m=i

λ1
(λ1x)m

m!
exp(−λ1x)

= λ1
(λ1x)i−1

(i − 1)!
e−λ1x +

∞∑
m=i+1

λ1
(λ1x)m−1

(m − 1)!
e−λ1x −

∞∑
m=i

λ1
(λ1x)m

m!
e−λ1x

= λ1
(λ1x)i−1

(i − 1)!
exp(−λ1x) > 0, ∀x > 0.

In the same way, we have

∂hi(x, λ1)
∂λ1

= x
(λ1x)i−1

(i − 1)!
exp(−λ1x) > 0.

Clearly, the function hi(x, λ1) is an increasing function in x and λ1.

Following the same procedure as above, we compute the derivatives of gj(x, λ2) with
respect to x and λ2. So,

∂gj(x, λ2)
∂x

= λ2
(λ2x)j−1

(j − 1)!
exp(−λ2x) > 0, ∀x > 0,

∂gj(x, λ2)
∂λ2

= x
(λ2x)j−1

(j − 1)!
exp(−λ2x) > 0, ∀x > 0.

Remark that the derivatives of the functions hi(x, λ1) and gj(x, λ2) are positive for all the
positive values of λ1 and λ2, thus the functions hi(x, λ1) and gj(x, λ2) are increasing.

Since the functions hi(x, λ1) and gj(x, λ2) are increasing, then their product is an increas-
ing function. In addition, B

(1)
k ≤st B

(2)
k . Consequently∫ ∞

0
hi(x, λ

(1)
1 )gj(x, λ

(1)
2 )dB

(1)
k (x) ≤

∫ ∞

0
hi(x, λ

(1)
1 )gj(x, λ

(1)
2 )dB

(2)
k (x), k = 1, 2. (9.2)

On the other hand, because of the monotonicity of the product hi(x, λ1)gj(x, λ2) is with
respect to λ1 and λ2, and the fact that λ

(1)
1 ≤ λ

(2)
1 and λ

(1)
2 ≤ λ

(2)
2 , we obtain∫ ∞

0
hi(x, λ

(1)
1 )gj(x, λ

(1)
2 )dB

(2)
k (x) ≤

∫ ∞

0
hi(x, λ

(2)
1 )gj(x, λ

(2)
2 )dB

(2)
k (x) (9.3)

Finally, inequality (9.1) results from (9.2) and (9.3). □

Proof of Lemma 4.2. By definition of the convex order (⩽v), one can write

{
a

k,(1)
ij

}
⩽v

{
a

k,(2)
ij

}
⇐⇒ ak

ij

(1)
=

∞∑
s=i

∞∑
r=j

ak
sr

(1) ⩽
∞∑

s=i

∞∑
r=j

ak
sr

(2)
= ak

ij

(2)
.

Equivalently, we have for k = 1, 2.
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ak
ij

(1)
=

∞∑
s=i

∞∑
r=j

∞∑
m=s

∞∑
n=r

∫ ∞

0

(
λ

(1)
1 x

)m

m!
exp(−λ

(1)
1 x)

(
λ

(1)
2 x

)n

n!
exp(−λ

(1)
2 x)dB

(1)
k (x)

=
∫ ∞

0

∞∑
s=i

∞∑
r=j

∞∑
m=s

∞∑
n=r

(
λ

(1)
1 x

)m

m!
exp(−λ

(1)
1 x)

(
λ

(1)
2 x

)n

n!
exp(−λ

(1)
2 x)dB

(1)
k (x)

=
∫ ∞

0

 ∞∑
s=i

∞∑
m=s

(
λ

(1)
1 x

)m

m!
exp(−λ

(1)
1 x)

  ∞∑
r=j

∞∑
n=r

(
λ

(1)
2 x

)n

n!
exp(−λ

(2)
2 x)

 dB
(1)
k (x)

=
∫ ∞

0

[ ∞∑
s=i

hs(x, λ
(1)
1 )

]  ∞∑
r=j

gr(x, λ
(1)
2 )

 dB
(1)
k (x)

⩽
∫ ∞

0

[ ∞∑
s=i

hs(x, λ
(2)
1 )

]  ∞∑
r=j

gr(x, λ
(2)
2 )

 dB
(2)
k (x) = ak

ij

(2)
. (9.4)

Next, let

hs(x, λ1) =
∞∑

m=s

(λ1x)m

m!
exp(−λ1x), and gr(x, λ2) =

∞∑
n=r

(λ2x)n

n!
exp(−λ2x).

The functions hs(x, λ1) and gr(x, λ2) are increasing with respect to λ1 and λ2, respectively.
Then, the functions defined by

hi(x, λ1) =
∞∑

s=i

hs(x, λ1), and gj(x, λ2) =
∞∑

r=j

gr(x, λ2),

have the same behavior.

On the other side, we have

∂2

∂x2 hi(x, λ1) = λ2
1
(λ1x)i−2

(i − 2)!
exp(−λ1x) > 0,

∂2

∂x2 gj(x, λ2) = λ2
2
(λ2x)j−2

(j − 2)!
exp(−λ2x) > 0.

As a consequence, hi(x, λ1) and gj(x, λ2) are increasing and convex with respect to the
variable x. Hence, the product of these two functions is also increasing and convex with
respect to the variable x. This leads implies∫ ∞

0
hi(x, λ

(1)
1 )gj(x, λ

(1)
2 )dB

(1)
k (x) ≤

∫ ∞

0
hi(x, λ

(1)
1 )gj(x, λ

(1)
2 )dB

(2)
k (x). (9.5)

Also, through the monotonicity of the product of these two functions hi(x, λ1)gj(x, λ2)
with respect to λ1 and λ2, we find∫ ∞

0
hi(x, λ

(1)
1 )gj(x, λ

(1)
2 )dB

(2)
k (x) ≤

∫ ∞

0
hi(x, λ

(2)
1 )gj(x, λ

(2)
2 )dB

(2)
k (x). (9.6)

Finally, inequality (9.4) is obtained from (9.5) and (9.6). □
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Proof of Lemma 4.3. By definition, we have

a(z) =
∞∑

i=0

∞∑
j=0

ak
ijzizj

=
∞∑

i=0

∞∑
j=0

∫ ∞

0

(λ1x)i

i!
exp(−λ1x)(λ2x)j

j!
exp(−λ2x)zizjdBk(x)

=
∫ ∞

0

[ ∞∑
i=0

(λ1xz)i

i!
exp(−λ1x)

]  ∞∑
j=0

(λ2xz)j

j!
exp(−λ2x)

 dBk(x)

=
∫ ∞

0
[exp(−λ1x(1 − z))] [exp(−λ2x(1 − z))] dBk(x)

=
∫ ∞

0
[exp(−x(λ1 + λ2)(1 − z)] dBk(x)

= B̃k((λ1 + λ2)(1 − z)).

In order to prove that
{

a
k,(1)
ij

}
⩽L

{
a

k,(2)
ij

}
, it suffices to establish the following result

for the corresponding generating functions

ak,(1)(z) ⩾ ak,(2)(z).

Equivalently, we have to prove that

B̃
(1)
k ((λ(1)

1 + λ
(1)
2 )(1 − z)) ≥ B̃

(2)
k ((λ(2)

1 + λ
(2)
2 )(1 − z)).

That is,{
a

k,(1)
ij

}
≤L

{
a

k,(2)
ij

}
⇐⇒ B̃

(1)
k ((λ(1)

1 + λ
(1)
2 )(1 − z)) ≥ B̃

(2)
k ((λ(2)

1 + λ
(2)
2 )(1 − z)), (9.7)

But B
(1)
k ≤L B

(2)
k means that B̃

(1)
k (s) ≥ B̃

(2)
k (s), ∀s > 0.

In particular, for s = (λ(1)
1 + λ

(1)
2 )(1 − z), we have

B̃
(1)
k ((λ(1)

1 + λ
(1)
2 )(1 − z)) ⩾ B̃

(2)
k ((λ(1)

1 + λ
(1)
2 )(1 − z)). (9.8)

Since a Laplace transform is a decreasing function, then the inequalities λ
(1)
1 ⩽ λ

(2)
1 and

λ
(1)
2 ⩽ λ

(2)
2 imply the following inequality

B̃
(2)
k ((λ(1)

1 + λ
(1)
2 )(1 − z)) ⩾ B̃

(2)
k ((λ(2)

1 + λ
(2)
2 )(1 − z)). (9.9)

Finally, inequality (9.7) arises from inequalities (9.8) and (9.9). □

Proof of Theorem 5.1. At first, we show that the transition operator is monotone with
respect to the stochastic order. It is enough to check inequality (5.1) through the following
cases

Case 1: If n ⩾ 1, we have:

r(k,n,m)(1,i,j) = a1
i−n+1,j−m.

By definition, we get

r(k,n,m)(1,i,j) =
∞∑

s=i

∞∑
r=j

r(k,n,m)(1,s,r) =
∞∑

s=i

∞∑
r=j

a1
s−n+1,r−m,

r(k,n−1,m−1)(1,i,j) =
∞∑

s=i

∞∑
r=j

a1
s−n+2,r−m+1.
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To prove inequality (5.1), we have

r(k,n,m)(1,i,j) − r(k,n−1,m−1)(1,i,j) =
∞∑

s=i

∞∑
r=j

a1
s−n+1,r−m −

∞∑
s=i

∞∑
r=j

a1
s−n+2,r−m+1

= a1
i−n+1,j−m ⩾ 0.

Hence, inequality (5.1) is satisfied for n = 1.

Case 2: If n = 0, we have:

r(k,n,m)(2,i,j) = λ2
λ1 + λ2 + mθ

a2
i,j−m + mθ

λ1 + λ2 + mθ
a2

i,j−m+1,

such as

r(k,n,m)(2,i,j) =
∞∑

s=i

∞∑
r=j

r(k,n,m)(2,s,r)

=
∞∑

s=i

∞∑
r=j

[
λ2

λ1 + λ2 + mθ
a2

s,r−m + mθ

λ1 + λ2 + mθ
a2

s,r−m+1

]

= λ2
λ1 + λ2 + mθ

a2
i,j−m + mθ

λ1 + λ2 + mθ
a2

i,j−m+1

= λ2
λ1 + λ2 + mθ

a2
i,j−m + λ2 + mθ

λ1 + λ2 + mθ
a2

i,j−m+1

= λ2 + mθ

λ1 + λ2 + mθ
a2

i,j−m − mθ

λ1 + λ2 + mθ
a2

i,j−m,

and

r(k,n−1,m−1)(2,i,j) = λ2
λ1 + λ2 + (m − 1)θ

a2
i,j−m+1 + λ2 + (m − 1)θ

λ1 + λ2 + (m − 1)θ
a2

i,j−m+2

= λ2
λ1 + λ2 + (m − 1)θ

a2
i,j−m+1 + λ2 + (m − 1)θ

λ1 + λ2 + (m − 1)θ
a2

i,j−m+1

− λ2 + (m − 1)θ
λ1 + λ2 + (m − 1)θ

a2
i,j−m+1

= λ2 + (m − 1)θ
λ1 + λ2 + (m − 1)θ

a2
i,j−m+1 − (m − 1)θ

λ1 + λ2 + (m − 1)θ
a2

i,j−m+1.

Finally, we obtain

r(k,n,m)(2,i,j) − r(k,n−1,m−1)(2,i,j) ≥ 0.

Thus, inequality (5.1) is satisfied for n = 0.

Therefore, the operator Θ is monotone with respect to the order ≤st.

Secondly, we prove that the operator Θ is monotone with respect to the convex order.
To do this, it is enough to check inequality (5.2).

Case 1: n ⩾ 1. Let

r(k,n,m)(1,i,j) = a1
i−n+1,j−m,
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with

__
r(k,n,m)(1,i,j) =

∞∑
s=i

∞∑
r=j

r(k,n,m)(1,s,r) =
∞∑

s=i

∞∑
r=j

a1
s−n+1,r−m,

__
r(k,n−1,m−1)(l,i,j) =

∞∑
s=i

∞∑
r=j

a1
s−n+2,r−m+1,

__
r(k,n+1,m+1)(l,i,j) =

∞∑
s=i

∞∑
r=j

a1
s−n,r−m−1.

Therefore

__
r(k,n−1,m−1)(l,i,j) +

__
r(k,n+1,m+1)(l,i,j) − 2

__
r(k,n,m)(l,i,j) =

=
∞∑

s=i

∞∑
r=j

a1
s−n+2,r−m+1 +

∞∑
s=i

∞∑
r=j

a1
s−n,r−m−1 − 2

∞∑
s=i

∞∑
r=j

a1
s−n+1,r−m

=
∞∑

s=i

∞∑
r=j

a1
s−n+2,r−m+1 + a1

i−n,j−m−1 +
∞∑

s=i+1

∞∑
r=j+1

a1
s−n,r−m−1

− 2
∞∑

s=i

∞∑
r=j

a1
s−n+1,r−m

=
∞∑

s=i

∞∑
r=j

a1
s−n+2,r−m+1 + a1

i−n,j−m−1 −
∞∑

s=i

∞∑
r=j

a1
s−n+1,r−m

= a1
i−n,j−m−1 − a1

i−n+1,j−m

= a1
i−n,j−m−1 ⩾ 0.

Thus, inequality (5.2) is verified.

Case 2: n = 0. Let

r(k,n,m)(2,i,j) = λ2
λ1 + λ2 + mθ

a2
i,j−m + mθ

λ1 + λ2 + mθ
a2

i,j−m+1,

such as

__
r(k,n,m)(2,i,j) = λ2 + mθ

λ1 + λ2 + mθ

__
a

2
i,j−m+1 + λ2

λ1 + λ2 + mθ

_
a2

i,j−m

= λ2 + mθ

λ1 + λ2 + mθ

[__
a

2
i,j−m − _

a2
i,j−m

]
+ λ2

λ1 + λ2 + mθ

_
a2

i,j−m

= λ2 + mθ

λ1 + λ2 + mθ

__
a

2
i,j−m − mθ

λ1 + λ2 + mθ

_
a2

i,j−m,

__
r(k,n−1,m−1)(l,i,j) = λ2 + (m − 1)θ

λ1 + λ2 + (m − 1)θ
__
a

2
i,j−m+1 − (m − 1)θ

λ1 + λ2 + (m − 1)θ
_
a2

i,j−m+1,

__
r(k,n+1,m+1)(l,i,j) = λ2 + (m + 1)θ

λ1 + λ2 + (m + 1)θ
_
a2

i,j−m − (m + 1)θ
λ1 + λ2 + (m + 1)θ

_
a2

i,j−m−1.
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Therefore
__
r(k,n−1,m−1)(l,i,j) +

__
r(k,n+1,m+1)(l,i,j) − 2

__
r(k,n,m)(l,i,j) =

= λ2 + (m − 1)θ
λ1 + λ2 + (m − 1)θ

[__
a

2
i,j−m − _

a2
i,j−m

]
− (m − 1)θ

λ1 + λ2 + (m − 1)θ

[_
a2

i,j−m − a2
i,j−m

]
+ λ2 + (m + 1)θ

λ1 + λ2 + (m + 1)θ
__
a

2
i,j−m + λ2

λ1 + λ2 + (m + 1)θ

[_
a2

i,j−m − a2
i,j−m−1

]
−

[
λ2 + mθ

λ1 + λ2 + mθ

(__
a

2
i,j−m − _

a2
i,j−m

)
+ λ2

λ1 + λ2 + mθ

_
a2

i,j−m

]
−

[
λ2 + mθ

λ1 + λ2 + mθ

__
a

2
i,j−m − mθ

λ1 + λ2 + mθ

_
a2

i,j−m

]
,

=
__
a

2
i,j−m

[
− 2θ2λ1

(λ1 + λ2 + mθ)(λ1 + λ2 + (m − 1)θ)(λ1 + λ2 + (m + 1)θ)

]

+ _
a2

i,j−m

[
2θ(mθλ1 + λ1λ2 + θλ2 + λ2

1 + θλ1)
(λ1 + λ2 + mθ)(λ1 + λ2 + (m − 1)θ)(λ1 + λ2 + (m + 1)θ)

]

+ a2
i,j−m

(m − 1)θ
λ1 + λ2 + (m − 1)θ

+ a2
i,j−m−1

λ2
λ1 + λ2 + (m + 1)θ

⩾ 0.

Thus, inequality (5.2) is satisfied for n = 0 and n = 1. Then, the operator Θ is monotone
with respect to the convex order. □
Proof of Theorem 6.1. To show that the two operators are comparable with respect to
the stochastic order, we have to prove the following inequality

r
(1)
(k,n,m)(l,i,j) ≤ r

(2)
(k,n,m)(l,i,j), l = 1, 2. (9.10)

For the case n = 0 and l = 2, inequality (9.10) can be written as follows:

λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2(1)
i,j−m − mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a
2,(1)
i,j−m

≤ λ
(2)
2 + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2(2)
i,j−m − mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a
2,(2)
i,j−m. (9.11)

According to Lemma 4.1, we have{
a

k,(1)
i,j

}
≤st

{
a

k,(2)
i,j

}
. (9.12)

Moreover, we have by hypothesis of Theorem 6.1 that λ
(1)
1 ≤ λ

(2)
1 , λ

(1)
2 ≤ λ

(2)
2 , and θ(1) ≥

θ(2). This implies that
λ

(1)
1 + λ

(1)
2

θ(1) ≤ λ
(2)
1 + λ

(2)
2

θ(2) .

Since the function x → m
x+m is decreasing, we get

mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

≥ mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

. (9.13)

In fact λ
(1)
2 ≤ λ

(2)
2 and θ(1) ≥ θ(2) imply that λ

(1)
2

θ(1) ≤ λ
(2)
2

θ(2) and as the function x → x
x+m is

increasing, then we have
λ

(1)
2

λ
(1)
2 + mθ(1)

≤ λ
(2)
2

λ
(2)
2 + mθ(2)

.

This implies λ
(1)
2 + mθ(1) ≥ λ

(2)
2 + mθ(2).
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From inequalities λ
(1)
1 ≤ λ

(2)
1 and λ

(1)
2 + mθ(1) ≥ λ

(2)
2 + mθ(2), we have

λ
(1)
2 + mθ(1)

λ
(1)
1

≥ λ
(2)
2 + mθ(2)

λ
(2)
1

.

Then, as x → x
x+m , we get

λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

≥ λ
(2)
2 + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

. (9.14)

Using inequalities (9.12)-(9.14), we obtain

r
(1)
(k,n,m)(2,i,j) − r

(2)
(k,n,m)(2,i,j) = λ

(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2(1)
i,j−m − mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a
2,(1)
i,j−m

− λ
(2)
2 + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2(2)
i,j−m + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a
2,(2)
i,j−m

≤ λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2(1)
i,j−m − mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a
2,(2)
i,j−m

− λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2(1)
i,j−m + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a
2,(2)
i,j−m = 0.

Thus, inequality (9.11) is satisfied for the cases n = 0 and l = 2.

Now, for cases n = 0 and l = 1, inequality (9.10) can be written as follows:

λ
(1)
1

λ
(1)
1 + λ

(1)
2 + mθ(1)

a1(1)
i,j−m ≤ λ

(2)
1

λ
(2)
1 + λ

(2)
2 + mθ(2)

a1(2)
i,j−m. (9.15)

In addition, we have
λ2 + mθ

λ1 + λ2 + mθ
= 1 − λ1

λ1 + λ2 + mθ
.

Therefore,
λ

(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

≥ λ
(2)
2 + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

,

can be rewritten as

1 − λ
(1)
1

λ
(1)
1 + λ

(1)
2 + mθ(1)

≥ 1 − λ
(2)
1

λ
(2)
1 + λ

(2)
2 + mθ(2)

.

This gives
λ

(1)
1

λ
(1)
1 + λ

(1)
2 + mθ(1)

≤ λ
(2)
1

λ
(2)
1 + λ

(2)
2 + mθ(2)

. (9.16)

From inequality (9.12) and (9.16), inequality (9.15) is verified.

For cases n ≥ 1 and l = 1, one can write

r(k,n,m)(1,i,j) = a1
i−n+1,j−m.

Then, inequality (9.10) can be written directly as:

a1(1)
i−n+1,j−m ≤ a1(2)

i−n+1,j−m. (9.17)
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Thus, inequality (9.17) is verified using Lemma 4.1. Therefore, inequality (9.10) is verified
∀l = 1, 2.

Next, to show that the two operators are comparable with respect to the convex order,
we have to prove the following inequality

r
(1)
(k,n,m)(l,i,j) ≤ r

(2)
(k,n,m)(l,i,j), l = 1, 2. (9.18)

In case n = 0 and l = 2, we have

r(k,n,m)(2,i,j) = λ2 + mθ

λ1 + λ2 + mθ
a

2
i,j−m − mθ

λ1 + λ2 + mθ
a1

i,j−m.

Then, to obtain (9.18), it suffices to check that

λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2
(1)
i,j−m − mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2(1)
i,j−m ≤

λ
(2)
2 + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2
(2)
i,j−m − mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2(2)
i,j−m. (9.19)

Indeed, according to Lemma 4.2 and by inequalities (9.13) and (9.14), we obtain

r
(1)
(k,n,m)(2,i,j) − r

(2)
(k,n,m)(2,i,j) = λ

(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2
(1)
i,j−m − mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2(1)
i,j−m

− λ
(2)
2 + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2
(2)
i,j−m + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2(2)
i,j−m

≤ λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2
(1)
i,j−m − mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2(2)
i,j−m

− λ
(1)
2 + mθ(1)

λ
(1)
1 + λ

(1)
2 + mθ(1)

a2
(1)
i,j−m + mθ(2)

λ
(2)
1 + λ

(2)
2 + mθ(2)

a2(2)
i,j−m = 0.

Thus, inequality (9.19) is checked.

For the rest of the proof, concerning the convex order, we have to follow the same steps
as in the case of the stochastic order. □
Proof of Theorem 7.1. According to Theorem 6.1, the inequalities λ

(1)
2 ≤ λ

(2)
2 , λ

(1)
1 ≤

λ
(2)
1 , θ(1) ≥ θ2, B

(1)
1 ≤so B

(2)
1 , B

(1)
2 ≤so B

(2)
2 imply Θ(1) ≤so Θ(2), i.e., for any distribution r

we have the following inequality

Θ(1)r ≤so Θ(2)r . (9.20)

From Theorem 5.1, the operator Θ(2) associated with the embedded Markov chain,
of the second system, is monotone. That is, for any two distributions r

(2)
1 , r

(2)
2 such as

r
(2)
1 ≤so r

(2)
2 , we have

Θ(2)r
(2)
1 ≤so Θ(2)r

(2)
2 ,

However, from inequality (9.20), one obtains

Θ(1)r(1) ≤so Θ(2)r(1). (9.21)

Then, there exists a probability r
(2)
1 such that

Θ(2)r(1) ≤so Θ(2)r
(2)
1 . (9.22)
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By combining inequalities (9.21) and (9.22), we get

Θ(1)r(1) ≤so Θ(2)r(2), (9.23)

for any two distributions r(1) and r(2).

Inequality (9.23) can be rewritten as

Θ(1)r(1) = P
(
X

(1)
d = (1, i, j)

)
= P

(
X

(1)
d = (2, i, j)

)
≤so P

(
X

(2)
d = (1, i, j)

)
= P

(
X

(2)
d = (2, i, j)

)
= Θ(2)r(2).

Finally, when d −→ ∞, we have
{

π
(1)
i,j

}
≤so

{
π

(2)
i,j

}
.

□

Proof of Theorem 7.2. Denote by Σ(1) our system (i.e., an M2/G2/1 retrial queue with
a non-preemptive priority customers) with parameters :

• Arrival rate of high-priority customers λ
(1)
1 = λ1,

• Arrival rate of low-priority customers λ
(1)
2 = λ2,

• Retrial rate θ(1) = θ,

• First moment of high-priority customers β
1,(1)
1 = β1

1 ,

• First moment of low-priority customers β
2,(1)
1 = β2

1 .

Next, let Σ(2) be an auxiliary M2/M2/1 retrial queue with a non-preemptive priority
customers having the following parameters :

• Arrival rate of high-priority customers λ
(2)
1 = λ1,

• Arrival rate of low-priority customers λ
(2)
2 = λ2,

• retrial rate θ(2) = θ,

• first moment of high-priority customers β
1,(2)
1 = β1

1 ,
• first moment of low-priority customers β

2,(2)
1 = β2

1 .

With B
(2)
1 ≡ Bexp

1 and B
(2)
2 ≡ Bexp

2 , where

Bexp
1 (x) =

{
1 − e

− x

β1
1 , if x ≥ 0,

0, if x < 0,

Bexp
2 (x) =

{
1 − e

− x

β2
1 , if x ≥ 0,

0, if x < 0.

If Bk(x) is NBUE, then Bk(x) ⩽v Bexp
k (x), k = 1, 2 and if Bk(x) is NWUE, then

Bk(x) ⩾v Bexp
k (x), k = 1, 2 (see Proposition 3.3). Moreover, the following conditions of

Theorem 7.1 are satisfied:

λ
(1)
1 = λ

(2)
1 , λ

(1)
2 = λ

(2)
2 , θ(1) = θ(2), B

(1)
1 (x) ≤v Bexp

1 (x) (respectively, B
(1)
1 (x) ⩾v Bexp

1 (x))
and B

(1)
2 (x) ≤v Bexp

2 (x) (respectively, B
(1)
2 (x) ⩾v Bexp

2 (x)).

Thus, the joint stationary distribution at a departure epoch in the M2/G2/1 retrial queue
with priority customers is less (respectively, greater) than the corresponding joint station-
ary distribution in the M2/M2/1 retrial queue with priority customers if Bk(x), k = 1, 2,
is NBUE (resp., if Bk(x), k = 1, 2, is NWUE). □



1458 H. Hablal, N. Touche, L.M. Alem, A.A. Bouchentouf, M. Boualem

10. Conclusion
This paper examines a non-preemptive priority retrial queue with two types of cus-

tomers, high-priority (class 1) and low-priority (class 2), and different service time distri-
butions. We employ the stochastic comparison method, based on the general theory of
stochastic orders, to derive several stochastic comparison properties in the sense of strong
stochastic ordering and convex ordering. Specifically, the stochastic inequalities provide
simple and insensitive bounds, both lower and upper, for the joint stationary distribu-
tion of the number of customers at departure epochs of a non-preemptive priority retrial
queue. Furthermore, we illustrate the impact of the arrival rate of high-priority customers
on the performance of the retrial queue through numerical examples. These findings have
important implications for practitioners and decision-makers in the design and operation
of non-preemptive priority retrial queues with different customer classes and service time
distributions.

As a direction for future research, similar models with working vacations could be
studied. Additionally, these models could be further investigated with the inclusion of
breakdowns and repairs.

Acknowledgment. The authors express their sincere thanks to the Editor and the
anonymous reviewers for their many useful comments and suggestions on an earlier version
of this manuscript which resulted in this improved version of the manuscript.
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