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 Analysis of maintenance data for a repairable system provides information about the failure 

behavior of the system. Such information is needed for determining preventive maintenance and 

retirement policy for the system. Parametric and non-parametric models can be used for analysis. 

Parametric models require more assumptions about the failure process of the systems under 

consideration compared to non-parametric models. To verify these assumptions statistical 

expertise needed. The purpose of this paper is to show that in practice non-parametric estimator of 

mean cumulative function can be utilized easily to model the failure behavior of a fleet. Mean 

cumulative function estimates the mean number of failures as function of operating hours. The 

method is exemplified on the attitude indicator units of a commercial aircraft fleet. Sampling 

uncertainty of the estimates is quantified by normal approximation confidence intervals.        
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1. Introduction 

Many expensive and complex systems are repairable 

such as aircrafts, ships, nuclear power plants and 

production systems.  Preventive maintenance is performed 

on a repairable system to keep it in the operating state and 

corrective maintenance is performed on a repairable 

system to return it to the operating state. Repeated 

maintenance actions produce data that composed of failure 

times, failure modes, preventive maintenance times, repair 

times etc. By analyzing this data, one gets valuable 

information about the failure behavior of the system under 

consideration, such as mean cumulative number of failures 

at a particular time, mean time between failures, and 

recurrence rate of failures.  Then, this information is used 

for establishing a maintenance plan or evaluating the 

effectiveness of an existing plan.  

Maintenance data is in the class of recurrence data since 

maintenance actions repeat in time. Methods used in the 

analysis of recurrence data can be categorized as 

parametric and non-parametric. Parametric models are 

defined based on the behavior of the recurrence rate of 

failures (ROCOF) and the distribution of inter failure times 

[1]. These models are called counting processes. There are 

different counting process models for different forms of 

ROCOFs. Determining a suitable counting process model 

is quite a challenge and needs expertise in statistics [2-6]. 

Counting process models can be classified as given below 

Rausand and Høyland [7]: 

• Perfect Repair models: It is assumed that the system 

state after repair is just like a new system (“as good as 

new”). Therefore, the recurrence rate of the failures 

are constant in time. Homogeneous Poisson process 

(HPP) and Renewal process (PR) are in this class. 

• Minimal Repair models: It is assumed that the system 

state after repair is same as just before the failure (“as 

bad as old”). Therefore, the recurrence rate of the 

failures is function of time. Non-homogeneous 

Poisson process (NHPP) is in this class. 

• Imperfect repair models: It is assumed that the system 

state after repair is in between as good as new and as 

bad as old. Therefore, the recurrence rate of the 

failures is function of time. Generalized renewal 

process (GRP) and trend-renewal process (TRP) are in 

this class. 

Each model has additional assumptions on probability 

distribution of times between failures. The detailed 

information about the counting process models can be find 

in Cook and Lawless [8]. Before using a specific 
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parametric model, statistical tests have to be applied to 

show that problem at hand satisfy the assumptions of the 

model. If single system is modeled trend test are enough 

for choosing the appropriate model [9]. In the case of 

multiple repairable systems modeling, also homogeneity 

tests should be performed. If the systems are 

heterogeneous, they should be grouped into smaller 

homogeneous groups and each group should be analyzed 

separately. Garmabaki, Ahmadi [10] developed a 

comprehensive framework for deciding a suitable 

parametric model in the case of multiple repairable 

systems.  More information on the trend tests and 

homogeneity tests can be found in Kvaløy and Lindqvist 

[11], Rigdon and Basu [12], Kvaløy and Lindqvist [13], 

Viertävä and Vaurio [14], Shen, Cassottana [15], Kvaløy 

and Lindqvist [16]. 

In practice, wrong models can be selected without 

probabilistic understanding of the models and overlooking 

the need for applying trend and homogeneity tests. Ascher 

and Hansen [17] discusses the common wrong use of HPP 

model. They showed that fitting a probability distribution 

to non-stationary times between failures (they are not 

identically distributed) leads wrong parametric model 

selection. Also, Trindade and Nathan [4] attention to the 

problem of using HPP without justifying the assumptions 

of the model. Ascher [18] emphasized the importance of 

the understanding of the statistical properties of the 

maintenance data. They exemplified the wrong model 

selection on three data sets. As another difficulty, Trindade 

and Nathan [6] stated that “parametric model estimation is 

computationally intensive and parametric models are not 

intuitive to the average person performing data analysis to 

address customer reliability concerns”. They also observed 

that in practice the required statistical tests are not 

performed for model selection. Noticing this problem 

researchers developed non-parametric methods for 

analyzing recurrence data [3, 5, 6, 19-21]. 

Non-parametric models are based on the estimation of 

the mean cumulative function (MCF) for a population of 

systems. At a certain time point, each system in the 

population has usually different cumulative number of 

failures. The average of these cumulative numbers is the 

mean cumulative number of failures per system for that 

time point. The graph of the mean cumulative number of 

failures versus time is called as Mean Cumulative Function 

(MCF).  

Before reviewing the literature on non-parametric MCF 

estimation, data types that encountered in reliability 

analyses have to be discussed. Each data type has its own 

statistical properties, so data type specific non-parametric 

estimators have to be developed. Reliability data types for 

repairable system can be categorized as follows. For 

detailed information on data types please see [6]: 

• Complete data: Complete data occurs when we now 

the number of failures and their exact occurrence 

times. 

• Left censored data: Left censored data occurs when 

we know that a failure occurs before a certain time but 

we do not know the exact failure time.  

• Interval censored data: Interval censored data occurs 

when we know that a failure occurs in a specific 

interval but we do not know the exact failure time.  

• Right censored data: Right censored data occurs when 

the item under observation is still in working 

condition at the end of the observation period.  

• Left truncated data: Left truncated data occurs when 

we do not have any information regarding the number 

and times of failures before a certain time. 

• Window observation data: Window observation data 

occurs when observation of the systems is done in 

time windows with possible gaps between the 

windows. During the gaps there is no observation so 

that number of systems at risk is zero for that time 

periods. 

For the complete and right censored data, an unbiased 

nonparametric estimator of MCF is developed by Nelson 

[3]. For this estimator, a non-parametric approximate 

confidence interval was constructed by Nelson [22]. For 

left and interval censored data an unbiased non-parametric 

estimator of MCF is developed by Nelson [23]. In this 

study the author also discussed the required assumptions 

for the MCF estimate to be valid. In case of window 

observation data the regular non-parametric estimators of 

MCF would be inconsistent due to the periods without 

data. Zuo, Meeker [24] extended the non-parametric 

estimator of the MCF for window-observations.  

Sometimes observation of the systems could start much 

after their start of use resulting the left truncated data. 

Trindade and Nathan [6] developed the non-parametric 

estimate of MCF for this case. Jiang, Li [25] showed that 

Nelson’s estimator is not robust after the observation 

period when units have different censoring times and 

developed a robust estimator for this case.  

The purpose of this paper is to show that non-parametric 

estimate of the MCF can be utilized easily to model failure 

behavior of multiple systems on the example of the 

Attitude Indicator (AI) units for a commercial aircraft 

fleet. This estimate would provide the useful information 

for maintenance planning and evaluation. 

 

2. MCF and its non-parametric estimate 

For a single system, there is only one cumulative history 

function, N(t) which represents the cumulative number of 

failures occurring by time t. When there is a population of 

systems, each one of them would has its own cumulative 

history function, 𝑵𝒊(𝒕) , i = 1,2,..,n. At any age t, the 

cumulative number of failures will be usually different for 
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each system so there will be a probability distribution of 

cumulative number of failures at each time point. The 

mean of these distributions as a function of time is called 

MCF which gives the mean number of failures occurring 

by a certain time for per system. Figure 1 depicts this idea. 

In Figure 1, as examples the distribution of cumulative 

number of failures at time points 3 and 5 is shown. Mean 

of these distributions for all time points construct the MCF 

which is the black curve in Figure 1 and named as M(t).  

Slope of MCF is called Rate of Occurrence of Failures 

(ROCOF). As a function of time t, ROCOF gives the mean 

number of failures per system at time t. Form of ROCOF 

gives information about the failure process. If ROCOF is 

increases by time, then times between failures are decrease 

and MCF has a convex shape. If ROCOF is decreases by 

time, then times between failures are increase and MCF 

has a concave shape. If ROCOF is constant in time, then 

times between failures have identical distribution and 

MCF has a linear shape. Figure 2 shows different shapes 

of MCF. 

 

 

 
Figure 1. MCF and distributions of cumulative number of 

failures as a function of time [26]. 

 

 
Figure 2. MCFs with (a) increasing, (b) constant, and (c) 

decreasing recurrent rate [26]. 

MCF provides the following important information 

about the failure behavior of multiple systems: 

• Mean number of failures occurring as a function of 

time for per system in the fleet 

• Trend of failure behavior 

• Slope of the MCF gives the ROCOF. 

Maintenance data can have different details. For 

example, failure times can be known exactly (complete 

data), known to be in an interval (interval censored data), 

known to be less than a certain time (left censored data) 

and known to be greater than a certain time (right censored 

data). Since a system can fail in different ways, failures 

modes also can be recorded as a part of maintenance data. 

This situation is called as mix events in counting process 

terminology. Non-parametric estimators of MCF should 

take into consideration the different details of maintenance 

data. Nelson [27] provides unbiased non-parametric 

estimates of MCF for different data details.  

In our example, maintenance data of AI units are 

complete and right censored and failure modes are not 

recorded so there is only one kind of event that is failure. 

For this settings of the data, William and Escobar [28] 

gives an algorithm for the calculation of Nelson’s unbiased 

point wise non-parametric estimate of MCF as follows: 

1. Order the unique recurrence times t i j among all 

of the n systems. Let m denote the number of 

unique times. These ordered unique times are 

denoted by tl < … < tm. 

2. Compute di(tk), the total number of recurrences 

for system i at tk. 

3. Let δi(tk ) = 1 if system i is still being observed at 

time tk and δi(tk ) = 0 otherwise. 

4. Compute 
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for 𝑗 = 1,… ,𝑚 , where 𝑑. (𝑡𝑘) = ∑ 𝛿𝑖(𝑡𝑘)𝑑𝑖(𝑡𝑘)
𝑛
𝑖=1 , 

𝛿. (𝑡𝑘) = ∑ 𝛿𝑖(𝑡𝑘)
𝑛
𝑖=1 , and �̅�(𝑡𝑘) = 𝑑. (𝑡𝑘) 𝛿. (𝑡𝑘)⁄ , where 

�̂�(𝑡𝑗) is the estimate of MCF at jth failure time, d.(tk) is the 

total number of system recurrences at time tk, δ.(tk) is the 

number of units observed at tk , and �̅�(𝑡𝑘) is the average 

number of recurrences per system at tk.  Point wise 

estimate of MCF will be a step function, jumping at failure 

times. Normal approximation confidence intervals for the 

estimate are given in (2). Details of the calculation of 

Confidence Interval (CI) are given in William and Escobar 

[28]. 
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𝑠�̂��̂�(𝑡)  is the estimated standard error of MCF and 

(𝑍1−𝛼 2⁄ )  is the value of a normal distribution at 

significance level 𝛼. 

In next section, MCF for AI units calculated using the 

above algorithm. Also, to quantify the sampling 

uncertainty normal approximation confidence intervals are 

calculated using Equation (2). 

 

3. Estimate of the MCF for AI units 

An AI unit shows the aircraft’s orientation relative to 

Earth’s horizon and gives on immediate indication of the 

smallest orientation change. Therefore, it is very important 

that an AI unite works without failure for safety of a flight. 

In this paper, maintenance data for 27 AI units is 

analyzed to evaluate the failure behavior of the units. 

These AI units are used in a commercial aircraft fleet. They 

are subjected to both preventive and corrective 

maintenance. According to the preventive maintenance 

plan, an AI unit goes through a benchmark at every 3000 

flight hours and an overhaul at every 6000 flight hours.  

Analyzed maintenance data consists of the corrective 

maintenance dates of the AI units. An AI unit is given a 

unique identification number (ID) and traced in the 

maintenance system by its ID.  Table 1 summarizes the 

corrective maintenance data. According to table AI 16, AI 

23 and AI 27 have the least number of failures which is 

one failure.  AI 5 has the maximum number of failures 

which is 12. Based on Table 1, the total number of failures 

for the whole sample of AI units is 123 failures. 

Event plots of recurrence data provides first information 

about trend behavior of the occurrences of events. For our 

case events are failures of the AIs. Event plots of the AIs 

are given in Figure 3. Cross marks represent the failure 

points of an AI. From Figure one, it seems that AIs are 

failed more often as flight hours increases. Therefore, we 

expect to see a convex MCF. 

 

Table 1. The AI units that have a certain number of failures.  

Number of 

Failures 
1 2 3 4 5 6 7 8 9 10 11 12 

Number of 

AIs 
3 4 3 7 4 0 2 1 0 1 1 1 

AIs’ ID 
16; 23; 

27 

3; 13; 

19; 24 

9; 18; 

21 

1; 6; 

10; 14; 

20; 25; 

26 

7; 12; 

15; 22 
- 2; 17 4 - 11 8 5 

 
Figure 3. Event plot for units of AI. 
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Figure 4. MCF for AI units. 

Table 2. Value of MCF for each 3000 flight-hour interval. 

Flight Hours (h) MCF 

3000 0,285 

6000 1,003 

9000 1,799 

12000 2,413 

15000 3,150 

18000 4,014 

21000 5,679 

24000 7,978 

27000 8,748 

30000 9,272 

33000 9,743 

36000 11,282 

 

The estimate of MCF and 95 % CI are given in Figure 4. 

Doted vertical lines in the figure show the approximate 

overhaul times. Fort the first 6000 flight hours MCF has a 

convex shape indicating an increasing recurrence rate. 

According to the existing maintenance plan first, second and 

third overhauls is performed on approximately at 6000, 

12000 and 18000 flight hours. Between 6000-18000 flight 

hours MCF is approximately linear indicating a constant 

recurrence rate. This shows the effectiveness of the overhauls 

for that period. Between 18000-20600 flight hours it is linear 

with bigger slope. Since the overhauls are performed on the 

same quality, this might be the result of the starting wear out 

effect of the AI units. After 20600 flight hours MCF is 

convex again indicating increasing recurrence rate. This 

shows that the wear out of AI units sets in. Only one system 

is observed after 23626 flight hours. Looking at this analysis 

of the graph of MCF overhauls has positive effect on the 

reliability of the AI units and they are effective. But when the 

wear out sets in, it decreases the effectiveness of overhauls.  

Estimated values of MCF at every 3000 flight hours per 

aircraft are given in Table 2. Estimate of mean cumulative 

number of failures for the fleet of 40 aircrafts can be 

calculated multiplying the estimates given in Table 2 by 

40.  For example, up to and including 6000 flight hours it 

is expected to observe approximately 40 failures for the 

whole fleet. 

 

4. Conclusions 

Non-parametric analysis of the maintenance data easy 

and quick to apply and provides valuable information 

about the failure process for planning the maintenance 

actions. As a population model, MCF gives the estimate of 

cumulative number of failures as a function of time. Shape 

of MCF gives information about the trend of failures. For 

the AI units ROCOF is increasing in the early part of the 

life pointing that overhaul is necessary. First and second 

overhauls showed the effect of linear ROCOF.  Starting 

wear out resulted an approximately linear MCF with 

bigger slope between third and fourth interval. After the 

fourth overhaul MCF becomes convex as wear out sets in. 

In this example we used non-parametric estimate of MCF 

for evaluating the existed preventive maintenance plan. 
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