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1. Introduction

The concept of the crossed module is an algebraic model described by Whitehead for classifying homotopy
2-types [1]. It has attracted the attention of many researchers. This notion initially introduced in groups
has also naturally appeared in various algebraic cases as commutative and associative algebras, Lie and
Lie-Rinehart algebras, etc, [2-9]. Kassel and Loday studied the classification of central extensions of Lie
algebras and crossed modules of Lie algebras in [10]. In [11], Casas and Ladra studied some properties of
the category of crossed modules of Lie algebras. Ellis constructed the coproduct of crossed modules of Lie
algebras with the same base of Lie algebras [12]. D. Conduché introduced one of the models beyond the
algebraic 2-type and called 2-crossed modules [13] (For studies of homotopy, see [14-16]). In [17], Carrasco
and Porter developed the coproduct of 2-crossed modules. Some of the related works for algebraic models

associated with homotopy 3-type can be found in [18-21].

In this study, we focus on quadratic modules of Lie algebras, one of the algebraic 3-type model, developed
by Baues for group case, and whose homotopy structure is defined [22]. The Lie algebra version of this
model was introduced in the [23] studied by Ulualan and Uslu, while the studies in [24, 25] rely on quadratic
module of commutative algebras. A different homotopy relation for quadratic modules of Lie algebras is
constructed in [26, 27]. We will construct the finite coproduct objects in the category of quadratic modules
suggested in Remark 3 given in [17]. For the construction of the coproduct of quadratic modules of Lie

algebras with the same base of nil(2)-module, we will follow a construction technique similar to that used
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to built the coproduct structure of crossed modules of Lie algebras. The coproduct of two crossed modules
with the same base object is the associated crossed module: see [28, Chapter 4]. The tool that we will use
while upgrading the dimension of this construction will be the concept of quasi-quadratic modules given in
[29]. Any quadratic module is a quasi-quadratic module. In more detail, the category of quadratic modules
is a reflexive subcategory of the category of quasi-quadratic modules, and an associated quadratic module
functor is defined as follows:

)r22.4

QM

In our study, using the above functor, which is left adjoint to the inclusion functor, we will define the co-
product of two quadratic modules with the same base of 7i/(2)-module as the associated quadratic module

to their coproduct in the category of quasi-quadratic modules.
2. Preliminaries

Let k be a commutative ring with unit and we will refer to a Lie algebra over k as a Lie algebra, and the Lie

bracket multiplication will be denoted as [—, —].
2.1.Lie Algebra Actions

Let Z and Y be Lie algebras over k, a k-bilinear map Z x Y — Y, (z,y) — z * y, is called a Lie algebra action

of Z on Y, if the below equations are verified:

L1) zx[y,y1=[z*yy1+[y,z* Y
L2) [z,Z]xy=z* (2 xy)—2 x(z2x )
foreachz,z’e Zand y,y €Y.

2.2. Crossed Modules of Lie Algebras

A crossed module of Lie algebras, (Y EA Z), consists of Lie algebras Y and Z with a left Lie algebra action

“x1” of Zon Y, and a Lie algebra homomorphism 9: Y — Z satisfying the following conditions:
XMod;1: 0(z*1y) =[z,0(y)],forallze Zand ye Y
XMod;2: 0(y) *1y =1[y,y],forally,y' €Y

Note that “XMod; 2" is called the Peiffer identity, [10].

Example 2.1. Let I be a Lie ideal of a Lie algebra Z with i : I — Z the inclusion, in this case Z acts on the
left I by conjugation and the inclusion Lie homomorphism i makes (I Lz ), into a crossed module of Lie
algebra.

Let (Y LN Z)and (Y’ LN Z') are crossed modules of Lie algebras, a morphism, f = (fi, fo) : (¥ LN Z)— (Y LN

Z) of crossed modules consists of Lie algebra homomorphisms f; : Y — Y’ and fy: Z — Z’ such that

L4 6/f1 =f06

e filz*x1y) = fo(2) *} i(y)
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forall Z € Z and y € Y. Thus, this means that the “f” morphism *; preserves the Lie algebra action, and the

diagram below makes it commutative:

Together with these definitions, we can define the category of crossed modules over Lie algebras by denoting
it as XMody.. If we fix the base of the crossed module, the Z Lie algebra, then XMody,/Z will be the category

of crossed Z-modules, which is a subcategory of XModj..

2.3. Quadratic Modules of Lie Algebras

A quadratic module of Lie algebras £ = (X 2y2 Zw(-le [-])) is a diagram:

CeoC
/‘
[}
X Y Z
5 o

of Lie algebra homomorphisms between Lie algebras such that QMy,1, QMy.2, QMy.3, and QM4 hold:

QMy1: The homomorphismd:Y — Zisanil(2)-moduleand Y — C =Y /[Y",Y“"] is defined by y — [y]
and @ is defined by
O([y11® [y21) =0(y1) *1 y2 — [y1, 2l

fory1,y2 €Y,

QM;.2: The boundary Lie homomorphisms composition of d and 6 satisfy 60 = 0 and the quadratic map w

is a lift of the Peiffer commutator map @, that is 6w = ® or equivalently

Sw=0([y1]1® [y2]) =0(31) *1 Y2 — [¥1, 2]

for y;,m e,

QM;.3: X isaLie Z-algebra, all of the homomorphisms in the diagram are Z-equivariant, and the action of

Z on X also holds the following equality

0y x3x=w((6)]® [yl +[yl®[6(x)])

forxe Xand yeY,

QM_p4: For all x;, x» € X commutators in X satisfy the formula

o([6(x1)] ® [6(x2)]) = [x2, x1]
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Remark 2.2. It should be noted that (X 2, Y) is a crossed module, with
y*2x=w(6(x)]e[y])

for each y € Y and x € X. On the other hand, generally, (Y 2, Z) is only a nil(2)-module.
Remark 2.3. By QM 3, we have:

0y x3x—y*2x=0w(yl®[6(x)])
where *, is a Lie action of Y on X.

Lemma2.4. Let £ = (X 2y2 zw(-le [-1)) be a quadratic module of Lie algebras and consider the “x,”

and “x3” Lie algebra actions. Then for all z€ Z and y;, y2, y3 € Y, we have:

z*x3w([y1]1®[y2]) w([z*1 1] @ [y2]) +w([y1] ® [z *1 y2]) 2.1)

o([[y1,y211 ® [y3]) 0(y1) *3w([y2] ® [y3]) + w([y1] ® [[y2, ¥311) (2.2)
—0(y2) *3w([y1]1 ® [¥3]) —w([y2]1 ® [[y1, ¥3]])

y2x20([y1l @ [y3]) —yz x20((y1] ® [y2]) (2.3)

o([y1l e [[y2, y3ll)

Example 2.5. Thanks to any nil/(2)-module (Y 2z ), we define a quadratic module as follows:

CeC
/‘
[}
X Y Z
@ 3

Example 2.6. If & = (X o, Y LN Z,w([-]® [-])) is a quadratic module, then Imé is a Lie ideal of Y and we

have there is an induced crossed module structure on

0

Y/Imé Z.

Let £=(Xx2v2 Zw(l-1e[-))and £’ = (x' Ly’ L.

morphism of quadratic modules of Lie algebras given by a diagram

Z',0'([-1®[-])) be two quadratic modules, a

W o 0

CoC X Y Z
o] A
C'eC' X' Yy’ VA
w’ & 0

where (f1, fo) is a morphism between rnil(2)-modules which induced ¢. : C — C’ and where

filzx1y) = fol2)*] (y)
fo(2) %5 fo(x)
o' ([ilyDl e [fi(y2)])

fo(z*3%)

Lo(nlely))
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forallze Z, y,y1,y2 € Y and x € X. We will denote by QMj, the category of quadratic modules of Lie algebras
and by QMy/(Y 2. 7) the subcategory of quadratic modules of fixed nil(2)-module (Y ° Z).

2.4. Quasi-Quadratic Modules of Lie Algebras

A quasi-quadratic module of Lie algebras is a semiexact sequence

x—2 .y 9 .z

of Z-Lie algebras together with an w quadratic map

w(-]®[-]):CeC——X

suchthat 22411, 22 .42, 2243, and 22 .4 ;4 hold:

292.411: Forall yy,y2,y3€Y,

Sw([y1]1®[y2]) =Pyl ® [y2]) =0(y1) *1 y2 — (1, 2!

QM2
o(lynydl®lys)) = 0(y1) *swy2] e [y3]) + ] @ [[y2, y31DI
—0(y2) x3w([y1]1 ® [y3]) —w(y2] ® [[y1, ¥31D)
29413
w([(y1]® [[y2, y311) = y2 x2 w([y1] ® [y3]) — ¥3 *2 w([y1] ® [y2])
QM A:

[w([11] ® [¥2]),0(¥1) *3 (¥2 *2 X)] = w([0(y1) *1 [V2,0x]]1 ® [w([y1] ® [¥2]])

Quasi-quadratic module morphisms are defined in the same way as quadratic module morphisms. We will

denote the category of quasi-quadratic module of Lie algebras by 22 .4 .

Furthermore, any quadratic module of Lie algebras is a quasi-quadratic module of Lie algebras, and we can
construct a quadratic module of Lie algebras associated with a quasi-quadratic module of Lie algebras (see

in [29, Lemma 3.2 and Lemma 3.4 ]). There exists an adjunction as below:

(_)Cr
/\
- o

3. Finite Coproducts in the Category of Quadratic Modules of Lie Algebras

oM

3.1. The Coproduct of Crossed Modules of Lie Algebras

In this section, we recall the definition of a coproduct object of crossed modules of Lie algebras given by
[12].
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Let (Y o g, xy) and (X 2% 7, x) be two crossed Z-modules of Lie algebras. As follows, Y has a left Lie
algebra action on X:
Y xX X (3.1

(1 X) —————y*x=0y(}) *x X

Thus, we can define X x Y a semidirect product Lie algebra. Considering the left Lie algebra action of Z on

X x Y, we define the following Lie algebra homomorphism:

0:XxY Z

(x,y) ——=0((x,y)) = 0x(x) + 3, ()

for (x,y) e X xY.

Naturally, (X x Y 2 Z, ) is a pre-crossed Z-module:

d(z* (x,)) 0(z*xx x, 2%y y))

= 0(zxxXx,2xyY)

= [2,0x(0)]+[z,0y(y)]
= [z,0x+0y ()]

= [z,0((x, )]

forallze Zand (x,y) e X x Y. Let I be an ideal of X x Y generated by the elements below
[(x,1),(x, ¥ =0((x, ) * (X', y)

forall (x,y),(x',y) e X x Y.

Moreover, we have:

[(x, 1), (X", ¥N1=0((x, y) = (X', y) ([, X1+ y*xx' =y *x,[y,¥'1) = (Ox (x) + Oy () * (', ¥))
= ([x,X1+0y () *xx' =0y (y) *x x,[y,¥']
—(Ox(x) xx X' +0y () *x x',0x(x) *x Y + 3y (y) xy ¥)

= ([x,X1+0y () *xx' =0y () xx x—0x(x) xx x' =0y (1) *x X', [, ¥']

-0x(x)*y y' =0y (y) xy y)

(=0y(y) *x x,—0x(x) *y y")

This means I is generated by the elements:

(=0y () *x x,—0x(x) xy ¥')
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Consider 8(I) = 0. Then, for each (x, y) € X x Y, we get the following induced morphism:

0:(XxY)I 7

((x, ) + 1) —— 0((x, y) + 1) = 0 (x) + 0, (y)

For all (x, y), (x’, ") € X x Y, this structure gives us the crossed module definition:

0((x, )+ D = (X, y)+1) Ox(x)+0y () * (x",y)+ D
= OxxX)*xxx'+0y(y)*xx',0x(x) %y y
+0y (W) xy Y +1
= (5 xXT+0yM*y X' =0y (YN xxx, [y, y'D+1

= [(x,»+ L,y )+11 (.-XModr2))

With these structures, we have the crossed module of Lie algebra ((X x Y)/I 2z ), which is the coproduct
object in XMody /Z.

3.2.The Coproduct of Quadratic Modules of Lie Algebras

Let
CcCeC CeC
w1 w2
& = @ and % = ®
Xi—5—~Y—5—~Z Xo—5—V—5—~2Z

be two quasi-quadratic module over (Y %z ). Thus we have
0101([y1] ® [y2]) = G202 ([y1]1 ® [y21) = 0(y1) *1 y2 — [y1, Y2l
for all y;,y, € Y. Then let I be the Lie ideal of X; x X, generated by the elements:

(qro1(n] ® [y2)), grw2([y1] ® [y2]))

where g; = +1 and q1 # g».

Now let us define quadratic map.

o(-1®[-):CeC (X % Xo)/ T

v, y2) ————=o(y11® [y2]) = (w1 (1] ® [y2]),0) + 1
=0,w2([y1]®[y21)) +1

by considering (w; ([y1] ® [y2]), —w2([y1] ® [y2])) € I.
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Moreover, Y acts on X; X X»/1 as follows:

oY x(XgxXo/1) X1} Xol1

3 (0, )+ D ————yo (6, XN+ D= (y*2x,y*2x )+ 1

forall y € Y and (x, x') € X; X Xp. Additionally, using S(I) = 0, we have induced morphism as follows:

S:(Xy X X))/ Y

((x1,x2) +1)

5((x1,%2) + 1) = 81(x1) +82(x2)

217

Theorem 3.1. The pair of £ = ((X; X X2)/I 5y? Z,o([-1®[-1),0,¢) is a quasi-quadratic module which is
the coproduct object of £; and %, in the category of 2.4 /(Y o Z).

Proof.

First we need to show that £ is a quasi-quadratic module. For this we need to provide 22.4 1, 22 .42,

2413, and 22 .4 ;4 axioms:

QQ./%LIZ

dba(lyl®ly) = d(wi(ly1] ®I[y21),0)+1)

QQ./%LZZ

o([[y1, y2ll®[ys]) =

Q2 .M;13:
(] ®[ly2, 31D

= S(wi([y1]®[y2]),0)+6(I)
= 61w ([y1l®[y2])

= 0(y1) *1y2—[y1,¥2]

(1([[y1, y211® [y3D),0) + 1

0(y1) *3w1([y2l ® [y3] + w1 ([y1] ® [[y2, y311)

=0(y2) x3w1([y1] @ [y3]) —w((y21® [[y1,y31D),0) + I

0(y1) *3w1([y21® [¥3]),0) + I + (w1 ([y1]) ® [[¥2, y311),0) + 1
+(=0(y2) *3w1([y11 @ [¥3]),0) + [ + (—w1([y2]) ® [[y1, 31D, 0) + 1
0(y1) x3 o[yl ® [y3]) + @[yl ® [[y2, y31D)

—=0(y2) *3w([y1l ® [ys]) — @ ([y21 ® [[y1, y31D)

= (w1lnlellyz y31D,0 +1

= (r2oi((nl®lys)) —ys+2w1([y1]1@[y21),0) +1

= (erx2oi(nlelysl,00+1—(ys*2w1([y1]1®[y2]),0) + 1
= Yex2 (011 ®[ys],0)+1—ys*2 (1)) ®[y2]),0) + 1

= yeoo(nlelys]) —yzea((yil®[y2])
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QQ./%L4:

[(w1([y1]1® [y2]),0) + I, (0(y1) *3 (2 *2 X1),0(y1) *3 (2 *2 X2)) + ]

[@([y1]1® [¥2]),0(¥1) *3 (Y20 (X1, Xx2) + I)]
= (w1l ely2D),0(1) *3 (y2 *2 X1)] + 0% (O(y1) *3 (2 *2 x1))
—(0(1) *3 (y2 %2 x2)) * w1([y1]1 ® [y2]),[0,0(y1) *3 (Y2 *2 x2)1) + 1
= (01(0(y1) *1 [y2,61(x1 ® [0(y1) *1 y2 — [y1, 21D
—=02(0(y1) *3 (y2 *3 x2)) *2 w1 ([y1] ® [¥21),0) + I
= (w1([0(1) *1 [y2,01(x))1 ® [0(y1) *1 Y2 — [y1, ¥21])
+w1([0(31) *1 [¥2,02(x)11 ® [0(y1) *1 2 — [¥1, ¥211),0) + I
= (01([0(y1) *1 [y2,61(x1) + 62(x) 11 @ [0(y1) *1 Y2 = [y1, ¥21D,0) + 1

= @([0(y1) *1 [y2,6((x1,%2) + DI ® [0(y1) *1 Y2 — [y1, y21])

forall yy,y2, y3€ Y and (x1,x2) + I € (X x Xo)/1.

Furthermore, the canonical morphisms are given by

) o
X ! Y 9 A X, 2 Y 9 A
h Jo
(X1 2 Xo) I 1 —— Y —— Z (XX —— Y —— A

where j;, t = 1,2, composition Xt L (X1 % X») — (X1 % Xo)/1, i; is canonical inclusion in the semidirect

product and second morphism is quotient homomorhism:

(X % Xo) T X'

(X1, %2) + | ———— f*((x1, x2) + D) = fi(x1) + fa(x2)

which satisfies the universal property of coproduct object with the following commutative diagram com-

pletes the proof.

x2vlz) (X1>4X2)/I—>Y Sn—L  (xp2viz

;

(x Ly
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i1 . . J2
X! Ji(x1) = (x1,0) (0, x2) = J2(x2) )
q q
Q((xl,o)) = (xlvo) +1 (O, xZ) +I= q((OyXZ))
h - - f
rr r*

ff((x1,0+D=filx)+£0)=filx1)  fAO+x2)+ 1) = f1(0) + fo(x2) = fa(x2)

Corollary 3.2. Consider the “(—)¢"” functor and adjunction given in [29]. If &} = (X o, Y LN Z ,wl([—]_®[—]))
and % = (Xo e, Y s, Z,wo([-]®[-])) are QML/(Yi Z), then applying functor (—)¢" to ((X; x Xo)/1 2, Y 9,
Z,0([-] ® [-])) with the morphism u; : X; &, (X1 X X2)/ T — (X1 % X)/I)¢", gives the coproduct object of
%1 and %, in the category of QMp /(Y 9, 7).

We denote the coproduct object of £, and %, by

01 X400
(1% L) = Xy, Xp — 2%y 0 z

4, Conclusion

In this paper, we constructed finite coproduct objects in the category of quadratic modules of Lie algebras
with the same base as the nil/(2)-module. This structure can be generalised by changing the base. This con-
struction can be defined for other algebraic cases and thus may reveal important structures for nonabelian

algebraic topology or categorification.
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