Abstract

In this paper, we first introduced the steps that need to be taken to get the set-family that goes with a hoarded graph, as well as an example of how these steps could be used. Then, we explained what a topological hoarded graph is and showed when a set-family induced by a topological hoarded graph is a topology on a set. We also presented some useful facts about topological hoarded graphs.

1. Introduction

A subfamily $S^{(n)}_m$ (or shortly $S^{(n)}$) of n-times-iterated power set of a set X is called a n-set-family on X. In particular, we use the convention that the 0-set-family $S^{(0)}$ is a subset of X. We denote m-times generalized union of a family $S^{(n)}$ by $\bigcup^m S^{(n)}$, that is,

$$\bigcup^m S^{(n)} = \bigcup_{m \text{ times}} S^{(n)}$$

where $1 \leq m \leq n$. For simplicity, we adopt the convention $\bigcup^0 F^{(n)} = F^{(n)}$. Let I be a partially ordered set with the least element. An indexed family $\{A_i\}_{i \in I}$ whose the least-indexed element is empty, i.e., in which $A_0 = \emptyset$ where $i_0 = \min I$ is said to be first-empty. We denote the set of all integers $\geq k$ and $\leq n$ where $k, n \in \mathbb{Z}$ by I_{nk}.

Given a digraph $G = (V, A)$. The sets of heads and tails of all arcs in G is denoted by $V_h(G)$ and $V_t(G)$, respectively. Hence the set $V(G)$ of its all endpoints is union of $V_t(G)$ and $V_h(G)$. Furthermore, we denote the set of all heads of all v-tailed arcs in G by $V_h(G; v)$, or in short $V_h(v)$; and similarly the sets of all tails of all v-headed arcs in G by $V_t(G; v)$, or in short $V_t(v)$. A path in G whose the first and last vertices are in V' and V'', respectively, where $V', V'' \subseteq V$, is denoted by $p_{V', V''}$. Especially, we prefer to use the element of that set in the notation if V' or V'' is a singleton, and the dot symbol is used instead of unknown sets in the notation $p_{V'_1, \ldots, V''_n}$. The set of last vertices of all directed paths $p_{V_0 \rightarrow W}$ in G where $W \subseteq V$ is denoted by $V_t(v \rightarrow W; G)$, or in short $V_t(v \rightarrow W)$, and similarly the set of first vertices of all directed paths $p_{W \rightarrow v}$ in G by $V_t(W \rightarrow v; G)$, or in short $V_t(W \rightarrow v)$. We prefer to use the notation $V_t(v)$ and $V_f(v)$ instead if W is not particular. The length of a directed path in G is the number of arcs on it. A directed path with length n in G is called a n-directed path. Let $G[A']$ denote a subgraph G' of G. Also, we denote a vertex-induced subgraph by $V' \subseteq V$ of G by $G[V', V']$, and denote an edge-induced subgraph by $A' \subseteq A$ of G by $G[A', A']$ (for detailed information, see [1-3, 6-11]). The pair v, w of vertices in G is called semiconnected if G contains a directed path from v to w or vice versa; the pair is called non-semiconnected if they are not semiconnected (see [5]).

We introduced the notion of cumulative graph as a subclass of acyclic digraphs [4]. We recall that a n-cumulative graph $G = (V, A, B)$ with first-empty indexed families $V = \{V_i\}_{i \in I^I}$, $A = \{A_i\}_{i \in I^I}$ and $B = \{B_i\}_{i \in I^I}$ is an acyclic digraph $G = (\bigcup V, \bigcup (A \cup B))$ satisfying the following : (i) $V_i = V(G[A_i, A_{i+1}]) \bigcup V_t(G[B_i, B_{i+1}]),$ and for every integer $1 \leq i < n$, $V_i = V(G[A_i, A_{i+1}]) \bigcup V_t(G[B_i, B_{i+1}]) \bigcup V_h(G[B_i, B_{i+1}]).$ (ii) for every $1 \leq i \leq n$, $Vw \in A_i$ and $ws \in B_i \Rightarrow vs \notin A_i,$ (iii) for every $1 \leq i \leq n$, $Vw \in A_i$ and $ws \in B_i \Rightarrow vs \notin B_i$.

*Corresponding author: kadirhanpolat@agri.edu.tr

Received: 06.10.2022, Accepted: 15.03.2023
2. A Set-family Corresponding to A Hoarded Graph

We introduced the definition of a cumulative graph in our previous paper [4]. The main motivation for this definition was to specify a particular class of graphs that would correspond to a n-set-family. It is natural to ask for which class of graphs there is a set-family corresponding to any graph of that class. To answer this question, we give the following definition.

Definition 1. A n-hoarded graph $G = (V, A, B)$ with pairwise disjoint families $V = \{V_i\}_{i \in I_n}, A = \{A_i\}_{i \in I_n}$ and $B = \{B_i\}_{i \in I_n}$ is an acyclic digraph $G = (\cup V, \cup (A \cup B))$ which satisfies the following conditions:

1. For every $2 \leq i \leq n$, the endpoints of every arc in A_i belong to V_i while tails of every arc in B_i belong to V_i and the set of heads of all arcs in B_i equals to V_{i-1}.
2. If a vertex in V_i precedes that in V_j on some directed path in G, then $i \geq j$.
3. If u_1, u_2, \ldots, u_m with $m \geq 3$ is a directed path in G every arc of which belongs to A_i for some $2 \leq i \leq n$, then $u_1 u_m \in A_i$.
4. For every $2 \leq i \leq n$, $vw \in A_i$ and $ws \in B_i \Rightarrow vs \in B_i$.

For every distinct pair u, v of vertices in some V_i with $1 \leq i \leq n$, there exists a vertex w such that w is the last vertex of some directed path with the first vertex u but not that of any directed path with the first vertex v.

In the paper [4], we have shown the steps to obtain the $(n + 1)$-cumulative graph induced by a n-set-family. Now we introduce the steps to be taken to get the $(n - 1)$-set-family corresponding to a n-hoarded graph $G = (V, A, B)$.

Step 1 We set $\mathcal{F} = V_n$.

Step 2 We perform the following steps from $i = n$ to 2.

Step 2.1 We substitute the set $\cup V_h(G[i], A_i); v)$ for each vertex v occurring in \mathcal{F}.

Step 2.2 We substitute the set $V_h(G[i], B_i); v)$ for each vertex v occurring in \mathcal{F}.

After performing the above steps, the resulting \mathcal{F} is the set-family corresponding to the hoarded graph G.

Example 2. Let $G = (V, A, B)$ be a 4-hoarded graph with $V = \{V_i\}_{i \in I_4}, A = \{A_i\}_{i \in I_4}$ and $B = \{B_i\}_{i \in I_4}$ where

$V_1 = \{v_1, \ldots, v_6\}, V_2 = \{v_7, \ldots, v_{10}\},$

$V_3 = \{v_{11}, \ldots, v_{14}\}, V_4 = \{v_{15}, v_{16}, v_{17}\},$

$A_2 = \{v_8 v_7, v_9 v_7, v_{10} v_9\},$

$A_3 = \{v_{13} v_{11}, v_{14} v_{11}, v_{14} v_{12}\},$

$A_4 = \{v_{16} v_{15}, v_{17} v_{16}\},$

$B_2 = \{v_8 v_1, v_9 v_3, v_8 v_4, v_9 v_1, v_9 v_2, v_9 v_3, v_9 v_6, v_{10} v_5\},$

$B_3 = \{v_{11} v_7, v_{12} v_{10}, v_{13} v_9, v_{14} v_{18}\},$

$B_4 = \{v_{16} v_{11}, v_{16} v_{13}, v_{17} v_{12}, v_{17} v_{14}\}$

as Figure 1.

Figure 1. An example of a hoarded graph.

We first set $\mathcal{F} = V_4 = \{v_{15}, v_{16}, v_{17}\}$. For $i = 4$, we write $\mathcal{F} = \{v_{15}, v_{16} \cup v_{15}, v_{17} \cup v_{16} \cup v_{15}\}$ since $V_4 = v_{15} \cup \emptyset = v_{15}$.

$V_4(G[i, A_4]; v_{16}) = v_{16} \cup \{v_{15}\} = v_{16} \cup v_{15}$

$V_4(G[i, A_4]; v_{17}) = v_{17} \cup \{v_{15}\} = v_{17} \cup v_{15}$

And since

$V_4(G[i, B_4]; v_{15}) = \emptyset,$

$V_4(G[i, B_4]; v_{16}) = \{v_{11}, v_{13}\},$

$V_4(G[i, B_4]; v_{17}) = \{v_{12}, v_{14}\}$

we get $\mathcal{F} = \{\emptyset, \{v_{11}, v_{13}\}, \{v_{11}, v_{12}, v_{13}, v_{14}\}\}$. Then by performing Step 2 for $n = 3$, we get

$V_3(G[i, A_3]; v_{11}) = v_{11} \cup \emptyset = v_{11},$

$V_3(G[i, A_3]; v_{12}) = v_{12} \cup \emptyset = v_{12},$

$V_3(G[i, A_3]; v_{13}) = v_{13} \cup \{v_{11}\} = v_{13} \cup v_{11},$

$V_3(G[i, A_3]; v_{14}) = v_{14} \cup \{v_{11}, v_{12}\}$

$= v_{14} \cup v_{12} \cup v_{11}.$

So, we obtain

$\mathcal{F} = \{\emptyset, v_{11}, v_{13} \cup v_{11}, \{v_{11}, v_{12}, v_{13}, v_{14}\} \}.$

Then we write

$V_3(G[i, B_3]; v_{11}) = \{v_7\},$

$V_3(G[i, B_3]; v_{12}) = \{v_{10}\},$

$V_3(G[i, B_3]; v_{13}) = \{v_9\},$

$V_3(G[i, B_3]; v_{14}) = \{v_8\}$
which yield
\[F = \{\emptyset, \{v_7\}, \{v_7, v_9\}, \{v_7, v_9, v_{10}\}\}, \]

Continuing Step 2, we rewrite
\[F = \{\emptyset, \{v_7\}, \{v_7, v_9\}, \{v_7, v_9, v_{10}\}\}, \]

because
\[V_h(G[1, 2]; v_7) = v_7 \cup \emptyset = v_7, \]
\[V_h(G[2, 2]; v_8) = v_8 \cup \bigcup \{v_7\} = v_8 \cup v_7, \]
\[V_h(G[2, 2]; v_9) = v_9 \cup \bigcup \{v_7\} = v_9 \cup v_7, \]
\[V_h(G[2, 2]; v_{10}) = v_{10} \cup \bigcup \{v_9\} = v_{10} \cup v_9 \cup v_7. \]

In the sequel, we find as
\[V_h(G[1, 2]; v_7) = \emptyset, \]
\[V_h(G[2, 2]; v_8) = \{v_1, v_3, v_4\}, \]
\[V_h(G[2, 2]; v_9) = \{v_1, v_2, v_3, v_6\}, \]
\[V_h(G[2, 2]; v_{10}) = \{v_5\} \]

and hence we finally get
\[F = \{\emptyset, \emptyset, \{v_1, v_2, v_3, v_6\}\}, \]
\[\{\emptyset, \{v_1, v_3, v_4, v_5\}, \emptyset, \{v_1, v_2, v_3, v_6\}\}, \]
\[\emptyset, \{v_1, v_3, v_4\}, \{v_1, v_3, v_4, v_5\}\}. \]

3. Topological Hoarded Graphs

We first introduce the definition of topological hoarded graph:

Definition 3. A 2-hoarded graph \(G = (V, \mathcal{A}, \mathcal{B}) \) with \(V = \{V_1, V_2\}, \mathcal{A} = \{A_2\} \) and \(\mathcal{B} = \{B_2\} \) is called a topological hoarded graph and denoted by \(G = (V_1, V_2, A_2, B_2) \) if it satisfies the following conditions:

1. There exists a vertex in \(V_2 \) that is the tail of no arc in \(G \).
2. For every vertex \(v \) in \(V_1 \), there exists a vertex \(u \in V_2 \) in which a directed path from itself to \(v \) exists.
3. For any subset of mutually two non-semiconnected vertices in \(V_2 \), there exists a vertex \(v \) in \(V_2 \) such that \(G \) contains a dipath from \(v \) to \(v \) for each vertex \(s \) in \(S \).

For any non-semiconnected pair \(u, v \) of vertices in \(V_2 \), if \(G \) contains pairs of directed paths with the first vertices \(u, v \) and the same last vertex \(v \), then there exists a vertex \(v \in V_2 \) such that \(G \) contains pairs of \(v \)-headed arcs with the tails \(u, v \) on these directed paths.

Theorem 4. If \(G = (X, Y, A, B) \) be a topological hoarded graph, then \(X \) equipped with the 1-set-family \(\tau \) corresponding to \(G \) is a topological space.

Proof. Let us first show that \(\tau \) contains the empty set. From Definition 3(3), there exists a vertex \(y \) in \(Y \) such that \(y \) is not the tail of any arc in \(G \). When we first perform Step 1 to obtain 1-set-family \(\tau \) corresponding to \(G \), we get \(\tau = Y \). In Step 2.1, we write
\[y \cup \bigcup V_h(G[A]; y) = y \cup \emptyset = y \]
instead of \(y \) in \(\tau \) since \(y \) is not the tail of any arc in \(G \).

In Step 2.2, since \(y \) is not the tail of any arc in \(G \), we replace \(y \) in \(\tau \) with
\[V_h(G[B]; y) = \emptyset \]
which means that \(\tau \) contains \(\emptyset \).

Now we show that \(\tau \) contains the set \(X \). Assume that \(X \notin \tau \). It implies that \(X \neq V_h(G[B]; y) \) for every occurrence \(y \) in \(\tau \) obtained by applying Step 2.1. Then for every occurrence \(y \) in \(\tau \) obtained by applying Step 2.1, there exists a point \(x \in X \) such that \(x \notin V_h(G[B]; y) \) which contradicts Definition 3(3). So \(X \in \tau \).

Given a subfamily \(\{U_i\}_{i \in I} \) of \(\tau \), let’s show that \(\tau \) contains \(U_{i \in I} U_i \). If \(U_{i = 0} \emptyset \) for a particular \(i_0 \in I \), then \(U_{i = 0} U_{i = 1} \) for every \(i \in I \). If \(\emptyset \) is a subset of \(U_{i = 1} U_{i = 1} \) for every distinct indices \(i, j \in J \). For each \(i \in J \), \(U_i \) corresponding some vertex \(v_i \in Y \) is obtained by applying Step 2.1 and Step 2.2. From Definition 3(3), there exists a vertex \(w \) in \(Y \) such that \(G \) contains a dipath from \(w \) to \(v_i \) for every \(i \in J \). Therefore, \(U_{i = 1} U_{i = 1} W \) is a subset of \(\tau \).

Let \(U \) and \(V \) be members of \(\tau \). Finally, if we show that \(U \cap V \in \tau \), then we complete the proof. If \(U \) does not intersect \(V \), then \(U \cap V = \emptyset \in \tau \). If \(U \subseteq V \) or \(V \subseteq U \), then it is clear that \(U \cap V = U \in \tau \) or \(U \cap V = V \in \tau \). In the other case, \(U \) and \(V \) corresponding some vertices \(u, v \in Y \), respectively, are obtained by performing Step 2.1 and Step 2.2. Since \(U \cap V \neq \emptyset \) and \(U \not= V \) and \(V \not= U \), \(G \) contains pairs of directed paths with the first vertices \(u, v \) and the same last vertex \(w \) in \(X \) that corresponds to each point \(p \in U \cap V \). From Definition 3(3), there exists a vertex \(w \) in \(Y \) such that \(G \) contains pairs of \(w \)-headed arcs with the tails \(u, v \) on these directed paths. Just after performing Step 2.1 and Step 2.2, we obtain an \(U \cap V = W \) in \(\tau \).

Example 5. Let \(G = (X, Y, A, B) \) be a topological hoarded graph where
\[
X = \{v_1, ..., v_6\}, Y = \{v_7, ..., v_{19}\},
\]
\[
A = \{v_8v_7, v_7v_6, v_{10}v_8, v_{10}v_9, v_11v_6, v_12v_9, v_{13}v_{10},
v_{13}v_{11}, v_{14}v_{10}, v_{14}v_{12}, v_{15}v_{11}, v_{15}v_{12}, v_{16}v_{13},
v_{16}v_{14}, v_{16}v_{15}, v_{17}v_{14}, v_{18}v_{16}, v_{18}v_{17}, v_{19}v_{18}\},
\]
\[
B = \{v_8v_1, v_9v_2, v_{11}v_3, v_{12}v_5, v_{17}v_6, v_{19}v_4\}
\]
as Figure 5.

\[
V_h(G[\cdot, A_2]; v_7) = v_7 \cup \emptyset = v_7,
\]
\[
V_h(G[\cdot, A_2]; v_8) = v_8 \cup \bigcup \{v_7\} = v_8 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_9) = v_9 \cup \bigcup \{v_7\} = v_9 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{10}) = v_{10} \cup \bigcup \{v_9, v_3\} = v_{10} \cup v_9 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{11}) = v_{11} \cup \bigcup \{v_9, v_3\} = v_{11} \cup v_9 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{12}) = v_{12} \cup \bigcup \{v_9\} = v_{12} \cup v_9 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{13}) = v_{13} \cup \bigcup \{v_{10}, v_{11}\} = v_{13} \cup v_{10} \cup v_9 \cup v_8 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{14}) = v_{14} \cup \bigcup \{v_{10}, v_{12}\} = v_{14} \cup v_{12} \cup v_9 \cup v_8 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{15}) = v_{15} \cup \bigcup \{v_{11}, v_{12}\} = v_{15} \cup v_{12} \cup v_9 \cup v_8 \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{16}) = v_{16} \cup \bigcup \{v_{13}, v_{14}, v_{15}\} = v_{16} \cup \cdots \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{17}) = v_{17} \cup \bigcup \{v_{14}\} = v_{17} \cup \cdots \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{18}) = v_{18} \cup \bigcup \{v_{16}, v_{17}\} = v_{18} \cup \cdots \cup v_7,
\]
\[
V_h(G[\cdot, A_2]; v_{19}) = v_{19} \cup \bigcup \{v_{18}\} = v_{19} \cup \cdots \cup v_7.
\]

And since
\[
V_h(G[\cdot, B_2]; v_7) = \emptyset, V_h(G[\cdot, B_2]; v_9) = v_9, V_h(G[\cdot, B_2]; v_{13}) = \emptyset,
\]
\[
V_h(G[\cdot, B_2]; v_1) = v_1, V_h(G[\cdot, B_2]; v_{15}) = \emptyset,
\]
\[
V_h(G[\cdot, B_2]; v_3) = v_3, V_h(G[\cdot, B_2]; v_{16}) = \emptyset,
\]
\[
V_h(G[\cdot, B_2]; v_{10}) = \emptyset, V_h(G[\cdot, B_2]; v_{17}) = \{v_9\},
\]
\[
V_h(G[\cdot, B_2]; v_{11}) = \{v_3\}, V_h(G[\cdot, B_2]; v_{18}) = \emptyset,
\]
\[
V_h(G[\cdot, B_2]; v_{12}) = \{v_5\}, V_h(G[\cdot, B_2]; v_{19}) = \{v_4\},
\]
\[
V_h(G[\cdot, B_2]; v_{13}) = \emptyset,
\]
we get
\[
F = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}, v_{17}, v_{18}, v_{19}\},
\]
which can easily be proved to be a topology on \(X\).

4. Conclusion and Suggestions

We first give a concept of an \(n\)-hoarded graph to which there exists a \((n-1)\)-set family corresponding. We present the steps to be performed to get the corresponding \(n\)-set-family, and we have shown the results of these steps in an example. We then introduced the concept of a topological hoarded graph. Above all, we show that \(X\) equipped with the \(1\)-set-family \(\tau\) corresponding to a topological hoarded graph \(G = (X, Y, A, B)\) is a topological space. And finally, we have confirmed this fact with an example.
References