Bitlis Eren Üniversitesi Fen Bilimleri Dergisi

BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE ISSN: 2147-3129/e-ISSN: 2147-3188 VOLUME: 12 NO: 1 PAGE: 33-37 YEAR: 2023 DOI:10.17798/bitlisfen.1184983

Topological Hoarded Graphs

Kadirhan POLAT1*

¹Department of Mathematics, Faculty of Science and Letter, Ağrı, 04100, Türkiye (ORCID: 0000-0002-3460-2021)

Keywords:Hoardedgraph.AbstractTopologicalhoardedgraph,In this parTopology.that goes

In this paper, we first introduced the steps that need to be taken to get the set-family that goes with a hoarded graph, as well as an example of how these steps could be used. Then, we explained what a topological hoarded graph is and showed when a set-family induced by a topological hoarded graph is a topology on a set. We also presented some useful facts about topological hoarded graphs.

1. Introduction

A subfamily $\mathcal{S}_X^{(n)}$ (orshortly $\mathcal{S}^{(n)}$) of *n*-timesiterated power set of a set *X* is called a *n*-set-family on *X*. In particular, we use the convention that the 0set-family $\mathcal{S}^{(0)}$ is a subset of *X*. We denote *m*-times generalized union of a family $\mathcal{S}^{(n)}$ by $\coprod^m \mathcal{S}^{(n)}$, that is,

$$\coprod^m \mathcal{S}^{(n)} = \underbrace{\bigcup \cdots \bigcup}_{m \text{ times}} \mathcal{S}^{(n)} \tag{1}$$

where $1 \le m \le n$. For simplicity, we adopt the convention $\bigsqcup^0 \mathcal{F}^{(n)} = \mathcal{F}^{(n)}$. Let *I* be a partially ordered set with the least element. An indexed family $\{A_i | i \in I\}$ whose the least-indexed element is empty, *i.e.*, in which $A_{i_0} = \emptyset$ where $i_0 = \min I$ is said to be *first-empty*. We denote the set of all integers $\ge k$ and $\le n$ where $k, n \in \mathbb{Z}$ by I_n^k .

Given a digraph G = (V, A). The sets of heads and tails of all arcs in *G* is denoted by $V_h(G)$ and $V_t(G)$, respectively. Hence the set V(G) of its all endpoints is union of $V_t(G)$ and $V_h(G)$. Furthermore, we denote the set of all heads of all *v*-tailed arcs in *G* by $V_h(G; v)$, or in short $V_h(v)$; and similarly the sets of all tails of all *v*-headed arcs in *G* by $V_t(G; v)$, or in short $V_t(v)$. A path in *G* whose the first and last vertices are in *V'* and *V''*, respectively, where $V', V'' \subseteq V$, is denoted by $p_{V' \to V''}$. Especially, we prefer to use the element of that set in the notation if *V'* or *V''* is a singleton, and the dot symbol is used

instead of unknown sets in the notation $p_{V' \to V''}$. The set of last vertices of all directed paths $p_{\nu \to W}$ in G where $W \subseteq V$ is denoted by $V_1(v \to W; G)$, or in short $V_l(v \rightarrow W)$, and similarly the set of first vertices of all directed paths $p_{W \to v}$ in G by $V_f(W \to v; G)$, or in short $V_f(W \to v)$. We prefer to use the notation $V_l(v)$ and $V_f(v)$ instead if W is not particular. The length of a directed path in G is the number of arcs on it. A directed path with length n in G is called a *n*-directed *path.* Let G[G'] denote a subgraph G' of G. Also, we denote a *vertex-induced subgraph* by $V' \subseteq V$ of G by $G[V', \cdot]$, and denote an *edge-induced subgraph* by $A' \subseteq A$ of G by $G[\cdot, A']$ (for detailed information, see [1-3, 6-11]). The pair v, w of vertices in G is called semiconnected if G contains a directed path from v to w or vice versa; the pair is called *non-semiconnected* if they are not semiconnected (see [5]).

We introduced the notion of cumulative graph as a subclass of acyclic digraphs [4]. We recall that a *n*-cumulative graph $G = (\mathcal{V}, \mathcal{A}, \mathcal{B})$ with first-empty indexed families $\mathcal{V} = \{V_i\}_{i \in I_n^0}, \mathcal{A} = \{A_i\}_{i \in I_n^1}$ and $\mathcal{B} = \{B_i\}_{i \in I_n^1}$ is an acyclic digraph $G = (\bigcup \mathcal{V}, \bigcup(\mathcal{A} \cup \mathcal{B}))$ satisfying the following : (*i*) $V_n = V(G[\cdot, A_n]) \cup V_t(G[\cdot, B_n])$, and for every integer $1 \le i < n, V_i = V(G[\cdot, A_i]) \cup V_t(G[\cdot, B_i]) \cup V_h(G[\cdot, B_{i+1}])$, (*ii*) for every $1 \le i \le n, vw \in A_i$ and $ws \in A_i \Rightarrow vs \notin A_i$, (*iii*) for every $1 \le i \le n, vw \in A_i$ and $ws \in B_i \Rightarrow vs \notin B_i$.

Received: 06.10.2022, Accepted: 15.03.2023

2. A Set-family Corresponding to A Hoarded Graph

We introduced the definition of a cumulative graph in our previous paper [4]. The main motivation for this definition was to specify a particular class of graphs that would correspond to a n-set-family. It is natural to ask for which class of graphs there is a set-family corresponding to any graph of that class. To answer this question, we give the following definition.

Definition 1. A *n*-hoarded graph $G = (\mathcal{V}, \mathcal{A}, \mathcal{B})$ with pairwise disjoint families $\mathcal{V} = \{V_i\}_{i \in I_n^1}, \mathcal{A} = \{A_i\}_{i \in I_n^2}$ and $\mathcal{B} = \{B_i\}_{i \in I_n^2}$ is an acyclic digraph $G = (\cup \mathcal{V}, \cup (\mathcal{A} \cup \mathcal{B}))$ which satisfies the following conditions:

(1) For every $2 \le i \le n$, the endpoints of every arc in A_i belong to V_i while tails of every arc in B_i belong to V_i and the set of heads of all arcs in B_i equals to V_{i-1} .

(2) If a vertex in V_i precedes that in V_j on some directed path in G, then $i \ge j$.

(3) If $u_1 u_2 \dots u_m$ with $m \ge 3$ is a directed path in G every arc of which belongs to A_i for some $2 \le i \le n$, then $u_1 u_m \notin A_i$.

(4) For every $2 \le i \le n$, $vw \in A_i$ and $ws \in B_i \Rightarrow vs \notin B_i$.

For every distinct pair u, v of vertices in some V_i with $1 \le i \le n$, there exists a vertex w such that w is the last vertex of some directed path with the first vertex u but not that of any directed path with the first vertex v.

In the paper [4], we have shown the steps to obtain the (n + 1)-cumulative graph induced by a *n*-set-family. Now we introduce the steps to be taken to get the (n - 1)-set-family corresponding to a *n*-hoarded graph $G = (\mathcal{V}, \mathcal{A}, \mathcal{B})$.

Step 1 We set $\mathcal{F} = V_n$.

Step 2 We perform the following steps from i = n to i = 2,

Step 2.1 We substitute the set $v \cup \bigcup V_h(G[\cdot, A_i]; v)$ for each vertex v occurring in \mathcal{F} .

Step 2.2 We substitute the set $V_h(G[\cdot, B_i]; v)$ for each vertex v occuring in \mathcal{F} .

After performing the above steps, the resulting \mathcal{F} is the set-family corresponding to the hoarded graph G. **Example 2.** Let $G = (\mathcal{V}, \mathcal{A}, \mathcal{B})$ be a 4-hoarded graph with $\mathcal{V} = \{V_i\}_{i \in I_4^1}$, $\mathcal{A} = \{A_i\}_{i \in I_4^2}$ and $\mathcal{B} = \{B_i\}_{i \in I_4^2}$ where

$$V_1 = \{v_1, \dots, v_6\}, V_2 = \{v_7, \dots, v_{10}\}, \\V_3 = \{v_{11}, \dots, v_{14}\}, V_4 = \{v_{15}, v_{16}, v_{17}\}, \\A_2 = \{v_8v_7, v_9v_7, v_{10}v_8\}, \\A_3 = \{v_{13}v_{11}, v_{14}v_{11}, v_{14}v_{12}\},$$

$$\begin{array}{l} A_4 = \{v_{16}v_{15}, v_{17}v_{16}\}, \\ B_2 = \{v_8v_1, v_8v_3, v_8v_4, v_9v_1, v_9v_2, \\ v_9v_3, v_9v_6, v_{10}v_5\}, \\ B_3 = \{v_{11}v_7, v_{12}v_{10}, v_{13}v_9, v_{14}v_8\}, \\ B_4 = \{v_{16}v_{11}, v_{16}v_{13}, v_{17}v_{12}, v_{17}v_{14}\} \\ \text{as Figure 1.} \end{array}$$

Figure 1. An example of a hoarded graph.

We first set $\mathcal{F} = V_4 = \{v_{15}, v_{16}, v_{17}\}$. For i = 4, we write $\mathcal{F} = \{v_{15}, v_{16} \cup v_{15}, v_{17} \cup v_{16} \cup v_{15}\}$ since $V_h(G[\cdot, A_4]; v_{15}) = v_{15} \cup \emptyset = v_{15}$,

$$V_h(G[\cdot, A_4]; v_{16}) = v_{16} \cup \bigcup_{\{v_{15}\}} \{v_{16}\} = v_{16} \cup v_{15},$$
$$V_h(G[\cdot, A_4]; v_{17}) = v_{17} \cup \bigcup_{\{v_{16}\}} \{v_{16}\}$$
$$= v_{17} \cup v_{16} \cup v_{15}.$$

And since

$$V_h(G[\cdot, B_4]; v_{15}) = \emptyset,$$

$$V_h(G[\cdot, B_4]; v_{16}) = \{v_{11}, v_{13}\},$$

$$V_h(G[\cdot, B_4]; v_{17}) = \{v_{12}, v_{14}\},$$

we get $\mathcal{F} = \{ \emptyset, \{v_{11}, v_{13}\}, \{v_{11}, v_{12}, v_{13}, v_{14}\} \}$. Then by performing Step 2 for n = 3, we get

by performing step 2 for h = 5, we get $V_h(G[\cdot, A_3]; v_{11}) = v_{11} \cup \emptyset = v_{11},$ $V_h(G[\cdot, A_3]; v_{12}) = v_{12} \cup \emptyset = v_{12},$ $V_h(G[\cdot, A_3]; v_{13}) = v_{13} \cup \bigcup \{v_{11}\} = v_{13} \cup v_{11},$ $V_h(G[\cdot, A_3]; v_{14}) = v_{14} \cup \bigcup \{v_{11}, v_{12}\}$ $= v_{14} \cup v_{12} \cup v_{11}.$

So, we obtain

 $\mathcal{F} = \{\emptyset, \{v_{11}, v_{13} \cup v_{11}\},\$

 $\{v_{11}, v_{12}, v_{13} \cup v_{11}, v_{14} \cup v_{12} \cup v_{11}\}\}.$ Then we write

$$V_h(G[\cdot, B_3]; v_{11}) = \{v_7\}, \\V_h(G[\cdot, B_3]; v_{12}) = \{v_{10}\}, \\V_h(G[\cdot, B_3]; v_{13}) = \{v_9\}, \\V_h(G[\cdot, B_3]; v_{14}) = \{v_8\}$$

which yield

$$\mathcal{F} = \left\{ \emptyset, \left\{ \{v_7\}, \{v_7, v_9\} \right\}, \\ \left\{ \{v_7\}, \{v_{10}\}, \{v_7, v_9\}, \{v_7, v_8, v_{10}\} \right\} \right\}$$
Continuing Step 2, we rewrite
$$\mathcal{F} = \left\{ \emptyset, \left\{ \{v_7\}, \{v_7, v_9 \cup v_7\} \right\}, \left\{ \{v_7\}, \{v_{10} \cup v_8 \cup v_7\}, \\ \{v_7, v_9 \cup v_7\}, \{v_7, v_8 \cup v_7, v_{10} \cup v_8 \cup v_7\} \right\} \right\}$$
because
$$V_h(G[\cdot, A_2]; v_7) = v_7 \cup \emptyset = v_7, \\V_h(G[\cdot, A_2]; v_8) = v_8 \cup \bigcup \left\{ v_7 \right\} = v_8 \cup v_7, \\V_h(G[\cdot, A_2]; v_9) = v_9 \cup \bigcup \left\{ v_7 \right\} = v_9 \cup v_7, \\V_h(G[\cdot, A_2]; v_{10}) = v_{10} \cup \bigcup \left\{ v_8 \right\} = v_{10} \cup v_8 \cup v_7. \\\text{In the sequel, we find as} \\V_h(G[\cdot, B_2]; v_7) = \emptyset, \\V_h(G[\cdot, B_2]; v_9) = \{v_1, v_3, v_4\}, \\V_h(G[\cdot, B_2]; v_9) = \{v_1, v_2, v_3, v_6\}, \\V_h(G[\cdot, B_2]; v_{10}) = \{v_5\} \\\text{and hence we finally get} \\\mathcal{F} = \left\{ \emptyset, \left\{ \{\emptyset\}, \{\emptyset, \{v_1, v_2, v_3, v_6\} \right\}, \\\left\{ \emptyset, \{v_1, v_3, v_4\}, \{v_1, v_3, v_4, v_5\} \right\} \right\} \right\}.$$

3. Topological Hoarded Graphs

We first introduce the definition of topological hoarded graph:

Definition 3. A 2-hoarded graph $G = (\mathcal{V}, \mathcal{A}, \mathcal{B})$ with $\mathcal{V} = \{V_1, V_2\}, \ \mathcal{A} = \{A_2\}$ and $\mathcal{B} = \{B_2\}$ is called a *topological hoarded graph* and denoted by $G = (V_1, V_2, A_2, B_2)$ if it satisfies the following conditions: (1) There exists a vertex in V_2 that is the tail of no arc in G.

(2) For every vertex v in V_1 , there exists a vertex $u \in V_2$ in which a directed path from itself to v exists.

(3) For any subset *S* of mutually two nonsemiconnected vertices in V_2 , there exists a vertex vin V_2 such that *G* contains a dipath from v to *s* for each vertex $s \in S$.

For any non-semiconnected pair u, w of vertices in V_2 , if G contains pairs of directed paths with the first vertices u, w and the same last vertices in V_1 , then there exists a vertex $v \in V_2$ such that G contains pairs of v-headed arcs with the tails u, w on these directed paths.

Theorem 4. If G = (X, Y, A, B) be a topological hoarded graph, then X equipped with the 1-set-family τ corresponding to G is a topological space.

Proof. Let us first show that τ contains the empty set. From Definition 3(3), there exists a vertex y in Y such that y is not the tail of any arc in G. When we first perform Step 1 to obtain 1-set-family τ corresponding to G, we get $\tau = Y$. In Step 2.1, we write

$$\cup \bigcup V_h(G[\cdot, A]; y) = y \cup \emptyset = y$$

instead of y in τ since y is not the tail of any arc in G. In Step 2.2, since y is not the tail of any arc in G, we replace y in τ with

$$V_h(G[\cdot, B]; y) = \emptyset$$

which means that τ contains \emptyset .

ν

Now we show that τ contains the set *X*. Assume that $X \notin \tau$. It implies that $X \neq V_h(G[\cdot, B]; y)$ for every occurrence *y* in τ obtained by applying Step 2.1. Then for every occurrence *y* in τ obtained by applying Step 2.1, there exists a point $x \in X$ such that $x \notin V_h(G[\cdot, B]; y)$ which contradicts Definition 3(3). So $X \in \tau$.

Given a subfamily $\{U_i\}_{i \in I}$ of τ . Let's show that τ contains $\bigcup_{i \in I} U_i$. If $U_{i_0} = X$ for a particular $i_0 \in I$, then $\bigcup_{i \in I} U_i = X \in \tau$. If there exists a subset $J \subseteq I$ such that there exists an index $j \in J$ such that $U_i \subseteq U_j$ for every $i \in I \setminus J$, then $\bigcup_{i \in I} U_i = \bigcup_{i \in J} U_i$. In such a case, we show that $\bigcup_{i \in J} U_i$. In that case, $\{U_i\}_{i \in J}$ is a subfamily of τ such that U_i is neither a subset nor a superset U_j for every distinct indices $i, j \in J$. For each $i \in J$, U_i corresponding some vertex $v_i \in Y$ is obtained by performing Step 2.1 and Step 2.2. From Definition 3(3), there exists a vertex w in Y such that G contains a dipath from w to v_i for every $i \in J$. Just after applying Step 2.1 and Step 2.2, we obtain a set, say W, that corresponds $w \in Y$. Furthermore, $\bigcup_{i \in I} U_i = W \in \tau$.

Let *U* and *V* be members of τ . Finally, if we show that $U \cap V \in \tau$, then we complete the proof. If *U* does not intersect *V*, then $U \cap V = \emptyset \in \tau$. If $U \subseteq V$ or $V \subseteq U$, then it is clear that $U \cap V = U \in \tau$ or $U \cap V = V \in \tau$. In the other case, *U* and *V* corresponding some vertices $u, v \in Y$, respectively, are obtained by performing Step 2.1 and Step 2.2. Since $U \cap V \neq \emptyset$ and $U \not\subseteq V$ and $V \not\subseteq U$, *G* contains pair of directed paths with the first vertices u, v and the same last vertex w_p in *X* that corresponds to each point $p \in U \cap V$. From Definition 3(3), there exists a vertex *w* in *Y* such that *G* contains pairs of w_p -headed arcs with the tails u, v on these directed paths. Just after performing Step 2.1 and Step 2.2, we obtain a set, say *W*, that corresponds $w \in Y$. Furthermore, $U \cap V = W \in \tau$.

Example 5. Let G = (X, Y, A, B) be a topological hoarded graph where

$$\begin{split} X &= \{v_1, \dots, v_6\}, Y = \{v_7, \dots, v_{19}\}, \\ A &= \{v_8v_7, v_9v_7, v_{10}v_8, v_{10}v_9, v_{11}v_9, v_{12}v_9, v_{13}v_{10}, \\ v_{13}v_{11}, v_{14}v_{10}, v_{14}v_{12}, v_{15}v_{11}, v_{15}v_{12}, v_{16}v_{13}, \\ v_{16}v_{14}, v_{16}v_{15}, v_{17}v_{14}, v_{18}v_{16}, v_{18}v_{17}, v_{19}v_{18}\}, \\ B &= \{v_8v_1, v_9v_2, v_{11}v_3, v_{12}v_5, v_{17}v_6, v_{19}v_4\} \\ \text{as Figure 5.} \end{split}$$

Figure 2. An example of a topological hoarded graph.

Indeed, it can be easily verified that *G* satisfies the conditions in Definition 3. We first set $\mathcal{F} = Y = \{v_7, ..., v_{19}\}$. For i = 2, we write

$$\begin{split} \mathcal{F} &= \{ v_7, v_8 \cup v_7, v_9 \cup v_7, v_{10} \cup \cdots \cup v_7, \\ v_{11} \cup v_9 \cup v_7, v_{12} \cup v_9 \cup v_7, \\ v_{13} \cup v_{11} \cup \cdots \cup v_7, \\ v_{14} \cup v_{12} \cup v_{10} \cup \cdots \cup v_7, \\ v_{15} \cup v_{12} \cup v_{11} \cup v_9 \cup v_7, \\ v_{16} \cup \cdots \cup v_7, \\ v_{17} \cup v_{14} \cup v_{12} \cup v_{10} \cup \cdots \cup v_7, \\ v_{18} \cup \cdots \cup v_7, v_{19} \cup \cdots \cup v_7 \} \end{split}$$

since

$$\begin{split} V_h(G[\cdot, A_2]; v_7) &= v_7 \cup \emptyset = v_7, \\ V_h(G[\cdot, A_2]; v_8) &= v_8 \cup \bigcup \{v_7\} = v_8 \cup v_7, \\ V_h(G[\cdot, A_2]; v_9) &= v_9 \cup \bigcup \{v_7\} = v_9 \cup v_7, \\ V_h(G[\cdot, A_2]; v_{10}) &= v_{10} \cup \bigcup \{v_8, v_9\} \\ &= v_{10} \cup \dots \cup v_7, \\ V_h(G[\cdot, A_2]; v_{11}) &= v_{11} \cup \bigcup \{v_9\} = v_{11} \cup v_9 \cup v_7 \\ V_h(G[\cdot, A_2]; v_{12}) &= v_{12} \cup \bigcup \{v_9\} = v_{12} \cup v_9 \cup v_7 \end{split}$$

$$V_{h}(G[\cdot, A_{2}]; v_{13}) = v_{13} \cup \bigcup \{v_{10}, v_{11}\}$$

$$= v_{13} \cup v_{11} \cup v_{10} \cup v_{9} \cup v_{8} \cup v_{7},$$

$$V_{h}(G[\cdot, A_{2}]; v_{14}) = v_{14} \cup \bigcup \{v_{10}, v_{12}\}$$

$$= v_{14} \cup v_{12} \cup v_{10} \cup v_{9} \cup v_{8} \cup v_{7},$$

$$V_{h}(G[\cdot, A_{2}]; v_{15}) = v_{15} \cup \bigcup \{v_{11}, v_{12}\}$$

$$= v_{15} \cup v_{12} \cup v_{11} \cup v_{9} \cup v_{7},$$

$$V_{h}(G[\cdot, A_{2}]; v_{16}) = v_{16} \cup \bigcup \{v_{13}, v_{14}, v_{15}\}$$

$$= v_{16} \cup \cdots \cup v_{7},$$

$$V_{h}(G[\cdot, A_{2}]; v_{17}) = v_{17} \cup \bigcup \{v_{14}\}$$

$$= v_{17} \cup v_{14} \cup v_{12} \cup v_{10} \cup v_{9} \cup v_{8}$$

$$\cup v_{7},$$

$$V_{h}(G[\cdot, A_{2}]; v_{18}) = v_{18} \cup \bigcup \{v_{16}, v_{17}\}$$

$$= v_{18} \cup \cdots \cup v_{7},$$

$$V_{h}(G[\cdot, A_{2}]; v_{19}) = v_{19} \cup \bigcup \{v_{18}\}$$

$$= v_{19} \cup \cdots \cup v_{7}.$$
And since
$$V_{h}(G[\cdot, B_{2}]; v_{7}) = \emptyset, V_{h}(G[\cdot, B_{2}]; v_{14}) = \emptyset.$$

 $V_{h}(G[\cdot, B_{2}]; v_{7}) = \emptyset, V_{h}(G[\cdot, B_{2}]; v_{14}) = \emptyset,$ $V_{h}(G[\cdot, B_{2}]; v_{8}) = \{v_{1}\}, V_{h}(G[\cdot, B_{2}]; v_{15}) = \emptyset,$ $V_{h}(G[\cdot, B_{2}]; v_{9}) = \{v_{2}\}, V_{h}(G[\cdot, B_{2}]; v_{16}) = \emptyset,$ $V_{h}(G[\cdot, B_{2}]; v_{10}) = \emptyset, V_{h}(G[\cdot, B_{2}]; v_{17}) = \{v_{6}\},$ $V_{h}(G[\cdot, B_{2}]; v_{11}) = \{v_{3}\}, V_{h}(G[\cdot, B_{2}]; v_{18}) = \emptyset,$ $V_{h}(G[\cdot, B_{2}]; v_{12}) = \{v_{5}\}, V_{h}(G[\cdot, B_{2}]; v_{19}) = \{v_{4}\},$ $V_{h}(G[\cdot, B_{2}]; v_{13}) = \emptyset,$ we get $\mathcal{F} = \{\emptyset, \{v_{1}\}, \{v_{2}\}, \{v_{1}, v_{2}\}, \{v_{2}, v_{3}\}, \{v_{2}, v_{5}\},$ $\{v_{1}, v_{2}, v_{3}\}, \{v_{1}, v_{2}, v_{5}\}, \{v_{2}, v_{3}, v_{5}\},$

$$\{v_1, v_2, v_3, v_5\}, \{v_1, v_2, v_5, v_6\}, \\\{v_1, v_2, v_3, v_5, v_6\}, \{v_1, v_2, v_3, v_4, v_5, v_6\}\}$$

which can easily be proved to be a topology on X.

4. Conclusion and Suggestions

We first give a concept of a *n*-hoarded graph to which there exists a (n - 1)-set family corresponding. We present the steps to be performed to get the corresponding set-family, and we have shown the results of these steps in an example. We then introduced the concept of a topological hoarded graph. Above all, we show that *X* equipped with the 1-set-family τ corresponding to a topological hoarded graph G = (X, Y, A, B) is a topological space. And finally, we have confirmed this fact with an example.

References

- [1] B. Bollobas, *Modern Graph Theory*. New York, NY: Springer, 2014.
- [2] G. Chartrand, A First Course in Graph Theory. Mineola, NY: Dover Publications, 2012.
- [3] J. L. Gross, J. Yellen, and P. Zhang, Eds., *Handbook of graph theory*, 2nd ed. London, England: CRC Press, 2018.
- [4] K. Polat, "On cumulative graph representations of set-families", *Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi*, vol. 3, no. 2, pp. 74–78, 2022.
- [5] K. S. Htay, K. A. Tint, and N. O. Htike, "Application of connectivity on graph theory", *International Journal of Scientific Engineering and Technology Research*, vol. 8, no. 1, pp. 525–530, 2019.
- [6] K. R. Saoub, *Graph theory: An introduction to proofs, algorithms, and applications.* London, England: CRC Press, 2021.
- [7] R. J. Trudeau, *Introduction to graph theory*. Pmapublishing.com, 2017.
- [8] L.W. Beineke, "Derived graphs and digraphs", *In Beitrage zur Graphentheorie*, pp. 17-33, 1968.
- [9] G. Chartrand, and L. Lesniak, *Graphs and Digraphs*, 2nd ed., Wadsworth, USA: Springer, 1986.
- [10] F.R.K. Chung, "On partitions of graphs into trees", *Discrete Mathematics*, vol. 23 no. 1, pp. 23-30, 1978.
- [11] J. Edmonds, "Paths, trees, and flowers", *Canadian Journal of Mathematics*, vol. 17, no. 1, pp. 449-467, 1965.