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Abstract
In this paper we extend the method of canonical form for congruence of bilinear forms
to give the classification of some subclasses of 7−dimensional nilpotent Leibniz algebras.
Odd-nilpotent Leibniz algebras are defined as that its even dimensional ideals in lower
central series are all zero and the classification of 7−dimensional complex odd-nilpotent
Leibniz algebras with one dimensional Leib ideal is obtained by applying the aforemen-
tioned method.
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1. Introduction
As a nonantisymmetric generalization of Lie algebras, Leibniz algebras were first consid-

ered by Bloh who called them D-algebras emphasizing their connections with derivations
[3]. Later these algebraic structures were restored by Loday [8]. A vector space L over C
with a bilinear product [ , ] ∶ L×LÐ→ L whose left multiplication is a derivation is called a
Leibniz algebra. Define the ideals of L, L1

= L and Lj
= [L, Lj−1

] for j ∈ Z≥2. A Leibniz al-
gebra L is nilpotent of class c if Lc+1

= 0 but Lc
≠ 0 for some c > 0. L is called odd-nilpotent

if its all terms of the lower central series are odd-dimensional. Another important ideal of
L can be defined as Leib(L) = span{[a, a] ∣ a ∈ L}. L is a Lie algebra if and only if the Leib
ideal is zero. We define the center of L by Z(L) = {x ∈ L ∣ [x, a] = 0 = [a, x] for all a ∈ L}.
Direct sum of two nonzero ideals of a Leibniz algebra is called split, otherwise it is called
non-split. Throughout this paper, we consider only non-split and non-Lie complex Leibniz
algebras.

It is always an intriguing problem to give the classification of any kind of algebras. To
give the complete classification of nilpotent Lie algebras is considered to be a wild prob-
lem and it is still unsolved. Due to lack of antisymmetry property, classifying nilpotent
Leibniz algebras is more problematic. The complete classification of complex nilpotent
Leibniz algebras of dimension ≤ 4 has been given (see [1, 2], [4, 5], [8, 9]). 5−dimensional
nilpotent Leibniz algebras classified in [6] with canonical forms for congruence technique.
Recently, classification of some subsclasses 6−dimensional nilpotent Leibniz algebras is
given in [7] with the same technique. In this paper, we apply this canonical forms for
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congruence technique to give the classification of 7−dimensional odd-nilpotent Leibniz al-
gebras with dim(Leib(L)) = 1. This approach can be used to classify any (2n−1)−dimen-
sional odd-nilpotent Leibniz algebras. We verify that the classes we obtained are pairwise
nonisomorphic using the Mathematica program implementing Algorithm 2.6 given in [4].

2. Preliminaries
We give the following Lemmas which are very useful. They are given in [6, 7].

Lemma 2.1. If L is a non-split Leibniz algebra then Z(L) ⊆ L2.

Lemma 2.2. If L is a nilpotent Leibniz algebra then Leib(L) ⊆ Z(L).

Lemma 2.3. Let L be a n−dimensional nilpotent Leibniz algebra with dim(Z(L)) = n−k.
If dim(Leib(L)) = 1 then dim(L2

) ≤
k2−k+2

2 .

Lemma 2.4. Let L be a n−dimensional nilpotent Leibniz algebra with dim(L2
) = n −

k, dim(Leib(L)) = 1 and dim(L3
) = t. Then

(i): n ≤ t + k2+k+2
2

(ii): n ≤ t + k2+k
2 if Leib(L) ⊆ L3

Lemma 2.5. If L is a n−dimensional nilpotent Leibniz algebra with dim(L2
) = n − k and

L4
≠ 0 then dim(Z(L)) < n − k − 1.

Let L be a nilpotent Leibniz algebra. Denote χ(L) = (dim(L), dim(L2
), dim(L3

), . . . , dim(Lc
))

where c is the class of nilpotency. Suppose dim(L2
) = 1. Choose L2

= Leib(L) = span{wn}.
Let a subspace V be complementary to L2 in L so that L = L2

⊕V . So [x, y] = αwn for some
α ∈ C, for any x, y ∈ V . Bilinear form f( , ) ∶ V ×V → C can be defined by f(x, y) = αn for
all x, y ∈ V . The canonical forms for the congruence classes of matrices associated with
any bilinear form on a complex vector space given in [10] is as follows. We denote

[A/B] ∶= ( 0 B
A 0 ) .

Theorem 2.6. [10] The matrix of a bilinear form is congruent to a direct sum, uniquely
determined up to permutation of summands, of canonical matrices of the following types:

(1) A2k+1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣

0 1
⋱ ⋱

0 1

⎤⎥⎥⎥⎥⎥⎦
/
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0 ⋱
⋱ 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦(2k+1)×(2k+1)

(2) B2k(c) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 c
c 1

⋰ ⋰
c 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
/
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1 c

⋰ ⋰
1 c 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦2k×2k

, c ≠ ±1.

(3) C2k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 1

⋰ ⋰
1 1

1 −1
⋰ ⋰

1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(2k+1)×(2k+1)

(4) D2k =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 −1

⋰ ⋰
1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
/
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

⋰ ⋰
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦2k×2k

(k even)

(5) E2k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 1

⋰ ⋰
1 1

−1 1
⋰ ⋰

−1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦2k×2k
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(6) F2k =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1
−1 1

⋰ ⋰
−1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
/
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

⋰ ⋰
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦2k×2k

(k odd)

Choosing a basis {w1, w2, . . . , w6} for V and L2
= Leib(L) = span{w7}. We see that the

matrix of the bilinear form f( , ) ∶ V × V → C is one of the following (Matrices that yield
split Leibniz algebras are omitted.)

Partition of 6 6 × 6 matrices
6 B6, E6, F6
5+1 A5 ⊕ 1, C5 ⊕ 1
4+2 B4 ⊕ F2, B4 ⊕ E2, B4 ⊕ B2, D4 ⊕ F2, D4 ⊕ E2, D4 ⊕ B2, E4 ⊕

F2, E4 ⊕E2, E4 ⊕B2
4+1+1 B4 ⊕ 1⊕ 1, D4 ⊕ 1⊕ 1, E4 ⊕ 1⊕ 1
3+3 A3 ⊕A3, A3 ⊕C3, C3 ⊕C3
3+2+1 A3 ⊕ F2 ⊕ 1, A3 ⊕E2 ⊕ 1, A3 ⊕B2 ⊕ 1, C3 ⊕ F2 ⊕ 1, C3 ⊕E2 ⊕

1, C3 ⊕B2 ⊕ 1
3+1+1+1 A3 ⊕ 1⊕ 1⊕ 1, C3 ⊕ 1⊕ 1⊕ 1
2+2+2 F2 ⊕ F2 ⊕ F2, F2 ⊕ F2 ⊕E2, F2 ⊕ F2 ⊕B2, F2 ⊕E2 ⊕E2, F2 ⊕

E2⊕B2, F2⊕B2⊕B2, E2⊕E2⊕E2, E2⊕E2⊕B2, E2⊕B2⊕
B2, B2 ⊕B2 ⊕B2

2+2+1+1 F2 ⊕F2 ⊕ 1⊕ 1, F2 ⊕E2 ⊕ 1⊕ 1, F2 ⊕B2 ⊕ 1⊕ 1, E2 ⊕E2 ⊕ 1⊕
1, E2 ⊕B2 ⊕ 1⊕ 1, B2 ⊕B2 ⊕ 1⊕ 1

2+1+1+1+1 F2 ⊕ 1⊕ 1⊕ 1⊕ 1, E2 ⊕ 1⊕ 1⊕ 1⊕ 1, B2 ⊕ 1⊕ 1⊕ 1⊕ 1
1+1+1+1+1+1 1⊕ 1⊕ 1⊕ 1⊕ 1⊕ 1

Table 1. Canonical form for congruence of 6 × 6 matrices.

Choose dim(L2
) = n − 2 and Leib(L) = span{un}. We can extend it to a basis

{u3, u4, . . . , un−1, un} for L2 and let a subspace U be complementary to L2 in L so that
L = L2

⊕ U . So [u, v] = α3u3 + α4u4 + αn−1un−1 + αnun for some αi ∈ C, 3 ≤ i ≤ n, for any
u, v ∈ U . Bilinear form f( , ) ∶ U ×U → C can be defined by f(u, v) = αn for all u, v ∈ U .

Choosing a basis {u1, u2} for U and using Theorem 2.6 we see that the matrix of the
bilinear form f( , ) ∶ U ×U → C is one of the following:

(i)(
0 1
−1 0 ) , (ii)(

1 0
0 0 ) , (iii)(

1 0
0 1 ) , (iv)(

0 1
−1 1 ) , (v)(

0 1
c 0 )

where c ≠ 1,−1. We can assume that N cannot be the matrix (i) because the resulting
algebra is a Lie algebra. It is enough to consider the matrices (ii) and (iii) because others
are isomorphic to one of these as showed in Lemma 2.1 in [6].

3. Classification of 7-dimensional odd-nilpotent Leibniz algebras with
dim(Leib(L)) = 1

Let L be a 7−dimensional complex nilpotent Leibniz algebra with dim(Leib(L)) = 1.
All possible odd-nilpotent Leibniz algebra characters are listed below:

● χ(L) = (7, 1, 0, 0, 0)
● χ(L) = (7, 3, 0, 0, 0)
● χ(L) = (7, 3, 1, 0, 0)
● χ(L) = (7, 5, 0, 0, 0)

● χ(L) = (7, 5, 1, 0, 0)
● χ(L) = (7, 5, 3, 0, 0)
● χ(L) = (7, 5, 3, 1, 0)
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If χ(L) = (7, 5, 0, 0, 0) or χ(L) = (7, 5, 1, 0, 0) then by Lemma 2.4 we see that no Leibniz
algebra exists. If χ(L) = (7, 5, 3, 0, 0) then Lemma 2.1 requires L3

⊆ Z(L) ⊂ L2. Hence
dim(Z(L)) = 3 or dim(Z(L)) = 4. However dim(Z(L)) ≠ 4 since Lemma 2.3. Hence
suppose dim(Z(L)) = 3. Then L3

= Z(L) with Lemma 2.2 implies that Leib(L) ⊆ L3 but
from Lemma 2.4 (ii) we arrive a contradiction. Hence there is no Leibniz algebra for the
case χ(L) = (7, 5, 3, 0, 0).

Theorem 3.1. Let χ(L) = (7, 1, 0, 0, 0) and dim(Leib(L)) = 1. Then, up to isomorphism,
the nonzero multiplications in L is given by one of the following:

L1: [w1, w6] = w7, [w2, w5] = w7, [w2, w6] = αw7, [w3, w4] = w7, [w3, w5] = αw7, [w4, w3] =
αw7, [w5, w2] = αw7, [w5, w3] = w7, [w6, w1] = αw7, [w6, w2] = w7, α ∈ C/{1,−1}.

L2: [w1, w6] = w7, [w2, w5] = w7, [w2, w6] = w7, [w3, w4] = w7, [w3, w5] = w7, [w4, w3] =
−w7, [w4, w4] = w7, [w5, w2] = −w7, [w5, w3] = w7, [w6, w1] = −w7, [w6, w2] = w7.

L3: [w1, w6] = w7, [w2, w5] = w7, [w2, w6] = w7, [w3, w4] = w7, [w3, w5] = w7, [w4, w3] =
−w7, [w5, w2] = −w7, [w5, w3] = w7, [w6, w1] = −w7, [w6, w2] = w7.

L4: [w1, w4] = w7, [w2, w5] = w7, [w4, w2] = w7, [w5, w3] = w7, [w6, w6] = w7.
L5: [w1, w5] = w7, [w2, w4] = w7, [w2, w5] = w7, [w3, w3] = w7, [w3, w4] = w7, [w4, w2] =

w7, [w4, w3] = −w7, [w5, w1] = w7, [w5, w2] = −w7, [w6, w6] = w7.
L6: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = αw7, [w3, w2] = αw7, [w4, w1] = αw7, [w4, w2] =

w7, [w5, w6] = w7, [w6, w5] = −w7, α ∈ C/{1,−1}.
L7: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = αw7, [w3, w2] = αw7, [w4, w1] = αw7, [w4, w2] =

w7, [w5, w6] = w7, [w6, w5] = −w7, [w6, w6] = w7, α ∈ C/{1,−1}.
L8: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = α1w7, [w3, w2] = α1w7, [w4, w1] = α1w7,
[w4, w2] = w7, [w5, w6] = w7, [w6, w5] = α2w7, α1, α2 ∈ C/{1,−1}.

L9: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = w7, [w4, w1] = w7, [w4, w2] =
−w7, [w5, w6] = w7, [w6, w5] = −w7.

L10: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = w7, [w4, w1] = w7, [w4, w2] =
−w7, [w5, w6] = w7, [w6, w5] = −w7, [w6, w6] = w7.

L11: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = w7, [w4, w1] = w7, [w4, w2] =
−w7, [w5, w6] = w7, [w6, w5] = αw7, α ∈ C/{1,−1}.

L12: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = −w7, [w3, w3] = w7, [w4, w1] =
−w7, [w4, w2] = w7, [w5, w6] = w7, [w6, w5] = −w7.

L13: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = −w7, [w3, w3] = w7, [w4, w1] =
−w7, [w4, w2] = w7, [w5, w6] = w7, [w6, w5] = −w7, [w6, w6] = w7.

L14: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = −w7, [w3, w3] = w7, [w4, w1] =
−w7, [w4, w2] = w7, [w5, w6] = w7, [w6, w5] = αw7, α ∈ C/{1,−1}.

L15: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = αw7, [w3, w2] = αw7, [w4, w1] = αw7, [w4, w2] =
w7, [w5, w5] = w7, [w6, w6] = w7 α ∈ C/{1,−1}.

L16: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = w7, [w4, w1] = w7, [w4, w2] =
−w7, [w5, w5] = w7, [w6, w6] = w7.

L17: [w1, w4] = w7, [w2, w3] = w7, [w2, w4] = w7, [w3, w2] = −w7, [w3, w3] = w7, [w4, w1] =
−w7, [w4, w2] = w7, [w5, w5] = w7, [w6, w6] = w7.

L18: [w1, w3] = w7, [w3, w2] = w7, [w4, w6] = w7, [w6, w5] = w7.
L19: [w1, w3] = w7, [w3, w2] = w7, [w4, w6] = w7, [w5, w5] = w7, [w5, w6] = w7, [w6, w4] =

w7, [w6, w5] = −w7.
L20: [w1, w3] = w7, [w2, w2] = w7, [w2, w3] = w7, [w3, w1] = w7, [w3, w2] = −w7, [w4, w6] =

w7, [w5, w5] = w7, [w5, w6] = w7, [w6, w4] = w7, [w6, w5] = −w7.
L21: [w1, w3] = w7, [w3, w2] = w7, [w4, w5] = w7, [w5, w4] = −w7, [w6, w6] = w7.
L22: [w1, w3] = w7, [w3, w2] = w7, [w4, w5] = w7, [w5, w4] = −w7, [w5, w5] = w7, [w6, w6] =

w7.
L23: [w1, w3] = w7, [w3, w2] = w7, [w4, w5] = w7, [w5, w4] = αw7, [w6, w6] = w7, α ∈

C/{1,−1}.
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L24: [w1, w3] = w7, [w2, w2] = w7, [w2, w3] = w7, [w3, w1] = w7, [w3, w2] = −w7, [w4, w5] =
w7, [w5, w4] = −w7, [w6, w6] = w7.

L25: [w1, w3] = w7, [w2, w2] = w7, [w2, w3] = w7, [w3, w1] = w7, [w3, w2] = −w7, [w4, w5] =
w7, [w5, w4] = −w7, [w5, w5] = w7, [w6, w6] = w7.

L26: [w1, w3] = w7, [w2, w2] = w7, [w2, w3] = w7, [w3, w1] = w7, [w3, w2] = −w7, [w4, w5] =
w7, [w5, w4] = αw7, [w6, w6] = w7, α ∈ C/{1,−1}.

L27: [w1, w3] = w7, [w3, w2] = w7, [w4, w4] = w7, [w5, w5] = w7, [w6, w6] = w7.
L28: [w1, w3] = w7, [w2, w2] = w7, [w2, w3] = w7, [w3, w1] = w7, [w3, w2] = −w7, [w4, w4] =

w7, [w5, w5] = w7, [w6, w6] = w7.
L29: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = −w7, [w5, w6] = w7, [w6, w5] =
−w7, [w6, w6] = w7.

L30: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = −w7, [w5, w6] = w7, [w6, w5] =
αw7, α ∈ C/{1,−1}.

L31: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = −w7, [w4, w4] = w7, [w5, w6] =
w7, [w6, w5] = −w7, [w6, w6] = w7.

L32: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = −w7, [w4, w4] = w7, [w5, w6] =
w7, [w6, w5] = αw7, α ∈ C/{1,−1}.

L33: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = α1w7, [w5, w6] = w7, [w6, w5] =
α2w7, α1, α2 ∈ C/{1,−1}.

L34: [w1, w2] = w7, [w2, w1] = −w7, [w2, w2] = w7, [w3, w4] = w7, [w4, w3] = −w7, [w4, w4] =
w7, [w5, w6] = w7, [w6, w5] = −w7, [w6, w6] = w7.

L35: [w1, w2] = w7, [w2, w1] = −w7, [w2, w2] = w7, [w3, w4] = w7, [w4, w3] = −w7, [w4, w4] =
w7, [w5, w6] = w7, [w6, w5] = αw7, α ∈ C/{1,−1}.

L36: [w1, w2] = w7, [w2, w1] = −w7, [w2, w2] = w7, [w3, w4] = w7, [w4, w3] = α1w7, [w5, w6] =
w7, [w6, w5] = α2w7, α1, α2 ∈ C/{1,−1}.

L37: [w1, w2] = w7, [w2, w1] = α1w7, [w3, w4] = w7, [w4, w3] = α2w7, [w5, w6] = w7, [w6, w5] =
α3w7, α1, α2, α3 ∈ C/{1,−1}.

L38: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = −w7, [w5, w5] = w7, [w6, w6] =
w7.

L39: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = −w7, [w4, w4] = w7, [w5, w5] =
w7, [w6, w6] = w7.

L40: [w1, w2] = w7, [w2, w1] = −w7, [w3, w4] = w7, [w4, w3] = αw7, [w5, w5] = w7, [w6, w6] =
w7, α ∈ C/{1,−1}.

L41: [w1, w2] = w7, [w2, w1] = −w7, [w2, w2] = w7, [w3, w4] = w7, [w4, w3] = −w7, [w4, w4] =
w7, [w5, w5] = w7, [w6, w6] = w7.

L42: [w1, w2] = w7, [w2, w1] = −w7, [w2, w2] = w7, [w3, w4] = w7, [w4, w3] = αw7, [w5, w5] =
w7, [w6, w6] = w7, α ∈ C/{1,−1}.

L43: [w1, w2] = w7, [w2, w1] = α1w7, [w3, w4] = w7, [w4, w3] = α2w7, [w5, w5] = w7, [w6, w6] =
w7, α1, α2 ∈ C/{1,−1}.

L44: [w1, w2] = w7, [w2, w1] = −w7, [w3, w3] = w7, [w4, w4] = w7, [w5, w5] = w7, [w6, w6] =
w7.

L45: [w1, w2] = w7, [w2, w1] = −w7, [w2, w2] = w7, [w3, w3] = w7, [w4, w4] = w7, [w5, w5] =
w7, [w6, w6] = w7.

L46: [w1, w2] = w7, [w2, w1] = αw7, [w3, w3] = w7, [w4, w4] = w7, [w5, w5] = w7, [w6, w6] =
w7, α ∈ C/{1,−1}.

L47: [w1, w1] = w7, [w2, w2] = w7, [w3, w3] = w7, [w4, w4] = w7, [w5, w5] = w7, [w6, w6] =
w7.

Proof. Let L2
= Leib(L) = span{w7}. Then there exists an ordered basis

{w1, w2, w3, w4, w5, w6, w7} of L and the matrices listed in Table 1 results 47 pairwise
nonisomorphic Leibniz algebras. �
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Now let χ(L) = (7, 5, 3, 1, 0). Using Lemma 2.2 we get Leib(L) ⊆ Z(L). Also from
Lemma 2.4 we obtain Leib(L) ⊈ L3. Lemma 2.1 requires L4

⊆ Z(L) ⊂ L2. From Lemma
2.5 we have dim(Z(L)) < 4. If dim(Z(L)) = 1 then Leib(L) = Z(L) = L4

⊆ L3 leads a
contradiction. Hence dim(Z(L)) = 2 or dim(Z(L)) = 3.
Theorem 3.2. Let χ(L) = (7, 5, 3, 1, 0), dim(Leib(L)) = 1 and dim(Z(L)) = 3. Then, up
to isomorphism, the nonzero multiplications in L is given by one of the following:

L1: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w1, w3] = w4 = −[w3, w1], [w2, w3] =
w5 = −[w3, w2], [w1, w4] = w6 = −[w4, w1].

L2: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w1, w3] = w5 = −[w3, w1], [w2, w3] =
w4 = −[w3, w2], [w2, w4] = w6 = −[w4, w2].

L3: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w2, w2] = w7, [w1, w3] = w4 = −[w3, w1],
[w2, w3] = w5 = −[w3, w2], [w1, w4] = w6 = −[w4, w1].

L4: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w2, w2] = w7, [w1, w3] = w4 = −[w3, w1],
[w2, w3] = iw4+w5 = −[w3, w2], [w1, w4] = w6 = −[w4, w1], [w2, w4] = iw6 = −[w4, w2], i =
√

−1.
Proof. Let us take a complementary subspace W to L3 in L2. Since L4

≠ 0 we have
L3
≠ Z(L). Also if dim(L3

∩Z(L)) = 1 then W ⊆ Z(L) and since
L3
= [L, L2

] = [L, L3
⊕W ] = L4

we arrive a contradiction. Therefore dim(L3
∩Z(L)) = 2. Using Leib(L) ⊈ L3, L4, choose

Leib(L) = span{e7}, L4
= span{e6} and L3

= span{e4, e5, e6}. Then Z(L) = span{e5, e6, e7}
and L2

= span{e3, e4, e5, e6, e7}. Take V = span{e1, e2}.
Case 1: If the matrix N = (ii), then the nontrivial multiplications in L given as follows:
[e1, e1] = e7, [e1, e2] = α1e3 + α2e4 + α3e5 + α4e6 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6 =
−[e3, e1], [e2, e3] = β4e4 + β5e5 + β6e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1], [e2, e4] = γ2e6 =
−[e4, e2], [e3, e4] = γ3e6 = −[e4, e3].
From Leibniz identities we get the following equations:

⎧
⎪⎪
⎨
⎪⎪
⎩

γ3 = 0
β4γ1 − β1γ2 = 0

(3.1)

First suppose γ2 = 0. Then γ1 ≠ 0 and from the second equation in (3.1) we have β4 = 0.
Using dim(L3

) = 3 we can see that β1, β5 ≠ 0. Then the base change
w1 = e1, w2 = e2, w3 = α1e3 + α2e4 + α3e5 + α4e6, w4 = α1(β1e4 + β2e5 + β3e6) + α2γ1e6, w5 =
α1(β5e5 + β6e6), w6 = α1β1γ1e6, w7 = e7 shows L is isomorphic to L1. Now suppose γ2 ≠ 0.
Then with the base change w1 = γ2e1 − γ1e2, w2 = e2, w3 = e3, w4 = e4, w5 = e5, w6 = e6, w7 =
γ2

2e7 we can force γ1 = 0. Then from the second equation in (3.1) we get β1 = 0. So β2 ≠ 0
since dim(L3

) = 3. Then the base change w1 = e1, w2 = e2, w3 = α1e3+α2e4+α3e5+α4e6, w4 =
α1(β1e4 + β2e5 + β3e6) + α2γ2e6, w5 = α1(β2e5 + β3e6), w6 = α1β4γ2e6, w7 = e7 shows L is
isomorphic to L2.
Case 2: If the matrix N = (iii), then the nontrivial multiplications in L given as follows:
[e1, e1] = e7, [e1, e2] = α1e3+α2e4+α3e5+α4e6 = −[e2, e1], [e2, e2] = e7, [e1, e3] = β1e4+β2e5+
β3e6 = −[e3, e1], [e2, e3] = β4e4 + β5e5 + β6e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1], [e2, e4] =
γ2e6 = −[e4, e2], [e3, e4] = γ3e6 = −[e4, e3].
Then again Leibniz identities yield the equations in (3.1). Let γ2 = 0. Then γ1 ≠ 0 since
dim(Z(L)) = 3. From (3.1) we have β4 = 0. Using dim(L3

) = 3 we obtain β1, β5 ≠ 0. Then
the base change w1 = e1, w2 = e2, w3 = α1e3+α2e4+α3e5+α4e6, w4 = α1(β1e4+β2e5+β3e6)+
α2γ1e6, w5 = α1(β5e5+β6e6), w6 = α1β1γ1e6, w7 = e7 shows L is isomorphic to L3. Now take
γ2 ≠ 0. If γ1 = 0 then the base change w1 = e2, w2 = e1, w3 = e3, w4 = e4, w5 = e5, w6 = e6, w7 =
e7 forces γ2 = 0 and therefore L is isomorphic to L3. So let γ1 ≠ 0. Suppose γ2

1 + γ2
2 ≠ 0.

Then the base change w1 = γ1e1 + γ2e2, w2 = γ2e1 − γ1e2, w3 = e3, w4 = e4, w5 = e5, w6 =
e6, w7 = (γ

2
1 +γ2

2)e7 forces γ2 = 0 and therefore L is isomorphic to L3. Now take γ2
1 +γ2

2 = 0.
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Then from the second equation in (3.1) we obtain β2
1 + β2

4 = 0. Then the base change
w1 = e1, w2 = e2, w3 = α1e3 + α2e4 + α3e5 + α4e6, w4 = α1(β1e4 + β2e5 + β3e6) + α2γ1e6, w5 =
α1[(β5 − β2i)e5 + (β6 − β3i)e6], w6 = α1β1γ1e6, w7 = e7 shows L is isomorphic to L4. �

Theorem 3.3. Let χ(L) = (7, 5, 3, 1, 0), dim(Leib(L)) = 1 and dim(Z(L)) = 2. Then, up
to isomorphism, the nonzero multiplications in L is given by one of the following:

L5: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w1, w3] = w4 = −[w3, w1], [w2, w3] =
w5 = −[w3, w2], [w2, w4] = w6 = −[w4, w2], [w1, w5] = w6 = −[w5, w1].

L6: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w1, w3] = w5 = −[w3, w1], [w2, w3] =
w4 = −[w3, w2], [w1, w4] = αw6 = −[w4, w1], [w2, w4] = w6 = −[w4, w2], [w1, w5] =
w6 = −[w5, w1], α ∈ C.

L7: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w2, w2] = w7, [w1, w3] = w4 = −[w3, w1],
[w2, w3] = w5 = −[w3, w2], [w1, w4] = αw6 = −[w4, w1], [w2, w4] = w6 = −[w4, w2],
[w1, w5] = w6 = −[w5, w1], α ∈ C.

L8: [w1, w1] = w7, [w1, w2] = w3 = −[w2, w1], [w2, w2] = w7, [w1, w3] = w5 = −[w3, w1],
[w2, w3] = w4 = −[w3, w2], [w1, w4] = α1w6 = −[w4, w1], [w2, w4] = w6 = −[w4, w2],
[w1, w5] = α2w6 = −[w5, w1], [w2, w5] = α1w6 = −[w5, w2], α1, α2 ∈ C.

Proof. Choose Leib(L) = span{e7}, L4
= span{e6}. Then Z(L) = span{e6, e7} and

L3
= span{e4, e5, e6},

L2
= span{e3, e4, e5, e6, e7}. Take V = span{e1, e2}.

Case 1: If the matrix N = (ii), then the nontrivial multiplications in L given as follows:
[e1, e1] = e7, [e1, e2] = α1e3 + α2e4 + α3e5 + α4e6 = −[e2, e1], [e1, e3] = β1e4 + β2e5 + β3e6 =
−[e3, e1], [e2, e3] = β4e4 + β5e5 + β6e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1], [e2, e4] = γ2e6 =
−[e4, e2], [e3, e4] = γ3e6 = −[e4, e3], [e1, e5] = θ1e6 = −[e5, e1], [e2, e5] = θ2e6 = −[e5, e2], [e3, e5] =
θ3e6 = −[e5, e3], [e4, e5] = θ4e6 = −[e5, e4].
From Leibniz identities we get the following equations:

⎧
⎪⎪
⎨
⎪⎪
⎩

θ4 = γ3 = θ3 = 0
β4γ1 + β5θ1 − β1γ2 − β2θ2 = 0

(3.2)

The base change w1 = e1, w2 = e2, w3 = e3, w4 = e4, w5 = θ2e4 − γ2e5, w6 = e6, w7 = e7 forces
θ2 = 0. Hence let θ2 = 0. If γ2 = 0 then θ1e4 − γ1e5 ∈ Z(L), which contradicts with the fact
that dim(Z(L)) = 2. Let γ2 ≠ 0. Then with the base change w1 = γ2e1 − γ1e2, w2 = e2, w3 =
e3, w4 = e4, w5 = e5, w6 = e6, w7 = γ2

2e7 we can make γ1 = 0. If β4 = 0 then the base change
w1 = e1, w2 = e2, w3 = α1e3 + α2e4 + α3e5 + α4e6, w4 = α1(β1e4 + β2e5 + β3e6) + α3θ1e6, w5 =
α1(β5e5 + β6e6) + α2γ2e6, w6 = α1β1γ2e6, w7 = e7 shows L is isomorphic to L5. If β4 ≠ 0
then the base change w1 = e1, w2 =

√
β2θ1
β4γ2

e2, w3 =
√

β2θ1
β4γ2
(α1e3 + α2e4 + α3e5 + α4e6), w4 =

β2θ1
β4γ2
[α1(β4e4 + β5e5 + β6e6) + α2γ2e6], w5 =

√
β2θ1
β4γ2
[α1(β1e4 + β2e5 + β3e6) + α3θ1e6], w6 =

√
β2θ1
β4γ2

α1β2θ1e6, w7 = e7 shows L is isomorphic to L6(α).
Case 2: If the matrix N = (iii), then the nontrivial multiplications in L given as follows:
[e1, e1] = e7, [e1, e2] = α1e3+α2e4+α3e5+α4e6 = −[e2, e1], [e2, e2] = e7, [e1, e3] = β1e4+β2e5+
β3e6 = −[e3, e1], [e2, e3] = β4e4 + β5e5 + β6e6 = −[e3, e2], [e1, e4] = γ1e6 = −[e4, e1], [e2, e4] =
γ2e6 = −[e4, e2], [e3, e4] = γ3e6 = −[e4, e3], [e1, e5] = θ1e6 = −[e5, e1],
[e2, e5] = θ2e6 = −[e5, e2], [e3, e5] = θ3e6 = −[e5, e3], [e4, e5] = θ4e6 = −[e5, e4].
Then again Leibniz identities yield the equations in (3.2). The base change w1 = e1, w2 =
e2, w3 = e3, w4 = e4, w5 = θ2e4 − γ2e5, w6 = e6, w7 = e7 forces θ2 = 0. So let θ2 = 0. Then
θ1, γ2 ≠ 0 since dim(Z(L)) = 2. If β4 = 0 then the base change w1 = e1, w2 = e2, w3 =
α1e3 + α2e4 + α3e5 + α4e6, w4 = α1(β1e4 + β2e5 + β3e6) + (α2γ1 + α3θ1)e6, w5 = α1(β5e5 +
β6e6) + α2γ2e6, w6 = α1β5θ1e6, w7 = e7 shows L is isomorphic to L7(α). If β4 ≠ 0 then the
base change w1 = e1, w2 = e2, w3 = α1e3 + α2e4 + α3e5 + α4e6, w4 = α1(β4e4 + β5e5 + β6e6) +
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(α2γ2)e6, w5 = α1(β4e4 + β5e5 + β6e6) + (α2γ1 + α3θ1)e6, w6 = α1β4γ2e6, w7 = e7 shows L is
isomorphic to L8(α, β). �

For the remaining cases χ(L) = (7, 3, 0, 0, 0) and χ(L) = (7, 3, 1, 0, 0) the same technique
can be applied. Notice that the 4 × 4 matrices from Theorem 2.6 will yield the desired
algebras.

4. Conclusion
The number of isomorphism classes for some subclasses odd-nilpotent Leibniz algebras of

dimension ≤ 7 given in Table 2. Considering there are only 6 non-split complex nilpotent
Lie algebras of dimension 5, we can claim that the classification problem for Leibniz
algebras is indeed wild.

Characteristic of L Number of isomorphism classes of complex odd-
nilpotent Leibniz algebras with dim(Leib(L)) = 1

χ(L) = (3, 1, 0, 0, 0) 2 single algebras,
1 one-parameter infinite family.

χ(L) = (5, 1, 0, 0, 0) 9 single algebras,
4 one-parameter infinite families,
1 two-parameter infinite family

χ(L) = (5, 3, 0, 0, 0) No Leibniz algebra.
χ(L) = (5, 3, 1, 0, 0) 4 single algebras.
χ(L) = (7, 1, 0, 0, 0) 30 single algebras,

13 one-parameter infinite families,
3 two-parameter infinite families,
1 three-parameter infinite family

χ(L) = (7, 5, 0, 0, 0) No Leibniz algebra.
χ(L) = (7, 5, 1, 0, 0) No Leibniz algebra.
χ(L) = (7, 5, 3, 0, 0) No Leibniz algebra.
χ(L) = (7, 5, 3, 1, 0) 5 single algebras,

2 one-parameter infinite families,
1 two-parameter infinite family

Table 2. Number of isomorphism classes of odd-nilpotent Leibniz algebras.

As a future work, we can extend the canonical forms for the congruence technique
to higher dimensions to obtain complete classification of complex odd-nilpotent Leibniz
algebras.
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