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Abstract

Hyperbolic numbers had been developed in the 19th century. Octonions forms a noncommutative and nonassociative normed division algebra
over reals. Octonions have many applications in fields of physics such as quantum logic and string theory. Cayley-Dickson process is applied
to quaternions in order to construct octonions and in a sense, we follow a similar process. The aim of this study is to introduce the concept of
commutative octonions. We construct this algebra by using some matrix methods. After construction, we give a number of properties of
commutative octonions such as fundamental matrices and principal conjugates. We also obtain representation of a commutative octonion as
decomposed form, holomorphic and analytic functions of commutative octonions.
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1. Introduction

Four-dimensional hyper complex numbers, real quaternions, were introduced by Hamilton in 1843 to extend complex numbers [7].The set of
real quaternions are

H= {x0 + x1i+ x2 j+ x3k : i, j,k /∈ R and x0,x1,x2,x3 ∈ R}

where the multiplication rules of the elements of the ordered basis {1, i, j,k} is

i2 = j2 = k2 =−1,− ji = i j = k,−k j = jk = i and − ik = ki = j.

One can see that quaternions are not commutative. The Hamilton quaternions form a division algebra and in this aspect, they can be regarded
as an extension of complex numbers. Octonions have many applications in field. For instance, we can give M-theory cosmology [6], quantum
theory [5, 12], cough monitoring [8], space time coding [13], electromagnetic and gravitational equations [16] as most striking examples.
Segre gave a new type of quaternions whose multiplication rule has commutative property [11]. These numbers are called commutative
quaternions or Segre’s quaternions. The set of commutative quaternions is [3]

Q = {x0 + x1i+ x2 j+ x3k : i, j,k /∈ R and x0,x1,x2,x3 ∈ R}

where the versors satisfy
i2 = k2 =−1, j2 = 1, ji = i j = k,−k j = jk = i and ik = ki =− j.

A more general commutative quaternions were given by Catoni et al. [3]. They represented these numbers by

S= {x0 + x1i+ x2 j+ x3k : i, j,k /∈ R and x0,x1,x2,x3 ∈ R}

where the versors satisfy the following multiplication rules where δ is an arbitrary real number.

Table 1: Multiplication rules of the elements of {1, i, j,k}.

1 i j k
i δ k δ j
j k 1 i
k δ j i δ
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They also examined algebraic properties of this type of quaternions. Following their work [2, 3], we construct the commutative octonions.
This study can be regarded as an application of [2]. Kosal et al. [9] studied matrices for commutative quaternions and gave some interesting
properties.
After discovery of quaternion algebra, Cayley and Graves gave octonion algebra independently. Octonions algebra is constructed by using
the Cayley-Dickson method. An octonion o can be written as

o = p+ p′e

where p, p′ ∈Q and e is a new imaginary unit, i.e. it is a square root of −1. Let o1 = p1 + p′1e and o2 = p2 + p′2e be two any octonions.
Addition and multiplication of these two octonions are

o1 +o2 = p1 + p1 +(p′1 + p′2)e,

o1o2 = (p1 p2− p′2 p′1)+(p′2 p1 + p′1 p′2)

where q is the conjugate of the quaternion q. The ordered basis for octonion algebra over R consists of the elements

e0 = 1, e1 = i, e2 = j, e3 = k, e4 = t, e5 = it, e6 = jt, e7 = kt

where t is another versor different from {1, i, j,k}, and any octonion o can be expressed as

o =
7

∑
i=0

aiei, ai ∈ R.

Thus, there are eight objects ei (i = 0, . . . ,7) in the ordered basis of octonion algebra. The multiplication rules of the elements of
standard basis {e0,e1,e2, · · · ,e7} for octonions algebra can be found in [10]. The octonions division algebra over the real numbers R is a
non-commutative and non-associative algebra.
There are some studies on octonions whose coefficients are well-known integer sequences. We can refer to [1, 14, 15] for this type of studies.

2. Commutative Octonions

By following Catoni et al [3], for any real number α , we define the commutative octonions with the help of the multiplication rules as
follows.

Table 2: Multiplication rules of elements of standard basis {e0,e1,e2, · · · ,e7} for commutative octonions algebra.

· 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 α e3 α e2 e5 α e4 e7 α e6
e2 e2 e3 1 e1 e6 e7 e4 e5
e3 e3 α e2 e1 α e7 α e6 e5 α e4
e4 e4 e5 e6 e7 1 e1 e2 e3
e5 e5 α e4 e7 α e6 e1 α e3 α e2
e6 e6 e7 e4 e5 e2 e3 1 e1
e7 e7 α e6 e5 α e4 e3 α e2 e1 α

These multiplication rules can be obtained by the similar way to the octonion algebra mentioned above. Let O be the set of commutative
octonions, i.e.

O=

{
o =

7

∑
i=0

aiei : a0,a1, . . . ,a7 ∈ R,e0 = 1,e1,e2, . . . ,e7 /∈ R

}
where the versors e0,e1, . . . ,e7 satisfy the multiplication rules in Table 2.
Let o = ∑

7
i=0 ciei ∈O, then the characteristic matrix of o is

N =



c0 αc1 c2 αc3 c4 αc5 c6 αc7
c1 c0 c3 c2 c5 c4 c7 c6
c2 αc3 c0 αc1 c6 αc7 c4 αc5
c3 c2 c1 c0 c7 c6 c5 c4
c4 αc5 c6 αc7 c0 αc1 c2 αc3
c5 c4 c7 c6 c1 c0 c3 c2
c6 αc7 c4 αc5 c2 αc3 c0 αc1
c7 c6 c5 c4 c3 c2 c1 c0


≡
[

Ψ Ω

Ω Ψ

]
(2.1)

where Ψ and Ω are the following 4×4 matrices:

Ψ =


c0 αc1 c2 αc3
c1 c0 c3 c2
c2 αc3 c0 αc1
c3 c2 c1 c0

 and Ω =


c4 αc5 c6 αc7
c5 c4 c7 c6
c6 αc7 c4 αc5
c7 c6 c5 c4

 .



Konuralp Journal of Mathematics 171

Similarly, we can express matrices Ψ and Ω as

Ψ =

[
Ψ′ Ψ′′

Ψ′′ Ψ′

]
and Ω =

[
Ω′ Ω′′

Ω′′ Ω′

]
where

Ψ
′ =

[
c0 αc1
c1 c0

]
, Ψ
′′ =

[
c2 αc3
c3 c2

]
and

Ω
′ =

[
c4 αc5
c5 c4

]
, Ω
′′ =

[
c6 αc7
c7 c6

]
.

Determinant of the matrix N is given in the following theorem.

Theorem 2.1. Determinant of the matrix N is

det(N) =
[
ε(0,2,4,6)2−αε(1,3,5,7)2

]
×
[
ε(0,−2,4,−6)2−αε(1,−3,5,−7)2

]
×
[
ε(0,2,−4,−6)2−αε(1,3,−5,−7)2

]
×
[
ε(0,−2,−4,6)2−αε(1,−3,−5,7)2

]
. (2.2)

where ε(p,q,r,s) = cp + cq + cr + cs and ε(−p) =−cp.

Proof. If we evaluate the determinant of the matrix N in Eq. (2.1), we obtain

det(N) = det(Ψ2−Ω
2)

= det
(
(Ψ′+Ω

′)2− (Ψ′′+Ω
′′)2)×det((Ψ′−Ω

′)2− (Ψ′′−Ω
′′)2
)

= det
(
Ψ
′+Ω

′+Ψ
′′+Ω

′′)×det
(
Ψ
′+Ω

′−Ψ
′′−Ω

′′)×det
(
Ψ
′−Ω

′+Ψ
′′−Ω

′′)×det
(
Ψ
′−Ω

′−Ψ
′′+Ω

′′) .
Substituting determinants of these matrices into the last equation completes the proof.

Eq. (2.1) also gives the principal conjugations of the commutative octonion o = ∑
7
i=0 ciei as follows

o1 = c0 + c1e1 + c2e2 + c3e3− (c4e4 + c5e5 + c6e6 + c7e7), (2.3)

o2 = c0 + c1e1 + c4e4 + c5e5− (c2e2 + c3e3 + c6e6 + c7e7), (2.4)

o3 = c0 + c1e1 + c6e6 + c7e7− (c2e2 + c3e3 + c4e4 + c5e5), (2.5)

o4 = c0 + c2e2 + c4e4 + c6e6− (c1e1 + c3e3 + c5e5 + c7e7), (2.6)

o5 = c0 + c2e2 + c5e5 + c7e7− (c1e1 + c3e3 + c4e4 + c6e6), (2.7)

o6 = c0 + c3e3 + c4e4 + c7e7− (c1e1 + c2e2 + c5e5 + c6e6), (2.8)

and

o7 = c0 + c3e3 + c5e5 + c6e6− (c1e1 + c2e2 + c4e4 + c7e7). (2.9)

From these conjugations, for α 6= 0, we can construct the bijective mapping between c0,c1, . . . ,c7→ o0 = o,o1, . . . ,07 as

c0 =
ζ (0,1,2,3,4,5,6,7)

8
,

c1 = e1
ζ (0,1,2,3,−4,−5,−6,−7)

8α
,

c2 = e2
ζ (0,1,−2,−3,4,5,−6,−7)

8
,

c3 = e3
ζ (0,1,−2,−3,−4,−5,6,7)

8α
,

c4 = e4
ζ (0,−1,2,−3,4,−5,6,−7)

8
,

c5 = e5
ζ (0,−1,2,−3,−4,5,−6,7)

8α
,

c6 = e6
ζ (0,−1,−2,3,4,−5,−6,7)

8
and

c7 = e7
ζ (0,−1,−2,3,−4,5,6,−7)

8α

where ζ (r0,r1, · · · ,r7) = or0 +or1 + · · ·+or7 and ζ (−r) =−or.
From the eigenvalues of the characteristic matrix (2.1), we obtain the norm of a commutative octonion o = ∑

7
i=0 ciei as

‖o‖= o ·o1 ·o2 · · ·o7 = det(N). (2.10)
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By using Eq.(2.1), we can obtain the following matrix expressions of all the versors:

e0 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, e1 =



0 α 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 α 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 α 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 α

0 0 0 0 0 0 1 0


,

e2 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


, e3 =



0 0 0 α 0 0 0 0
0 0 1 0 0 0 0 0
0 α 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 α

0 0 0 0 0 0 1 0
0 0 0 0 0 α 0 0
0 0 0 0 1 0 0 0


,

e4 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, e5 =



0 0 0 0 0 α 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 α

0 0 0 0 0 0 1 0
0 α 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 α 0 0 0 0
0 0 1 0 0 0 0 0


,

e6 =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


, e7 =



0 0 0 0 0 0 0 α

0 0 0 0 0 0 1 0
0 0 0 0 0 α 0 0
0 0 0 0 1 0 0 0
0 0 0 α 0 0 0 0
0 0 1 0 0 0 0 0
0 α 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.

3. Some Properties of Commutative Octonions

Except two systems, any system which satisfies associativity and distributivity with respect to the sum, it can satisfy either commutativity or
it does not have divisors of zero [2]. One can see that the commutative octonions satisfy the commutative properties from the multiplication
rules easily. For the first two properties (distributive and associative), the characteristic matrix in Eq.(2.1) can be used.
A commutative octonion can be represented by four complex numbers with four linearly independent bases. Let o = ∑

7
i=0 ciei be a

commutative octonion. We can derive

o = c0 + c1e1 + · · ·+ c7e7

= c0 + c1e1 + c2e2 + c3e3 +(c4 + c5e1 + c6e2 + c7e3)e4

= (c0 + c1e1 + c2e2 + c3e3)

(
1+ e4

2
+

1− e4

2

)
+(c4 + c5e1 + c6e2 + c7e3)

(
1+ e4

2
− 1− e4

2

)
= q1e′1 +q2e′2 (3.1)

where

q1 = (c0 + c4)+(c1 + c5)e1 +(c2 + c6)e2 +(c3 + c7)e3,

q2 = (c0− c4)+(c1− c5)e1 +(c2− c6)e2 +(c3− c7)e3,

and
e′1 =

1+ e4

2
, e′2 =

1− e4

2
.

Thus we can represent a commutative octonion by two commutative quaternions. Here e′1 and e′2 are idempotent basis and satisfy

(e′1)
2 = e′1, (e′2)

2 = e′2, e′1e′2 = 0.

From [3], we know that the commutative quaternions q1 and q2 can be represented as follows

q1 = x(1)e′′1 + x(2)e′′2 , q2 = x(3)e′′1 + x(4)e′′2 (3.2)

where
e′′1 =

1+ e2

2
, e′′2 =

1− e2

2
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and

x(1) = (x0 + x2)+(x1 + x3)e1,

x(2) = (x0− x2)+(x1− x3)e1,

x(3) = (y0 + y2)+(y1 + y3)e1,

x(4) = (y0− y2)+(y1− y3)e1.

Here we set
xi = ci + ci+4 and yi = ci− ci+4 (0≤ i≤ 3).

By using Eqs.(3.1) and (3.2), we obtain

o = q1e′1 +q2e′2

=
[
x(1)e′′1 + x(2)e′′2

]
e′1 +

[
x(3)e′′1 + x(4)e′′2

]
e′2

= x(1)i1 + x(2)i2 + x(3)i3 + x(4)i4 (3.3)

where

i1 = e′′1e′1 =
1+ e2 + e4 + e6

4
, i2 = e′′2e′1 =

1− e2 + e4− e6

4
, i3 = e′′1e′2 =

1+ e2− e4− e6

4
, i4 = e′′2e′2 =

1− e2− e4 + e6

4
.

Here ik (k = 1, . . . ,4) satisfy

i2k = ik and ikil = 0 (for k 6= l). (3.4)

Finally, to summarize above transformations, we can say that a commutative octonion o = ∑
7
i=0 ciei can be represented as the form in

Eq.(3.3) where

x(1) = ε(0,2,4,6)+ ε(1,3,5,7)e1, (3.5)

x(2) = ε(0,−2,4,−6)+ ε(1,−3,5,−7)e1 (3.6)

x(3) = ε(0,2,−4,−6)+ ε(1,3,−5,−7)e1 (3.7)

x(4) = ε(0,−2,−4,6)+ ε(1,−3,−5,7)e1. (3.8)

Thus i1, i2, i3 and i4 are linearly independent and the set of commutative octonions can be shown as a direct sum of four complex number
fields. For any positive integer n, Eqs. (3.3) and (3.4) give

on =
(

x(1)
)n

i1 +
(

x(2)
)n

i2 +
(

x(3)
)n

i3 +
(

x(4)
)n

i4. (3.9)

Let o′ = x(1)1 i1 + x(2)1 i2 + x(3)1 i3 + x(4)1 i4 and o′′ = x(1)2 i1 + x(2)2 i2 + x(3)2 i3 + x(4)2 i4 be two commutative octonions. Then by using Eqs. (3.3)
and (3.4) again, we have

o′o′′ = x(1)1 x(1)2 i1 + x(2)1 x(2)2 i2 + x(3)1 x(3)2 i3 + x(4)1 x(4)2 i4 (3.10)

and

o′

o′′
=

x(1)1

x(1)2

i1 +
x(2)1

x(2)2

i2 +
x(3)1

x(3)2

i3 +
x(4)1

x(4)2

i4. (3.11)

Seven conjugates of a commutative octonion in Eqs.(2.3) - (2.9) can be represented according to the decomposed form (3.3) as follows

Theorem 3.1. For a commutative octonion o = ∑
7
i=0 ciei = x(1)i1 + x(2)i2 + x(3)i3 + x(4)i4, we have

o1 = x(3)i1 + x(4)i2 + x(1)i3 + x(2)i4, (3.12)

o2 = x(2)i1 + x(1)i2 + x(4)i3 + x(3)i4, (3.13)

o3 = x(4)i1 + x(3)i2 + x(2)i3 + x(1)i4, (3.14)

o4 = x(1)i1 + x(2)i2 + x(3)i3 + x(4)i4, (3.15)

o5 = x(3)i1 + x(4)i2 + x(1)i3 + x(2)i4, (3.16)

o6 = x(2)i1 + x(1)i2 + x(4)i3 + x(3)i4, (3.17)

o7 = x(4)i1 + x(3)i2 + x(2)i3 + x(1)i4 (3.18)

where x is the complex conjugate of a complex number x.

Proof. The proof can be done easily by using Eqs. (2.3) − (2.9), Eqs.(3.5) − (3.8) and the multiplication rule (3.10).
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We can give the following results immediately.
Corollary For a commutative octonion o = ∑

7
i=0 ciei = x(1)i1 + x(2)i2 + x(3)i3 + x(4)i4, we have

oo4 = ‖x(1)‖2i1 +‖x(2)‖2i2 +‖x(3)‖2i3 +‖x(4)‖2i4, (3.19)

o1o5 = ‖x(3)‖2i1 +‖x(4)‖2i2 +‖x(1)‖2i3 +‖x(2)‖2i4, (3.20)

o2o6 = ‖x(2)‖2i1 +‖x(1)‖2i2 +‖x(4)‖2i3 +‖x(3)‖2i4, (3.21)

o3o7 = ‖x(4)‖2i1 +‖x(3)‖2i2 +‖x(2)‖2i3 +‖x(1)‖2i4 (3.22)

where ‖x‖ is the absolute square of a complex number x, i.e. ‖x‖2 = xx.

3.1. Holomorphic and Analytic Functions

We show an octonion function by

G≡
7

∑
i=0

Gi(c0,c1, . . . ,c7)ei (3.23)

where Gi (i= 0,1, · · · ,7) are real functions with partial derivatives for the variables, c0,c1, · · · ,c7. Catoni et al. [2] introduced the Generalized
Cauchy – Riemann – like (GCR) conditions. While there are some methods for calculation of the GCR conditions, Catoni et al. [4] give the
following theorem.

Theorem 3.2. [4, p.91] The Jacobian matrix of a hypercomplex function’s components has the same form of the characteristic matrix.

By combining this method and the study of Catoni et al. [3] for Segre’s commutative quaternions we have the following theorem for
holomorphic functions of octonion.

Theorem 3.3. G is called a holomorphic functions of octonion if
1) G is differentiable with non-zero derivatives and not a zero divisor,
2) The GCR conditions for the partial derivatives of components of G are

G0,c0 = G1,c1 = G2,c2 = G3,c3 = G4,c4 = G5,c5 = G6,c6 = G7,c7

G0,c1 = αG1,c0 = G2,c3 = αG3,c2 = G4,c5 = αG5,c4 = G6,c7 = αG7,c6

G0,c2 = G1,c3 = G2,c0 = G3,c1 = G4,c6 = G5,c7 = G6,c4 = G7,c5

G0,c3 = αG1,c2 = G2,c1 = αG3,c0 = G4,c7 = αG5,c6 = G6,c5 = αG7,c4

G0,c4 = G1,c5 = G2,c6 = G3,c7 = G4,c0 = G5,c1 = G6,c2 = G7,c3

G0,c5 = αG1,c4 = G2,c7 = αG3,c6 = G4,c1 = αG5,c0 = G6,c3 = αG7,c2

G0,c6 = G1,c7 = G2,c4 = G3,c5 = G4,c2 = G5,c3 = G6,c0 = G7,c1

G0,c7 = αG1,c6 = G2,c5 = αG3,c4 = G4,c3 = αG5,c2 = G6,c1 = αG7,c0 .

Let G(o) be an octonion holomorphic function and its power series in q about 0 be

G(o) =
∞

∑
r=0

tror (3.24)

where tr ∈O. From Eq.(3.1), we write
tr = fre′1 +gre′2

where fr,gr ∈H. Then we obtain

G(q) =
∞

∑
r=0

( fre′1 +gre′2)(q1e′1 +q2e′2)
r

=
∞

∑
r=0

( fre′1 +gre′2)(q
r
1e′1 +qr

2e′2)

=
∞

∑
r=0

( frqr
1e′1 +grqr

2e′2)

= e′1
∞

∑
r=0

frqr
1 + e′2

∞

∑
r=0

grqr
2

where q1 and q2 are commutative quaternions given in Eq.(3.1).

4. Conclusion

Octonions have many applications in field. We mentioned some of them such as cosmology, quantum theory, etc. Octonions form a
non–commutative and non–associative algebra. These hyper–complex numbers are constructed by Cayley–Dickson process over Hamilton
quaternions. The aim of this study is to introduce commutative octonions constructed by Cayley–Dickson process over commutative
quaternions. We think that several applications in field will be applied by other researchers. It will be very interesting that investigation of
commutative octonions whose coefficients are well-known integer sequences such as Fibonacci, Lucas, Pell, etc.



Konuralp Journal of Mathematics 175

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful
comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC
4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles
were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

[1] Bilgici, G., Unal, Z., Tokeser, U. and Mert, T., On Fibonacci and Lucas generalized octonions, Ars Combinatoria, 138 (2018), 35–44.
[2] Catoni, F., Cannata, R., Catoni, V. and Zampetti, P., N-dimensional geometries generated by hypercomplex numbers, Adv. Appl. Clifford Algebr., 15

(2005), 1–25.
[3] Catoni, F., Cannata, R. and Zampetti, P., An introduction to commutative quaternions, Adv. Appl. Clifford Algebr., 16 (2006), 1–28.
[4] Catoni, F., Boccalett, D., Cannata, R., Catoni, V., Nichelatti, E. and Zampetti, P., The Mathematics of Mikowski Space–Time and Introduction to

Commutative Hypercomplex Numbers. Birkhauser–Verlag, Basel, 2008.
[5] Freedman, M., Shokrian-Zini, M. and Wang, Z., Quantum computing with octonions, Peking Math. J., 2(3) (2019), 239–273.
[6] Gunaydin, M., Kallosh, R., Linde, A. and Yamada, Y., M-theory cosmology, octonions, error correcting codes, J. High Energ. Phys., 2021(1) (2021) ,

1–60.
[7] Hamilton, W.R., Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
[8] Klco, P., Kollarik, M. and Tatar, M., Novel computer algorithm for cough monitoring based on octonions, Respiratory Physiology & Neurobiology, 257

(2018), 36–41.
[9] Kosal, H.H. and Tosun, M., Commutative quaternion matrices, Adv. Appl. Clifford Algebr., 24 (2014), 769–779.

[10] Okubo, S., Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge University Press, London, 1995.
[11] Segre, C., The real representations of complex elements and extension to bicomplex system, Math. Ann., 40 (1892), 413–467.
[12] Singh, T.P., Octonions, trace dynamics and noncommutative geometry-A case for unification in spontaneous quantum gravity, Zeitschrift für Natur-

forschung A, 75(12) (2020), 1051–1062.
[13] Srivastava, G., Gupta, R. Kumar, R. and Le, D.N., Space-time code design using quaternions, octonions and other non-associative structures, International

Journal of Electrical and Computer Engineering Systems 10(2) (2019), 91–95.
[14] Tokeser, U., Mert, T., Unal, Z. and Bilgici, G., On Pell and Pell–Lucas generalized octonions, Turkish Journal of Mathematics and Computer Sciences,

13(2) (2021), 226–233.
[15] Tokeser, U., Mert, T. and Dundar, Y., Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions, AIMS Math., 7(5)

(2022), 8645–8653.
[16] Weng, Z.H., Frequencies of astrophysical jets and gravitational strengths in the octonion spaces, International Journal of Modern Physics D., 31 (4)

(2022), 2250024-1–2250024-16.


	Introduction
	Commutative Octonions
	Some Properties of Commutative Octonions
	Holomorphic and Analytic Functions

	Conclusion

