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ABSTRACT In this paper, we study the synchronization problem in complex dynamic networks of Piece
Wise Linear (PWL) systems. PWL systems exhibit multi-scrolls and belong to a special class of Unstable
Dissipative Systems (UDS). We consider strongly connected digraphs and linear diffusive couplings. The
synchronization regions are computed using the concept of disagreement vectors, generalized algebraic
connectivity of the network topology, and Lyapunov functions, which provide lower bounds on the coupling gain
of the network. Then, different combinations of linear diffusive coupling are explored by changing the observed
and measured variables to illustrate the contribution of our results. The theoretical results are validated by
numerical simulations.
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INTRODUCTION

In the last decade, the study of synchronization phenomena in a
group of coupled Piece-Wise Linear (PWL) in the context of nonlin-
ear systems theory has attracted considerable attention due to its
wide application in fields such as physics, biology, and engineer-
ing, among others (Muñoz-Pacheco et al. 2012; Anzo-Hernández
et al. 2019; Carbajal-Gómez and Sánchez-López 2019; Ruiz-Silva
et al. 2021; Echenausía-Monroy et al. 2021; Ruiz-Silva et al. 2022).

One way to analyze these kinds of interconnected systems is to
model them as complex networks whose nodes are the individual
dynamical systems and the coupling is represented by a static
graph. One of the most important aspects in the study of complex
networks and their emergent behaviour is the structural analysis of
the topology and dynamical properties of their nodes, to determine
the conditions under which a set of interconnected dynamical
systems achieve stable collective behaviour (Boccaletti et al. 2006;
Wu 2007; Ávila-Martínez and Barajas-Ramírez 2018, 2021; Ávila-
Martínez 2022). In this context, the term synchronization refers to
the collective phenomenon in which two or more elements exhibit
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temporally coordinated dynamical behaviour (Boccaletti et al. 2002;
Pikovsky et al. 2002).

A starting point for the study of synchronization in complex net-
works, whether a PWL or other non-linear system, is the assump-
tion that nodes are identical, links are static, and coupling is diffu-
sive. The diffusive condition is a basic assumption in this type of
problem because it is a requirement that occurs naturally in many
real-world networks and is a relatively soft condition on the struc-
ture of the network model (Chen et al. 2014). On the other hand,
to achieve synchronization in a complex network, it is possible to
consider different properties of the network links, such as unidirec-
tional couplings (Anzo-Hernández et al. 2019; Posadas-Castillo et al.
2014), bidirectional or symmetric couplings (Ruiz-Silva et al. 2022;
Soriano-Sánchez et al. 2016), connections with weights (Ruiz-Silva
et al. 2021; Ontañón-García et al. 2021) or changes in the nature of
the coupling functions (Echenausía-Monroy et al. 2021; Mishra et al.
2022). All these properties are reflected in the stability analysis of
the synchronized behaviour, and some of them simplify it.

In this paper, we focus on the synchronization problem for a
complex network under a fixed communication structure, where
the dynamics of each node belongs to a class of affine linear sys-
tems. Traditionally, this problem can be approached by studying
the system stability of the error around the synchronization solu-
tion using the λ2 criterion (Chen et al. 2014), or the master stability
function method (Pecora and Carroll 1998; Huang et al. 2009).

The method proposed in this paper is essentially compatible
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with the λ2 criterion since Lyapunov stability theory is used for
the node dynamics and synchronization of the complex network.
However, it presents a different point of view since the analysis
is performed using the stability region of the nodes, the concept
of disagreement vectors, and the generalized algebraic connectiv-
ity of the network topology (Li et al. 2010; Yu et al. 2010). First,
we focus on the individual dynamics of the nodes and the inter-
nal coupling matrix, since unbounded stability regions must be
determined to simplify the analysis of network synchronization.
Then, using the disagreement vectors, we analyze the effect of the
network topology on the stability regions of the nodes, which can
be adjusted by the strength of the network coupling. Moreover,
it is important to mention that an advantageous feature of this
approach is that it can be used in bidirectional or unidirectional
topologies as long as they represent strongly connected structures.

The rest of the document is structured as follows: We intro-
duce first the multi-scroll system, the network model, and some
helpful graph theory results. Then, we analyze the synchronized
behaviour of strongly connected digraphs using the Lyapunov
stability theory. We later present a case of study, followed by
some numerical simulations illustrating our results. In the end, we
discuss some conclusions.

PRELIMINARIES

Multi-Scroll System
It is known that the generation of attractors with multiple scrolls de-
pends on both the stability of the generated equilibrium points and
the type of switching function implemented (Echenausía-Monroy
et al. 2020). It is possible to analyze the stability of the equilibrium
points of this type of systems using the Unstable Dissipative Sys-
tems (UDS) theory, which describes a variety of three-dimensional
systems with dissipative and conservative components. The co-
existence of both components leads to the appearance of the so-
called attractors with multi-scrolls (Campos-Cantón et al. 2010,
2012; Campos-Cantón 2016).

As in previous works (Gilardi-Velázquez et al. 2017; Echenausía-
Monroy and Huerta-Cuellar 2020), we consider that each dynam-
ical system is defined by a class of affine linear systems given
by:

ẋi = Axi + B(xi), (1)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state vector of the i-th

system, the constant matrix, A = {aij} ∈ R3×3, is the linear op-
erator of the system, and B = [b1, b2, b3]

T ∈ R3 is a vector with
real entries. It should be noted that the behavior of the system
(1) is determined by the eigen-spectrum of the matrix A, which
can produce a variety of combinations and thus different dynamic
behaviors.

The class of affine linear systems considered here are UDS of
type 1, i.e., the eigenvalues associated with the linear operator A
correspond to a hyperbolic saddle point where one eigenvalue
is real negative and the other two are complex conjugate with
a positive real component. Moreover, the sum of these values
must be less than zero (Campos-Cantón et al. 2010, 2012; Campos-
Cantón 2016). If the affine linear system given by Eq. (1) satisfies
the UDS I definition with B = 0, then it is possible to generate an
attractor with multi-scrolls by constructing a commutation law,
in this case a PWL function. The purpose of the commutation
function is to generate as many equilibrium points as desired and
to control their visitation, which is achieved by coexisting a large
number of unstable single-spiral trajectories (Echenausía-Monroy
and Huerta-Cuellar 2020; Echenausía-Monroy et al. 2020).

Next, before we present the concept of a complex network, we
introduce some preliminaries of algebraic graph theory.

Algebraic Graph Theory
A directed graph (in short, a digraph) of order N, is a pair G =
(V , E), where V = {1, . . . , N} is a set of elements called nodes
and E ⊆ V × V is a set of ordered pair of nodes. For i, j ∈ V
the ordered pair (j, i) ∈ E denotes an edge that starts on node j
and ends in node i. The neighbourhood of node i is defined as
Ni := {j ∈ V : (j, i) ∈ E}. In G a directed path of length m from
node i to j is a sequence of edges with distinct nodes nk, with
k = 1, 2, . . . , m, such that (i, n1), (n1, n2), . . . , (nm, j) ∈ E . A graph
G is strongly connected if there exists a directed path connecting
every nodes pair. A digraph G is called weighted if for every edge
(j, i) ∈ E there is an associated weight wij > 0.

The Laplacian matrix of a weighted digraph G is a zero row
sum non-negative matrix L = [lij] ∈ RN×N defined as:

lij :=

 −wij if (j, i) ∈ E ,

∑N
i=1,j ̸=i wij if i = j.

Now, we present some results related to matrix Laplacians.

Lemma 1. (Li 2015) Suppose that G is strongly connected. Then,
there is a positive left eigenvector z = [z1, · · · , zN ]T ∈ RN of L as-
sociated with the zero eigenvalue and L̂ := ZL + LT Z ≥ 0, where
Z = Diag(z1, · · · , zN).

Lemma 2. (Li 2015) For a strongly connected graph G with Laplacian
L, define its generalized algebraic connectivity as

α := min
zT x=0,x ̸=0

{
xT L̂x
xT Zx

}
, (2)

where z and Z are defined as in Lemma 1. Then, α > 0.

Lemma 3. (Yu et al. 2010) The generalized algebraic connectivity of a
strongly connected digraph G can be computed by the following:

max µ,

subject to QT
(

1
2

L̂ − µZ
)

Q ≥ 0, (3)

where Q =

 IN−1

−ẑT/zN

 ∈ RN×(N−1) and ẑ = [z1, . . . , zN−1]
T ∈

RN−1.

The Complex Dynamical Network Models
A complex dynamic network is defined as a set of interconnected
systems, being each system a fundamental entity whose dynam-
ics depend on the nature of the network (Chen et al. 2014). The
interaction structure or network topology is modeled by a graph
G = (V , E), where V is the set of fundamental units, and an edge
(i, j) ∈ E depicts the interaction between nodes i and j. Therefore,
the state describing the dynamic network are as follows:

ẋi = f (xi)− c ∑
j∈Ni

wijΓ(xi − xj), i ∈ V , (4)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state vector of node i,

the function f (xi) = Axi + B(xi) can be derived from Eq. (1),
and determines the dynamics of an isolated multi-scroll system.
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The constant c > 0 denotes the uniform coupling strength of
the network. Let Γ = Diag(γ1, γ2, γ3) ∈ R3×3 be a constant
matrix describing the internal coupling between the systems in
the network, constructed as follows: if γk > 0 indicates that the
ith node and the jth node are coupled by their kth state variable,
otherwise γk = 0. The value wij > 0 is the weight of the ij-th edge,
portraying the external coupling. The network described by Eq. (4)
can be rewritten in terms of the matrix Laplacian entries as follows:

ẋi = Axi + B(xi)− c ∑
j∈Ni

ℓijΓxj, i ∈ V , (5)

which in vector form is given by

ẋ =
(
(IN ⊗ A)− c(L ⊗ Γ)

)
x + B̃(x), (6)

where x = [xT
1 , xT

2 , · · · , xT
N ]T ∈ R3N , B̃(x) =

[B(x1)
T , · · · , B(xN)T ]T ∈ R3N , IN is the identity matrix

of size N × N, and ⊗ denotes the Kronecker product. It is worth
noting that the network model describes all kinds of topologies,
where they can consider connection patterns with uniform weights
or non-uniform connections.

SYNCHRONIZATION PROBLEM AND MAIN RESULTS

One of the most-studied collective behaviors for a set of inter-
connected systems is the synchronization phenomenon, which
emerges when the dynamics of the systems correlate over time
(see (Chen et al. 2014; Boccaletti et al. 2002; Pecora and Carroll 1998;
Arenas et al. 2008) and references therein). Although there are
several definitions of synchronization in dynamic networks, this
study focuses on complete synchronization. Mathematically, this is
defined as follows:

Definition 1. (Chen et al. 2014) It is said that the dynamic network (4)
achieves complete asymptotic synchronization when

lim
t→∞

∥xi − xj∥ = 0, i, j ∈ V , (7)

where ∥ · ∥ is the Euclidean norm of a vector.

The goal of this paper is to find sufficient conditions for the
nodes in the network to achieve complete synchronization, i.e., to
ensure that Eq. (7) is satisfied regardless of the initial conditions.
Since the linear operator A, the constant vector B(·), and the matrix
Γ have a particular form, synchronization must be achieved by
suitably designing the coupling strength, taking into account the
structural properties of the network.

Stability Analysis on Strongly Connected Digraphs
Inspired by (R. Olfati-Saber and R. M. Murray 2004; Li et al. 2010),
we introduce disagreement functions to perform stability analysis of
the synchronous behavior of the network (6).

Let z ∈ RN be defined as in Lemma 1 such that zT1 = 1, where
1 ∈ RN denotes the vector where all entries are ones. Thus, the
disagreement vector is defined as:

δ :=
(
(IN − 1zT)⊗ I3

)
x, (8)

where δ = [δT
1 , δT

2 , . . . , δT
N ] ∈ R3N satisfies the condition (zT ⊗

I3)δ := 0. It is important to emphasize that δi = xi −∑N
k=1 zkxk and

δi − δj = xi − xj. Thus, by the Definition 1, the synchronization
state is reached if and only if δ → 0 is t → 0. Also, it can be proved

that δ evolves according to the development given by disagreement
dynamics:

δ̇ =
[
(IN ⊗ A)− c(L ⊗ Γ)

]
δ +

[
(IN − 1zT)⊗ I3

]
B̃(x). (9)

To show the stability for each of the disagreement vectors, the
following assumptions are required for the remainder of this paper:

Assumption 1. For each configuration of the matrix Γ =
Diag(γ1, γ2, γ3) ∈ R3×3 with Γ > 0, there exist constants d > 0
and η > 0 such that

A + AT − dΓ ≤ −ηI3, (10)

where I3 is the identity matrix of size 3 × 3.

Assumption 2. Let us assume that there are known or unknown non-
negative constants βij ≥ 0, so that

∥B(xi)− B(xj)∥ ≤ βij∥xi − xj∥, (11)

with i ̸= j, for i, j = 1, 2, · · · , N.

Under these assumptions, we establish the following result:

Theorem 1. Suppose that the Assumption 1 holds and that the dynamic
network described by Eq. (6) is strongly connected. If the coupling
strength c satisfies the condition

c ≥ d∗

α
, (12)

where d∗ is a non-positive constant and α is the generalized algebraic
Fielder’s connectivity of G. Then the disagreement dynamics is asymp-
totically stable at the equilibrium, or equivalently δi → 0, for any
i = 1, 2, · · · , N. Consequently, the complex dynamical network (6)
achieves synchronization.

Proof. Define the Lyapunov function candidate as:

V(δ) :=
1
2

δT(Z ⊗ I3)δ, (13)

with the positive matrix Z = Diag(z1, z2, · · · , zN) > 0 defined as
in Lemma 1.

The time derivative of Eq. (13) along the trajectories of (9)
yields:

V̇(δ) = δT(Z ⊗ I3)δ̇ = U(δ) + W(δ, B̃(x)), (14)

with

U(δ) :=
1
2

δT
[ (

Z ⊗ (A + AT)
)
− c

(
L̂ ⊗ Γ

) ]
δ

W(δ, B̃(x)) := δT
[

Z(IN − 1zT)⊗ I3

]
B̃(x).

Using Lemma 1 and Lemma 2 in U(δ) we obtain

U(δ) ≤ 1
2

δT
[ (

Z ⊗ (A + AT)
)
− cα (Z ⊗ Γ)

]
δ

=
1
2

δT
[ (

Z ⊗ (A + AT − cαΓ)
) ]

δ

=
1
2

N

∑
i=1

ziδ
T
i

(
A + AT − cαΓ

)
δi, (15)
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where α is the generalized algebraic connectivity of the graph G.
For W(δ, B̃(x)) it is also true that

W(δ, B̃(x)) =
N

∑
i=1

ziδ
T
i

(
B(xi)−

N

∑
k=1

zkB(xk)

)

=
N

∑
i=1

ziδ
T
i

(
B(xi)− B(x̄) + B(x̄)−

N

∑
k=1

zkB(xk)

)

=
N

∑
i=1

ziδ
T
i

(
B(xi)− B(x̄)

)

+

(
B(x̄)−

N

∑
k=1

zkB(xk)

)T N

∑
i=1

ziδi

=
N

∑
i=1

ziδ
T
i

(
B(xi)− B(x̄)

)
, (16)

where x̄ := ∑N
k=1 zkxk, and we use the fact that ∑N

i=1 ziδi = 0.
Under Assumption 2, it follows that∥∥∥∥∥ N

∑
i=1

ziδ
T
i (B(xi)− B(x̄))

∥∥∥∥∥ ≤
N

∑
i=1

zi ∥δi∥ ∥B(xi)− B(x̄)∥

≤
N

∑
i=1

βzi ∥δi∥ ∥xi − x̄∥

≤
N

∑
i=1

βzi∥δi∥2, (17)

with β > 0 is the largest Lipschitz constant of the function B(·).
Substitute Eqs. (15) and (17) into Eq. (14), we get:

V̇ ≤ 1
2

N

∑
i=1

ziδ
T
i

(
A + AT − cαΓ

)
δi +

N

∑
i=1

βziδ
T
i δi

=
N

∑
i=1

ziδ
T
i

(1
2
(A + AT − cαΓ) + βI3

)
δi. (18)

Let d = cα, then under the Assumption 1 it follows that

A + AT − cαΓ ≤ −ηI3, (19)

with d∗ ≤ d = cα and η > 0. Since d∗ > 0 and α > 0, we solve
for c from the inequality d∗ ≤ cα and we have the condition (12).
Therefore, the inequality (18) can be rewritten as

V̇(δ) ≤
N

∑
i=1

zi

(
β − η

2

)
∥δi∥2 . (20)

Note that the right-hand side of the previous inequality is a
quadratic function and zi > 0 for i = 1, 2, · · · , N. Thus, if we
choose η > 2β, it follows that V̇(δ) < 0. Consequently, δi → 0 as
t → ∞, i.e. the network (6) asymptotically synchronizes.

It should be emphasized that the Assumption 1 provides a
bound on the stability of the linear operator A, while the Assump-
tion 2 indicates that the vector B around zero is a fading pertur-
bation. Moreover, the value of α can be computed as in Lemma
3. Up to this point, the Theorem 1 gives such a value for the cou-
pling strength c that ∥δi∥ → 0 as t → ∞. Thus, there is a certain
range for the coupling strength in which the synchronization of
the digraph is guaranteed. Notice that other values that can lead
to synchronization of the network are not excluded.

A CASE OF STUDY

Consider a multi-scroll system whose dynamics is described by Eq.
(1). In particular, take the following dynamic system:

ẋi1

ẋi2

ẋi3

 =


0 1 0

0 0 1

−a −a −a


︸ ︷︷ ︸

A


xi1

xi2

xi3

+


0

0

ab(xi)


︸ ︷︷ ︸

B(xi)

, (21)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state vector, a is a dynamical

parameter modifying the Lyapunov exponent, the order and the
magnitude of the attractor (Echenausía-Monroy et al. 2018), and
b(·) : R3 7→ R is a PWL function given as:

b(xi) =



−6 if xi ∈ D1 = {xi | xi1 < −5},

−4 if xi ∈ D2 = {xi | − 5 ≤ xi1 < −3},

−2 if xi ∈ D3 = {xi | − 3 ≤ xi1 < −1},

0 if xi ∈ D4 = {xi | − 1 ≤ xi1 < 1},

2 if xi ∈ D5 = {xi | 1 ≤ xi1 < 3},

4 if xi ∈ D6 = {xi | 3 ≤ xi1 < 5},

6 if xi ∈ D7 = {xi | xi1 ≥ 5},

(22)

where D = {D1, · · · ,D7} is a finite partition of the phase space.
As mentioned before, the parameter a in Eq. (21) determines the
system’s equilibrium points stability, and must satisfy the UDS
I conditions (Campos-Cantón et al. 2010; Anzo-Hernández et al.
2018). To achieve this, a can only take values from the set a ∈ (0, 1)
and thus, generating the same number of scrolls as equilibrium
points in the system.

To illustrate that Eqs. (21)-(22) form a multi-scroll system, take
a = 0.6. Hence, the matrix A has a negative real eigenvalue and
two complex conjugate eigenvalues whose sum is negative, i.e.5

σ(A) = {−0.794, 0.097 ± 0.863i}, and
3

∑
i=1

σi = −0.6. (23)

Under these conditions, system described by Eq. (21) is a UDS
type I system. Figure 1 shows its state trajectories with an initial
condition x0

i = [5, 1, 0.13]T . In Figure 1(a) we show the projection
of the multi-scroll attractor onto the planes (xi1 − xi2) and (xi1 −
xi3). Figure 1(b) corresponds to the temporal behaviour of the
states xi1, xi2 and xi3 with arbitrary units (a.u.) time.

Dynamical Network
For ease of illustration, consider a network of N identical multi-
scroll systems with dynamics described by Eq. (21), with linear
and diffusive couplings. Thus, we describe the dynamic network
by Eq. (5) and βij = β > 0, for all i, j ∈ V , in Assumption 2.

Theorem 1 must satisfy the Assumption 1 and satisfy the in-
equality (12). Note that in order to obtain an appropriate value for
the coupling gain in Eq. (12), we need to compute d as shown in
Assumption 1, and Eq. (10) imposes a Hurwitz condition over the

5 Here i stands for the imaginary unit.
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Figure 1 Attractor and states behaviour generated by Eqs. (21)-(22) with a = 0.6.

matrix A + AT − dΓ. Therefore, in this section we are interested in
finding a method to design the internal coupling matrix Γ and the
external coupling gain c to achieve synchronization. Inspired by
the λ2 criterion (Chen et al. 2014) and the Master Stability Function
(MSF) (Pecora and Carroll 1998; Huang et al. 2009), we compute
synchronizability regions over an (a − d)-plane from which we
can choose a particular matrix Γ and values for d and hence for c.

From the Eq. (10), described in Assumption 1, and the linear
operator A defined in Eq. (21) we obtain the following matrix:

M := A + AT − dΓ =


−dγ1 1 −a

1 −dγ2 1 − a

−a 1 − a −(2a + dγ3)

 , (24)

with characteristic polynomial

p(M) := σ3 + κ2σ2 + κ1σ + κ0, (25)

where

κ2 = 2a + d(γ1 + γ2 + γ3),

κ1 = d2 (γ1γ2 + γ1γ3 + γ2γ3) + 2ad(γ1 + γ2)

−2
(

a + (1 − a)2
)

,

κ0 = d3γ1γ2γ3 + 2adγ1(1 + dγ2)− a2(2 + dγ1)

−d(γ1 + γ3).

Note that M is symmetric and therefore all its eigenvalues are
real. Denote by σk, with k ∈ K := {1, 2, 3}, the eigenvalues of the
matrix M. For all k ∈ K, σk < 0 holds if and only if M satisfies the
Routh-Hurwitz stability criterion, namely

κ2 > 0, κ1 > 0, κ0 > 0, and κ2κ1 − κ0 > 0. (26)

Recall that a is in (0, 1), so two different values of a can lead to
different multi-scroll systems with different parameters for p(M).
Therefore, a particular matrix Γ and a particular value for d may
not be appropriate for every choice. To accommodate a variety of
multi-scroll systems, the proposed method is to choose an internal
coupling matrix Γ and numerically solve the inequalities of Eq. (26)
as a function of a and d. The result is a synchronizability region in
the (a − d) plane. In Figure 2 we show some examples of this; The
blue regions indicate values for which inequalities in Eq. (26) hold.

(a) (b)

Figure 2 Synchronizability region (blue) of the matrix M subject
to parameters a and d with: (a) Γ = Diag(1, 1, 1) and, (b) Γ =
Diag(1, 1, 0).

Remark 1. Although there are up to eight different combinations of the
values for γ1, γ2, and γ3, a quick examination of the inequalities from
Eq. (26) shows that six of them cannot satisfy them. Synchronization can
be achieved only if γ1 > 0, γ2 > 0 and γ3 ≥ 0.
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Remark 2. In Assumption 1, notice that, by the min-max theorem
(Allaire and Kaber 2007), we can choose η = mink∈K {|σk|}.

NUMERICAL ILLUSTRATION

Let the inner coupling matrix Γ = Diag(1, 1, 1) ∈ R3, and let the
topology of the network be as shown in Figure 3, whose elements
satisfy the conditions of a strongly connected graph. Therefore, the
Laplacian matrix and its left eigenvector are given by:

L :=



1 −1 0 0 0 0

0 6 −2 0 −2 −2

0 −2 2 0 0 0

0 0 −3 3 0 0

0 0 0 −4 4 0

−1 0 0 0 −5 6



and z =



0.168

0.237

0.168

0.118

0.118

0.188



.

x1

x2x3

x4

x5 x6

Figure 3 A strongly connected digraph of order N = 6.

As mentioned in the previous section, for each configuration
of the internal coupling matrix and each value of the parameter
a, there are critical values d such that A + AT − dΓ is a negative
definite matrix. For this example, it is possible to choose the value
of d using Figure 2(a), let d = 1.5 hold, which is valid for all a ∈
(0, 1). Then the generalized algebraic connectivity for the graph
shown in Figure 3 is α ≈ 0.7017. Thus, to ensure synchronization
in the nodes, the coupling strength must satisfy c > d/α ≈ 2.13
according to the Theorem 1.

To illustrate the above in more detail, Figure 4 shows the time
series of coupled systems (5) with randomly chosen initial condi-
tions. In the numerical simulations, the Figure 4(a) corresponds to
the time series of the network state with parameter a = 0.45 and
Γ = Diag(1, 1, 1); while the Figure 4(b) corresponds to the time
series of states for a network with a = 0.6 and Γ = Diag(1, 1, 0).
In both simulations, it is assumed that for t < 1000 (a.u.) the
nodes are decoupled, so that each solution evolves its own attrac-
tor. While for t > 1000 (a.u.) the nodes are connected in a network
structure with a coupling strength c = 2.14. Moreover, it can be
observed how the trajectories of all nodes collapse in the three
states, i.e., the nodes achieve complete synchronization.
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Figure 4 Numerical simulation of the system from Eq. (5)
with: (a) a = 0.45 and Γ = Diag(1, 1, 1), (b) a = 0.6 and
Γ = Diag(1, 1, 0).

CONCLUSIONS

This paper studies the synchronization problem in a complex net-
work where each node belongs to a class of PWL systems. The
network’s topology is directed and strongly connected with lin-
ear and diffusive couplings. Using graph theory and Lyapunov
stability theory, we established synchronization conditions utilis-
ing the notion of disagreement vectors and generalized algebraic
connectivity for digraphs. We then use our main result and the
Routh-Hurwitz criterion to determine synchronizability regions
for a given affine system, namely a UDS type-I system. For a
given inner coupling matrix and a directed network topology, we
compute the synchronizability regions as a function of a system
parameter and a ratio between the generalized connectivity and
the coupling strength. In this way, we determine minimum values
for the coupling strength that allow synchronization. An advanta-
geous feature of our approach is its flexibility in network structures.
Although our main result is related to strongly connected digraphs,
it is also suitable for undirected graphs.

In future work, we will further investigate the synchronization
of UDS Type-I systems and provide a general method for com-
puting synchronizability regions. We will also consider networks
of systems with a different number of scrolls, including the ef-
fects of the performance parameters associated with the nonlinear
functions on their electronic implementation.
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