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Çankaya University

Journal of Science and Engineering
https://dergipark.org.tr/cankujse

Pseudo-spectrum and the numerical range for Ricci
tensor on the oscillator group of dimension four

Bendehiba Menad* ID1 ID and Rafik Derkaoui ID2

1University of Sciences and Technology of Oran, Laboratory LAMAP, Algeria
2Oran’s Higher Teachers College Ammour Ahmed, Laboratory GEANLAB, Algeria

Keywords Abstract

Oscillator group,
Curvature tensor,
Ricci tensor,
Spectrum,
Pseudo-spectrum,
Numerical range.

The field of functional analysis presents a very interesting part of pure mathematics,
but also applied mathematics such as the theory of approximations and the resolution
of operational equations, the spectra of operators, pseudospectrum and their numerical
range which are essential techniques for researchers in several fields of science and
technology. In this work, we will give the notions of the numerical range of a matrix
and some properties, and study it for curvature tensor Ri j = R(∂i,∂ j), also for Ricci
tensor ρ on the oscillator group (G,ga) of dimension four and we will give examples of
each matrix with the use of Matlab.

1. Introduction

Eigenvalues have been the subject of study and research for more than a century and a half. They are used in
practice in many cases such as the resolution of differential equations, or partial differential equations. Since the
advent of computers, the calculation of eigenvalues through computer-implemented algorithms has become more
popular. This made it possible to obtain matrix spectra much more simply. It is this practical use which raised
some problems on these eigenvalues.

Indeed, the calculation of the eigenvalues via a computer generates rounding errors, which can give values
very far from the theoretical eigenvalues. The study of the pseudo-spectrum allows us to study the behavior of
these values (rounded) and thus to control errors. The pseudo spectrum is a fairly recent concept and has been
discussed a lot to answer practical problems in particular. In 1974, Henry Landau created the epsilon approximate
eigenvalues.

Jim Varah, in 1977, invented the epsilon-spectrum. He was interested in the stability of matrix invariant
subspaces in the context of numerical solutions to eigenvalue problems of non-Hermitian matrices. It was in
the 1980s that Sergei Godunov and the Novosibirsk group introduced the notion of a figured spectrum (spectral
portrait). In 1988, the mathematician Nick Trefethen invented the epsilon approximation of eigenvalues. His work
is rooted in observations concerning unstable eigenvalues of the spectrum of matrices for differential equations.

Finally, in 1990, Diederich Hinrichsen and Tony Pritchard brought the notion of spectral value set. The notion
of the numerical range was introduced by Otto Toeplitz [1] in 1918 for complex matrices, in 1919 F. Hausdorff [2]
proved that the numerical range of a complex matrix is convex, in years 1929 and 1932 A. Winter [3] and M. H.
Stone [4] studied the relations between the numerical range and the convex hull of the spectrum of a bounded
linear operator in a Hilbert space. In 2020, R. Derkaoui and A. Smail published an article entitled: ”Generalized
Spectrum and Numerical Range of Matrix the Lorentzian Oscillator Group of Dimension Four”. In this article,
they give the spectrum, pseudo-spectrum and numerical rang of matrix of the metric ga the lorentzian oscillator
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group of dimension four (G,ga) with illustrative axample (See [5]). This metric ga is explicitly given by

ga = adx2
1 +2ax3dx1dx2 +(1+ax2

3)dx2
2 +dx2

3 +2dx1dx4 +2x3dx2dx4 +adx2
4,

with −1 < a < 1. The matrix of the metric ga is given by

Aa =


a ax3 0 1

ax3 1+ax2
3 0 x3

0 0 1 0
1 x3 0 a

 .

Proposition 1 [5] The numerical rang of matrix Aa check the following relation:∣∣∣∣x∗Aax
x∗x

∣∣∣∣≤ (1+ |a|)(1+ |x3|)+
∣∣ax2

3
∣∣ .

The pseudospectrum of a normal matrix A consists of circles of radius around each eigenvalue. For nonnormal
matrices, the pseudospectrum takes different forms in the complex plane. In [6] The pseudospectrum of thirteen
highly non-normal matrices is presented.

In this work, we will study the spectrum, pseudo-spectrum and the numerical range of the curvature tensor
Ri j = R(∂i,∂ j), also for Ricci tensor ρ and we will give examples of each matrix with the use of Matlab.

2. Preliminaries

Pseudospectra of matrices and numerical range
We shall generally let A denote a matrix in Cn×n. We are able to motivate what the idea of pseudospectra

is by what we can observe throught applied mathematics, ”is A singuler” isn’t robut because of an arbitry small
perturbation the answer will change but it is better to ”Is

∥∥A−1
∥∥ large”. Now, to define the eigenvalue we need

the condition of matrix singularity. To know if ” z is an eigenvalue of A” is the same as to ask ”is zI−A singular
”therefore, the property of being an eigenvalue of a matrix isn’t robust then to ask better ”is

∥∥(zI −A)−1
∥∥ large”

Definition 1 (The norm of resolvent) [7] Let M ∈Cn×n and ε > 0, the ε− pseudospectrum of the matrix M is
the set of complex numbers such that the norm of the resolvent is very large, i.e,

σε =
{

z ∈ C :
∥∥(zI −M)−1∥∥> ε

−1} .
Definition 2 (The perturbation theory) [7] Let M ∈ Cn×n and ε > 0, the pseudospectrum of matrix M is a
perturbation of a spectrum, i.e. it is the set of all eigenvalues of neighboring matrices of matrix M, i.e,

σε =
{

z ∈ C : z ∈ σ(M+E) for some E ∈ Cn×n with ∥E∥< ε
}
.

Proposition 2 [7] For a normal matrix, the ε-pseudospectrum is simply the union of open ε-balls with center
eigenvalues and radius ε.

Definition 3 [8] Let T be an operator in B(H) (i.e bounded linear operator on a Hilbert space H), the numerical
range of T is the set W (T ) of complex numbers defined by

W (T ) = {⟨T x,x⟩ : x ∈ H, ∥x∥= 1} .

Definition 4 [7] The (2-norm) numerical range of a matrix M ∈ Cn×n is the set

W (M) =

{
z∗Mz
z∗z

, z ∈ Cn,∥z∥ ̸= 0
}
,

is defined to be where z∗ denotes the conjugate transpose of the vector z.
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Proposition 3 [7] Let M1 ∈ Cn×n,M2 ∈ Cn×n, µ1,µ2,µ3 ∈ C then:
1)

W (M1 +M2)⊂W (M1)+W (M2).

2)
W (µ1M1) = µ1W (M1).

3)
W (µ2M1 +µ3In) = µ2W (M1)+µ3.

4)
W (M∗

1) = {z,z ∈W (M1)} .

Theorem 1 [7] The numerical range of matrix A is no empty bounded and convex set.

Proposition 4 [7] Let M ∈ Cn×n,
σ(M)⊂W (M).

Proof 1 Let λ ∈ σ(M) and x ∈ H such that ∥x∥= 1 then, Mx = λx and then ⟨(M−λ )x,x⟩= 0 then, ⟨Mx,x⟩= λ

then λ ∈W (M)

Theorem 2 [7] Let M ∈Cn×n then,
σε(M)⊆W (M)+∆ε .

Where ∆ε is the closed disk of center 0 and radius ε.

The components of the curvature tensor Ri j = R(∂i,∂ j) = ∇∂i∇∂ j −∇∂ j ∇∂ i, i, j ∈ {1, ..,4} on the oscillator
group (G,ga), relative to the local coordinate system, are given by (See [9]):

R12 =


a2x3

4
a2x2

3+a
4 0 ax3

4
−a2

4 −ax3
4 0 −a

4
0 0 0 0
0 0 0 0

 , R13 =


0 0 a

4 0
0 0 0 0

−a2

4 −a2x3
4 0 −a

4
0 0 0 0

 ,

R23 =


0 0 ax3 0
0 0 −3a

4 0

−a2x3
4

3a−a2x2
3

4 0 −ax3
4

0 0 0 0

 , R34 =


0 0 −1

4 0
0 0 0 0
a
4

ax3
4 0 1

4
0 0 0 0

 ,

R24 =


−ax3

4 −a2x3+1
4 0 − x3

4
a
4

ax3
4 0 1

4
0 0 0 0
0 0 0 0

 .

. (1)

Let ρ be the Ricci tensor on the oscillator group (G,ga). The components ρi j = ρ(∂i,∂ j) with respect to the
local coordinate system are then given by (See [9]):

ρ =


1
2 a2 1

2 a2x3 0 1
2 a

1
2 a2x3

1
2 a

(
ax2

3 −1
)

0 1
2 ax3

0 0 −1
2 a 0

1
2 a 1

2 ax3 0 1
2

 . (2)
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3. The main result

3.1. Spectrum of R12,R13, R23, R34 and R24

In this section, we find spectrum and the numerical range for curvature tensor Ri j = R(∂i,∂ j) on the oscillator
group (G,ga) of dimension four.

Proposition 5 The eigenvalues of matrice R12,R13, R23, R34 and R24 defined in (1) are given by
1-For R12 :if

2−
√

7
3

≤ a ≤ 0,

or

0 ≤ a < 1 and x3 ∈
[

−
√

a√
−3a2 +4a+1

,

√
a√

−3a2 +4a+1

]
,

then

σ(R12) =


1
2 a
√
− 3

16 a2x2
3 +

1
8 ax2

3 −
1
4 a+ 1

16 x2
3 −

1
8 , ax3 +

1
8 a2x3,

1
8 a2x3 − 1

2 a
√
− 3

16 a2x2
3 +

1
8 ax2

3 −
1
4 a+ 1

16 x2
3 −

1
8 ax3, 0

 .

2-For R13 :if
−1 < a ≤ 0,

then

σ(R13) =

{
1
4

√
−a3, − 1

4

√
−a3, 0

}
.

3-For R23 :if

−1 < a < 0, and x3 ∈
]
−∞,− 3√

−a

]
∪
[

3√
−a

,∞

[
,

then

σ(R23) =

{
1
4

a
√

−ax2
3 −9,−1

4
a
√

−ax2
3 −9,0

}
.

3-For R34 :if
−1 < a ≤ 0,

then

σ(R34) =

{
1
4
√
−a,−1

4
√
−a,0

}
.

3-For R24 :if

x3 ∈

[
a3 −

√
a6 +4a3

2a2 ,
a3 +

√
a6 +4a3

2a2

]
, and a ̸= 0

then

σ(R24) =

{
1
4

√
−a3x3 +a2x2

3 −a,−1
4

√
−a3x3 +a2x2

3 −a,0
}
.

3.1.1. Numerical range of R12,R13, R23, R34 and R24

Theorem 3 Let R12,R13, R23, R34 and R24 be the matrices defined in (1),
1- If η ∈W (R12) then

|η | ≤ x2
3 +

3
2
|x3|+

1
2
. (3)

2- If η ∈W (R13) then

|η | ≤ 1
4
(1+ |x3|)+

1
2
. (4)

3- If η ∈W (R23) then

|η | ≤
x2

3
4
+

3
2
|x3|+

3
2
. (5)
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4- If η ∈W (R34) then

|η | ≤ |x3|
4

+
3
4
. (6)

5- If η ∈W (R24) then

|η | ≤
x2

3
4
+

3 |x3|
4

+
3
4
. (7)

Proof 2 1-Let η ∈ W (R12), so ∃ z =


z1
z2
z3
z4

 ∈ C4 with zi = ρieiθi , i = 1,4 such that z ̸= 0, such as

η =
z∗R12z
4
∑

i=1
|zi|2

,

so

η =
1
4 a(z2z1(ax2

3 +1)− x3(ρ
2
2 −aρ2

1 )− z4z2 + z4z1x3 −az2z1)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
.

We have ∣∣z j
∣∣2

4
∑

i=1
|zi|2

≤ 1, ∀ j ∈ {1,2,3,4} (8)

because if we have the opposite, i.e, we pose ∃ j ∈ {1,2,3,4} , such as∣∣z j
∣∣2

4
∑

i=1
|zi|2

> 1,

so, for example ( j = 1) we find
|z2|2 + |z3|2 < 0,

and this is a contradiction.
So from (8) we find

|η | ≤ |ax3|
2

+
|a|
2

+
a2

4
(
x2

3 + |x3|
)
.

We proved (3).
2-For W (R13), we find

η =
z∗R12z
4
∑

i=1
|zi|2

=
1
4 az1z3 − 1

4 a2z1z3 − 1
4 az3z4 − 1

4 a2x3z2z3

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
,

so from (8), we find

|η | ≤ a2

4
(1+ |x3|)+

|a|
2
.

We proved (4).
3-Now for W (R23), we obtain

η =
z∗R23z
4
∑

i=1
|zi|2

=
z3z2

(3
4 a− 1

4 a2x2
3
)
− z3

(3
4 az2 −az1x3

)
− 1

4 a2z3x3z1 − 1
4 az3x3z4

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
,

so from (8), we find

|η | ≤ 3
2
|x3|+

x2
3

4
+

3
2
.

13
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We proved (5).
4-Next, for W (R34), we obtain

η =
z∗R34z
4
∑

i=1
|zi|2

=
a
4 z3z1 +

ax3
4 z2z3 − 1

4 z1z3 +
1
4 z3z4

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
,

so from (8), we find

|η | ≤ |x3|
4

+
3
4
.

We proved (6).
5-Finally, for W (R34), we find

η =
z∗R24z
4
∑

i=1
|zi|2

=
z4
(1

4 z2 +
1
4 z1x3

)
+ z1

(1
4 az2 − 1

4 az1x3
)
− z2

(
z1
(1

4 a2x2
3 +

1
4

)
− 1

4 az2x3
)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
,

so from (8), we find

|η | ≤ 3
4
+

3 |x3|
4

+
x2

3
4
.

We proved (7).

3.2. The numerical range for Ricci tensor ρ

In this section, we will give we find spectrum, pseudos pectrum and the numerical range for Ricci tensor ρ on the
oscillator group (G,ga) of dimension four.

Proposition 6 The eigenvalues of matrix ρ defined in (2) are given by, if

−1 < a ≤ 0,

or

0 < a < 1 and x3 ∈

[
−2a2 +2a−2−

√
−16a(a2 −1)

2a2 ,
−2a2 +2a−2−

√
−16a(a2 −1)

2a2

]
,

then

σ(ρ) =


λ1 =

1
4 a2x2

3 − 1
4 a− 1

4 Q+ 1
4 a2 + 1

4 ,

λ2 =
1
4 a2x2

3 − 1
4 a+ 1

4 Q+ 1
4 a2 + 1

4 ,

λ3 =−1
2 , λ4 = 0

 ,

with
Q =

√
a4x4

3 +2a4x2
3 +a4 −2a3x2

3 +2a3 +2a2x2
3 +3a2 +2a+1.

3.2.1. Pseudo spectrum of ρ

Proposition 7 Since ρ is symmetrical therefore ρ is normal, therefore pseudo-spectrum noted by Λε(ρ) is given
by:

Λε(ρ) = {z ∈ C : |z−λi| ≤ ε, λi ∈ σ(ρ)} , with i ∈ {1, . . . ,4} .

3.2.2. Numerical range of ρ

Theorem 4 The numerical range of matrix ρ defined in (2), is given by:
1.

W (ρ)⊆
[
−2 |x3|−3, x2

3 +2 |x3|+3
]
, if : 0 ≤ a < 1, (9)

2.
W (ρ)⊆

[
2 |x3|−1, x2

3 +2 |x3|+5
]
, if : −1 < a ≤ 0, (10)

14
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Proof 3 Let z ∈ C4 such that z ̸= 0, we put z =


z1
z2
z3
z3

 , with zi = ρieiθi , i = 1,4 . So

z∗ρz
z∗z

=
S1 +S2

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
,

such as
S1 =

1
2

ρ
2
1 a2 +

1
2

ρ
2
2 a2(ax2

3 −1)− 1
2

ρ
2
3 a+

1
2

ρ
2
4 ,

and
S2 =

1
2

a2x3(z1z2 + z2z1)+
1
2

a(z1z4 + z4z1)+
1
2

ax3(z4z2 + z2z4).

we have

−1 ≤
ziz j + z jzi

4
∑

i=1
|zi|2

=
2ρiρ j cos(θi −θ j)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≤ 1, ∀i, j ∈ {1,2,3,4} , (11)

Moreover we have
1
2 ρi

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≤ 1, ∀i = 1,4. (12)

1. If 0 ≤ a < 1: So from(11), (12), if : x3 ≥ 0 then

−2x3 −3 ≤ z∗ρz
z∗z

≤ x2
3 +2x3 +3,

if on the contrary x3 < 0 then

2x3 −3 ≤ z∗ρz
z∗z

≤ x2
3 −2x3 +3.

We proved (9).
2. If −1 < a ≤ 0: So from (11), (12), if : x3 ≥ 0 we find

−2x3 −1 ≤ z∗ρz
z∗z

≤ x2
3 +2x3 +5,

if on the contrary x3 < 0 then

2x3 −1 ≤ z∗ρz
z∗z

≤ x2
3 −2x3 +5.

We proved (10).

4. Numerical Examples

Example 4.1 For x3 = 0 and a = 1
2 , the matrix R12 is

R12 =


0 1

8 0 0
− 1

16 0 0 −1
8

0 0 0 0
0 0 0 0

 ,

so
z∗R12z

z∗z
=

1
8(

1
2 ρ1ρ2 cos(θ2 −θ1)+ i 3

2 ρ1ρ2 sin(θ1 −θ2)−ρ2ρ4 cos(θ4 −θ2)− iρ2ρ4 sin(θ4 −θ2))

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
.

The real part of z∗R12z
z∗z is

Re(
z∗R12z

z∗z
) =

1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
.

15
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We have
−1
10

≤
1

16 ρ1ρ2 cos(θ2 −θ1)− 1
8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≤ 1

10
,

to prouve that we will suppose the contrast and we show that isn’t true. It means,

1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
>

1
10

,

so
ρ

2
3 +ρ

2
4 +

11
8

ρ1ρ2 +(ρ1 cosθ2 −ρ2 cosθ1)
2 +(ρ1 sinθ2 −ρ2 sinθ1)

2 < 0,

this is a contradiction. We show that 1
10 /∈ Re(W (R12)), since if we have the opposite, i.e. ∃z ∈ C4, such as

1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
=

1
10

,

i.e.
ρ

2
1 +ρ

2
2 +ρ

2
3 +ρ

2
4 −

5
8

ρ1ρ2 cos(θ2 −θ1)+
5
4

ρ2ρ4 cos(θ4 −θ2) = 0,

implies

(1
2 ρ1 cosθ1 − 5

8 ρ2 cosθ2)
2 +(1

2 ρ1 sinθ1 − 5
8 ρ2 sinθ2)

2 +( 5√
39

ρ4 cosθ4 +
√

39
8 ρ2 cosθ2)

2

+( 5√
39

ρ4 sinθ4 +
√

39
8 ρ2 sinθ2)

2 + 3
4 ρ2

1 +ρ2
3 +

14
39 ρ2

4 = 0.

The only condition which verify the equation is just when ρ1 = ρ2 = ρ3 = ρ4 = 0 and that is not possible because
z ̸= 0. Then, 1

10 /∈ Re(W (R12)). Now we show that

1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≥− 1

10
,

for proving that we need to prove that the contract isn’t true, it means,

1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
<− 1

10
,

and we get

ρ
2
1 +ρ

2
2 +ρ

2
3 +ρ

2
4 +

5
8

ρ1ρ2 cos(θ2 −θ1)−
5
4

ρ2ρ4 cos(θ4 −θ2)< 0,

then
(1

2 ρ1 cosθ1 +
5
8 ρ2 cosθ2)

2 +(1
2 ρ1 sinθ1 +

5
8 ρ2 sinθ2)

2 +( 5√
39

ρ4 cosθ4 −
√

39
8 ρ2 cosθ2)

2

+( 5√
39

ρ4 sinθ4 +
√

39
8 ρ2 sinθ2)

2 + 3
4 ρ2

1 +ρ2
3 +

14
39 ρ2

4 < 0,

that is impossible. We prove that

∀z ∈ C4,
1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
̸=− 1

10
,

by the absurd

∃z ∈ C4,
1
16 ρ1ρ2 cos(θ2 −θ1)− 1

8 ρ4ρ2 cos(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
=− 1

10
,

The only condition which verify the equation is just when ρ1 = ρ2 = ρ3 = ρ4 = 0 and that is not possible because
z ̸= 0. Then, − 1

10 /∈ Re(W (R12)). So we conclude, for x3 = 0 and a = 1
2 , on obtains

Re(
z∗R12z

z∗z
) ∈]− 1

10
,

1
10

[.

16
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Now for imaginary part of z∗R12z
z∗z ,

Im(
z∗R12z

z∗z
) =

3
16

ρ1ρ2 sin(θ1 −θ2)−
1
8

ρ2ρ4 sin(θ4 −θ2),

We have
3

16 ρ1ρ2 sin(θ1 −θ2)− 1
8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≤ 3

20
,

for proving that we need to prove that the contract isn’t true, it means,

3
16 ρ1ρ2 sin(θ1 −θ2)− 1

8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
>

3
20

,

i.e.
( 5√

39
ρ1 cosθ1 +

√
39
8 ρ2 sinθ2)

2 +( 5√
39

ρ1 sinθ1 −
√

39
8 ρ2 cosθ2)

2 +(5
8 ρ2 cosθ2 +

2
3 ρ4 sinθ4)

2

+(5
8 ρ2 sinθ2 − 2

3 ρ4 cosθ4)
2 + 14

39 ρ2
1 +ρ2

3 +
5
9 ρ2

4 < 0,

so this is a contradiction. We show that

3
16 ρ1ρ2 sin(θ1 −θ2)− 1

8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
̸= 3

20
,

because if we have the opposite

3
16 ρ1ρ2 sin(θ1 −θ2)− 1

8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
=

3
20

,

then
( 5√

39
ρ1 cosθ1 +

√
39
8 ρ2 sinθ2)

2 +( 5√
39

ρ1 sinθ1 −
√

39
8 ρ2 cosθ2)

2 +(5
8 ρ2 cosθ2 +

2
3 ρ4 sinθ4)

2

+(5
8 ρ2 sinθ2 − 2

3 ρ4 cosθ4)
2 + 14

39 ρ2
1 +ρ2

3 +
5
9 ρ2

4 = 0.

So this is a contradiction because z ̸= 0. So 3
20 /∈ Im(W (R12)). We have

1
16 ρ1ρ2 sin(θ2 −θ1)− 1

8 ρ4ρ2 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≥− 3

20
,

because, if we have the opposite

∃z ∈ C4,
3
16 ρ1ρ2 sin(θ1 −θ2)− 1

8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
<− 3

20
,

we obtain
ρ

2
1 +ρ

2
2 +ρ

2
3 +ρ

2
4 +

5
8

ρ1ρ2 cos(θ2 −θ1)−
5
4

ρ2ρ4 cos(θ4 −θ2)< 0,

imply
(1

2 ρ1 cosθ1 +
5
8 ρ2 cosθ2)

2 +(1
2 ρ1 sinθ1 +

5
8 ρ2 sinθ2)

2 +( 5√
39

ρ4 cosθ4 −
√

39
8 ρ2 cosθ2)

2

+( 5√
39

ρ4 sinθ4 +
√

39
8 ρ2 sinθ2)

2 + 3
4 ρ2

1 +ρ2
3 +

14
39 ρ2

4 < 0,

this is a contradiction. We prove that

∀z ∈ C4,
3
16 ρ1ρ2 sin(θ1 −θ2)− 1

8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
̸=− 3

20
,

by the absurd

∃z ∈ C4,
3
16 ρ1ρ2 sin(θ1 −θ2)− 1

8 ρ2ρ4 sin(θ4 −θ2)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
=− 3

20
,
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we find ρ1 = ρ2 = ρ3 = ρ4 = 0, and that is not possible because z ̸= 0. Then, − 3
20 /∈ Im(W (R12)). So we conclude,

for x3 = 0 and a = 1
2 , we obtain

Im(
z∗R12z

z∗z
) ∈]− 3

20
,

3
20

[.

Figure 1: Spectrum and Pseudospectrum of the curvature tensor R12 for x3 = 0 and a = 1
2

on the oscillator group of dimension four.

Figure 2: Numerical range of the curvature tensor R12 for x3 = 0 and a = 1
2

on the oscillator group of dimension four.
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Example 4.2 For x3 = 0 and a = 1
2 , we find

W (ρ0.5
0 ) =

[
−1
4
,

5
8

]
,

indeed, we have

W (ρ0.5
0 ) =


1
8 0 0 1

4
0 −1

4 0 0
0 0 −1

4 0
1
4 0 0 1

2

 .

Let λ ∈W (ρ0.5
0 ), so ∃z ∈ C4such as

λ =
1
8 ρ2

1 − 1
4 ρ2

2 − 1
4 ρ2

3 +
1
2 ρ2

4 +
1
4(z1z4 + z4z1)

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
.

On the other hand we have

λ =
5
8
+

−1
2 ρ2

1 − 1
8 ρ2

4 +
1
2 ρ1ρ4 cos(θ1 −θ4)− 7

8 ρ2
2 − 7

8 ρ2
3

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
.

We pose

β = −1
2

ρ
2
1 −

1
8

ρ
2
4 +

1
2

ρ1ρ4 cos(θ1 −θ4)

= −((
1√
2

ρ1 cosθ1 −
1

2
√

2
ρ4 cosθ4)

2 +(
1√
2

ρ1 sinθ1 −
1

2
√

2
ρ4 sinθ4)

2)≤ 0.

So

λ =
5
8
+

β − 7
8 ρ2

2 − 7
8 ρ2

3

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
≤ 5

8
,

moreover we have, if ρ2 = ρ3 = 0, ρ4 = 2ρ1 and θ4 = θ1 +2kπ, k ∈ Z we find λ = 5
8 .Then λ ∈W (ρ0.5

0 ). Since

λ =−1
4
+

δ + 1
4 ρ2

1 +
1
4 ρ2

4

ρ2
1 +ρ2

2 +ρ2
3 +ρ2

4
,

with

δ =
1
8

ρ
2
1 +

1
2

ρ
2
4 +

1
2

ρ1ρ4 cos(θ1 −θ4)

= (
1

2
√

2
ρ1 cosθ1 −

1√
2

ρ4 cosθ4)
2 +(

1
2
√

2
ρ1 sinθ1 −

1√
2

ρ4 sinθ4)
2 ≥ 0,

then
λ ≥−1

4
.

On the other hand we have, if ρ1 = ρ4 = 0, and ρ2,ρ3 ∈ R∗
+. We find λ =−1

4 . So −1
4 ∈W (ρ0.5

0 ).
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Figure 3: Spectrum and Pseudospectrum of the Ricci tensor ρ0.5
0 for x3 = 0 and a = 1

2
on the oscillator group of dimension four.

Figure 4: Numerical range of the Ricci tensor ρ0.5
0 for x3 = 0 and a = 1

2
on the oscillator group of dimension four.

5. Conclusion

The numerical range of an operator is a fairly recent concept and has been discussed a lot to respond to practical
problems in particular. In this work, we presented some basic definitions and properties of the numerical range of a
matrix since it is of great importance in the field of mathematics and physics. We found in this article the numerical
range of curvature tensor Ri j = R(∂i,∂ j) and Ricci tensor ρ on the oscillator group (G,ga) of dimension four. We
illustrated this with two examples, the first for Ri j = R(∂i,∂ j) and the second for ρ , and we used programming on
Matlab. There is still a lot to learn about the behavior of the numerical range in practice, and no doubt that future
problems on the subject will arise for us in different fields.
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