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Abstract
In a recent paper, Mao has studied min-pure injective modules to investigate the existence
of min-injective covers. A min-pure injective module is one that is injective relative only
to min-pure exact sequences. In this paper, we study the notion of min-pure projective
modules which is the projective objects of min-pure exact sequences. Various ring char-
acterizations and examples of both classes of modules are obtained. Along this way, we
give conditions which guarantee that each min-pure projective module is either injective
or projective. Also, the rings whose injective objects are min-pure projective are consid-
ered. The commutative rings over which all injective modules are min-pure projective are
exactly quasi-Frobenius. Finally, we are interested with the rings all of its modules are
min-pure projective. We obtain that a ring R is two-sided Köthe if all right R-modules
are min-pure projective. Also, a commutative ring over which all modules are min-pure
projective is quasi-Frobenius serial. As consequence, over a commutative indecomposable
ring with J(R)2 = 0, it is proven that all R-modules are min-pure projective if and only
if R is either a field or a quasi-Frobenius ring of composition length 2.
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1. Introduction
Throughout, R will stand for associative ring with identity, and R-modules will be

unitary modules unless otherwise specified. AR (RA) stands for any module A considered
as a right (left) R-module.

As a generalization of injectivity, the concept of min-injectivity is introduced by Harada
(see [22]). RA is called min-injective provided that Ext1

R(R/S, A) = 0 for any minimal
left ideal S. AR is called min-flat provided that TorR

1 (A, R/S) = 0 for any minimal left
ideal S (see [29]). By the natural equivalence Ext1

R(R/S, A+) ∼= TorR
1 (A, R/S)+ for any
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minimal left ideal S, we can conclude a right module A is min-flat provided that A+ is
min-injective.

Min-injective rings and min-injective modules are the most important and most studied
subjects of homological algebra along with module and ring theory. The main reason for
this is that min-injective rings are naturally occurring in characterizing quasi-Frobenius
(QF) rings. The importance of finite (quasi-Frobenius) rings has increased with the study
of the rings of algebraic coding theory (see [21,24,38]).

In [28], Mao introduced the concept of min-purity and min-pure injectivity, to give
further homologic characterizations of min-injective modules and to investigate the ex-
istence of min-injective covers. In the literature, purity has a considerable impact on
module-ring theory, and several crucial generalizations of this notion are given since it
was firstly introduced (see, [1, 5, 6, 8, 10, 31, 35, 36]). In accordance with the terminology
of Mao [28], a sequence 0 → D → E → F → 0 of right R-modules is called min-pure
exact if Hom(R/aR, E) → Hom(R/aR, F ) → 0 is epic for any a ∈ R such that Ra is
simple. AR is called min-pure injective provided that A has injective property relative to
all min-pure exact sequences. So far, min-purity, min-injectivity, min-pure injectivity and
their homological objects are studied by many authors (see [22,28,29,33]).

Motivated by min-pure injective modules, in this article, we first introduce the homo-
logical objects which are flat and projective relative to the min-pure exact sequences. We
shall call AR is min-pure projective provided that AR is projective relative to min-pure
exact sequences. Also, RA is called min-pure flat if RA is flat relative to min-pure exact
sequences. Naturally, flat left modules are min-pure flat, and projective right modules are
min-pure projective, but not conversely (see Example 2.2(2)).

In section 2, we give some preliminary properties of min-pure projective and min-pure
flat modules. After giving various equivalent conditions of min-purity, absolutely min-
purity of modules are described via min-purity. Moreover, it is shown that R is left
universally mininjective if and only if all min-pure projective (resp. flat) right R-modules
are projective (resp. flat). Also, we show that R is left FS if and only if injective dimensions
of min-pure injective right R-modules ≤ 1 if and only if flat dimension of min-pure flat
left R-modules ≤ 1. Finally, projective dimensions of min-pure projective right R-modules
≤ 1 equivalent to that for any a ∈ R such that Ra is simple, aR is projective.

In section 3, we consider the covering and enveloping properties of min-pure injective
and min-pure projective modules. We show that all min-pure injective modules have
an injective cover, and if R is left min-coherent, then all min-pure projective right R-
modules have a projective preenvelope. Also, we get that all right modules have a min-pure
projective precover and min-pure injective envelope.

In section 4, we focused on the rings whose all injective modules are min-pure projective.
Along the way, being R is quasi-Frobenius equivalent to that R is right CF and every
injective right R-module is min-pure projective. For a commutative ring R we prove
that all injective R-modules are min-pure projective if and only if R is quasi-Frobenius.
Moreover, it is shown that R is semisimple if and only if every min-pure projective (resp.
injective) right R-module is injective (resp. projective). Finally, we focused on the rings
whose all R-modules are min-pure projective (resp. injective). For this purpose, we prove
that R is a two-sided Köthe ring provided that every right R-module is min-pure projective
(resp. injective). Consequently, for a commutative indecomposable ring with J(R)2 = 0,
it is shown that R is either a field or a quasi-Frobenius ring of composition length 2 if and
only if all R-modules are min-pure projective.

For future research, we close the paper by giving some questions that are partially
answered inside the paper.
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2. Min-pure projective and min-pure flat modules
A sequence 0 → D → E → F → 0 of right R-modules is called min-pure exact if for any

a ∈ R such that Ra is simple, 0 → D⊗(R/Ra) → E⊗(R/Ra) → F ⊗(R/Ra) → 0 is exact.
Moreover, AR is called min-pure injective provided that AR is injective relative to every
min-pure sequence (see [28]). Motivated by min-pure injective modules, we introduce the
homological objects which are projective and flat with respect to the min-pure sequences.

Definition 2.1. (a) AR is called min-pure projective if for all min-pure sequences 0 →
D → E → F → 0 of right R-modules, the induced map β : Hom(A, E) → Hom(A, F ) is
an epimorphism.

(b) RA is called min-pure flat if for all min-pure sequences 0 → D → E → F → 0 of
right R-modules, the induced map α : D ⊗ A → E ⊗ A is a monomorphism.

Example 2.2. (1) For any a ∈ R such that Ra is simple, R/aR is min-pure projective
and R/Ra is min-pure flat.

(2) Any projective right module is min-pure projective and any flat left module is min-
pure flat. However, in general case, the converses need not be true. Consider the ring
R := Z/p2Z for some prime integer p. R/pR is a min-pure flat and min-pure projective
R-module since pR is simple ideal. Whereas the module R/pR is not flat, otherwise R/pR
would be projective by [29, Corollary 3.3]. But the epimorphism R → R/pR → 0 does not
split.

By the following theorem, further equivalent conditions of min-pure flatness are given.

Theorem 2.3. Let F = {R/Ra |for any a ∈ R such that Ra is simple}. The following
are equivalent for RA:

(1) A is min-pure flat;
(2) A+ is min-pure injective;
(3) A ∼= E/D where E is in Add(F ∪ {RR}) and D is pure in E;
(4) A can be written as a direct limit of finite direct sums of modules from F ∪ {RR}.

Also, when R is commutative, above statements are equivalent to:
(5) Hom(A, D) is min-pure injective, for any injective R-module D;
(6) A ⊗ C is min-pure flat, for any flat R-module C.

Proof. (1) ⇒ (2). Let RA be min-pure flat and 0 → D → E → F → 0 a min-pure
sequence of right R-modules. So, 0 → D ⊗ A → E ⊗ A is monic, whence (E ⊗ A)+ →
(D ⊗ A)+ → 0 is epic. This implies that Hom(E, A+) → Hom(D, A+) → 0 is also epic
and so A+ is min-pure injective.

(2) ⇒ (3). Assume that A+ is min-pure injective. By [30, Proposition 1.2], there exist
an F -pure sequence 0 → D → E → A → 0 where E is in Add(F ∪ {RR}). Also, by
the isomorphism used in (2) ⇔ (7) from the Lemma 2.4, the sequence 0 → A+ → E+ →
D+ → 0 would be min-pure. Since A+ is min-pure injective, 0 → A+ → E+ → D+ → 0
splits and so the sequence 0 → D → E → A → 0 is pure.

(3) ⇒ (4). Easily follows by [37, Theorem 34.2].
(4) ⇒ (1). Let 0 → D → E → F → 0 be a min-pure sequence of right R-modules

and {Fα}α∈Λ is a finite family of right R-modules such that for each α ∈ Λ, A = lim−→Fα,
where Fα’s is a finite direct sums of modules from F ∪ {RR}. Since Fα is min-pure flat
for each α ∈ Λ, 0 → D ⊗Fα → E ⊗Fα → F ⊗Fα → 0 is exact. So by [37, Theorem 24.11],
the sequence 0 → D ⊗ lim−→Fα → E ⊗ lim−→Fα → F ⊗ lim−→Fα → 0 is exact. Therefore, A is
min-pure flat.

(1) ⇒ (5). Let D be an injective R-module. If we consider the splitting map 0 →
D →

∏
R+, we would have the map 0 → Hom(A, D) → Hom(A,

∏
R+) which is also
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splits. Being A+ is min-pure injective by (1) together with the isomorphisms
∏

A+ ∼=
Hom(A,

∏
R+) implies that

∏
A+ is min-pure injective. This gives the min-pure injectivity

of Hom(A, D).
(5) ⇒ (6). Assume that C is any flat R-module. Since (A ⊗ C)+ is isomorphic to

Hom(A, C+), it is min-pure injective by (5) and by the injectivity of C+. This gives the
min-pure flatness of A ⊗ C.

(6) ⇒ (1) straightforward by putting C = R. �

Now, we are ready to give further characterizations of min-purity.

Lemma 2.4. Let 0 → D → E → F → 0 be a sequence of right R-modules. The following
are equivalent:

(1) 0 → D → E → F → 0 is min-pure;
(2) Hom(R/aR, E) → Hom(R/aR, F ) → 0 is epic for any a ∈ R such that Ra is

simple;
(3) Hom(A, E) → Hom(A, F ) → 0 is epic for any min-pure projective R-module AR;
(4) Hom(E, A) → Hom(D, A) → 0 is epic for any min-pure injective R-module AR;
(5) Hom(R/Ra, E+) → Hom(R/Ra, D+) → 0 is epic for a ∈ R such that Ra is simple;
(6) 0 → D ⊗ B → E ⊗ B is monic for any min-pure flat R-module RB;
(7) 0 → R/aR ⊗ F + → R/aR ⊗ E+ is monic for any a ∈ R such that Ra is simple.

Also, if R is commutative or two sided mininjective, then the above are equivalent
to:

(8) Hom(R/aR, E) → Hom(R/aR, F ) → 0 is epic for any a ∈ R such that aR is
simple.

Proof. (1) ⇔ (2) follows by [28, Lemma 2.1].
(1) ⇔ (3) ⇒ (4) and (1) ⇒ (6) are obvious.
(4) ⇒ (1). Let a ∈ R such that Ra is simple. Min-pure flatness of R/Ra implies

the min-pure injectivity of (R/Ra)+ by Theorem 2.3. Thus by (4), the induced sequence
0 → Hom(F, (R/Ra)+) → Hom(E, (R/Ra)+) → Hom(D, (R/Ra)+) → 0 can be obtained,
and that gives the sequence 0 → (F ⊗ R/Ra)+ → (E ⊗ R/Ra)+ → (D ⊗ R/Ra)+ → 0. So
(1) follows by the exactness of 0 → D ⊗ R/Ra → E ⊗ R/Ra → F ⊗ R/Ra → 0.

(1) ⇔ (5). Let a ∈ R such that Ra is simple. Then the right exactness of 0 →
D ⊗ (R/Ra) → E ⊗ (R/Ra) → F ⊗ (R/Ra) → 0 is equivalent to the left exactness
of 0 → (F ⊗ (R/Ra))+ → (E ⊗ (R/Ra))+ → (D ⊗ (R/Ra))+ → 0, equivalently 0 →
Hom(R/Ra, F +) → Hom(R/Ra, E+) → Hom(R/Ra, D+) → 0 is exact. Now, (1) ⇔ (5)
is obvious.

(6) ⇒ (1) is obvious since every R/S is min-pure flat for any simple left ideal S.
(2) ⇔ (7). Let a ∈ R such that Ra is simple. Take into consideration the next diagram:

0 → R/aR ⊗ F + → R/aR ⊗ E+ → R/aR ⊗ D+ → 0
µ↓ δ↓ λ↓

0 → Hom(R/aR, F )+ → Hom(R/aR, E)+ → Hom(R/aR, D)+ → 0

By [12, Lemma 2], µ, δ and λ are isomorphisms. Thus exactness of the first row is
equivalent to the exactness of the second row, and equivalently the map Hom(R/aR, E) →
Hom(R/aR, F ) → 0 is epic.

(2) ⇔ (8). If R is commutative, it is easy.
Let R be left-right mininjective and a ∈ R. Then being aR is a minimal right ideal

equivalent to that Ra is a minimal left ideal by [33, Theorem 1.14]. So in either cases
(2) ⇔ (8) follows. �

Remark 2.5. (1). Obviously purity implies the min-purity, but not conversely. Indeed,
by [13, Example 3.1(ii)], there is an R-algebra S over a local Artinian ring R, such that
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the inclusion homomorphism R ↪→ S is cyclically pure, and so is min-pure. But R ↪→ S is
not pure.

(2). By (1), every min-pure injectivity (resp. min-pure projectivity) of modules implies
pure-injectivity (resp. pure-projectivity), but not conversely. Every Artinian R-module is
well known as pure-injective. Hence the artinian ring R in [13, Example 3.1(ii)] is pure-
injective. But it is not min-pure injective, otherwise the inclusion map R ↪→ S above
splits.

(3). By (2) and the following corollary, we ensure that the existence of pure-projective
module which is not min-pure projective.

A ring R is a valuation ring (commutative but not necessarily a domain) provided that
all ideals of R are totally ordered by inclusion.

Corollary 2.6. The next statements are equal for a ring R:
(1) All left modules are min-pure flat;
(2) All pure-projective right modules are min-pure projective;
(3) All pure-injective right modules are min-pure injective;
(4) All min-pure exact sequences of right modules are pure.

Moreover, if R is commutative, Rp is a valuation ring for every prime ideal p.

Proof. (1) ⇔ (2) ⇔ (4) ⇒ (3) are easy.
(3) ⇒ (1). For any left module A, pure-injectivity of A+ implies its min-pure injectivity

by (3). Thus by Theorem 2.3, we conclude that A is min-pure flat.
Since cyclically pure exact sequences are min-pure, the last statement follows by [13,

Theorem 2.7]. �

Let C denotes the set C = {R/aR |for any a ∈ R such that Ra is simple}. Note that
min-pure= C -pure= C ∪{RR}-pure. The following due to Warfield Jr.(see [36, Proposition
1, p.700]).

Lemma 2.7. ([30, Proposition 1.2]) For a module AR we have:
(1) There exists a min-pure exact sequence 0 → D → E → A → 0 where E is a direct

sum of copies of modules in C ∪ {RR}.
(2) The class of all min-pure projective right modules is exactly Add(C ∪ {RR}).

We will call AR is absolutely min-pure (similar to absolutely purity) provided that A is
min-pure in every extension of it.

Proposition 2.8. The next statements are equal for an R-module AR:
(1) AR is absolutely min-pure;
(2) All exact sequences starting with A are min-pure;
(3) Ext1(D, A) = 0 for any min-pure projective R-module DR;
(4) Ext1(R/aR, A) = 0 for any a ∈ R such that Ra is simple;
(5) There exists a min-pure sequence 0 → A → E → C → 0 with E injective;
(6) For all min-pure injective R-modules DR, all homomorphisms from A to D factors

through an injective R-module.
Also, if R is commutative, then the above conditions are equivalent to:

(7) A is min-injective.

Proof. (1) ⇔ (2) is easy by definition.
(2) ⇒ (5) is obvious, since we can embed A in an injective right R-module.
(5) ⇒ (6). Let f : A → B be a homomorphism for any min-pure injective R-module

BR. Being 0 → A
i−→ E is min-pure, gives the existence of a map g : E → B such that

gi = f , and this proves (6).
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(6) ⇒ (2). Let g : A → D be any homomorphism with D min-pure injective and
ξ : 0 → A

i−→ K → L → 0 be an exact sequence. So, there are a map h : A → E with E
injective and a map f : E → D such that fh = g by (6). By injectivity of E, there is a
map α : K → E such that αi = h. So g = fαi, whence ξ is min-pure by Lemma 2.4.

(1) ⇒ (3) and (3) ⇒ (4) follows from Lemma 2.7.
(4) ⇒ (6). We always have a sequence ε : 0 → A

i−→ K → L → 0 with K
injective. Since by (4), Ext1(R/aR, A) = 0 for any a ∈ R such that Ra is simple,
Hom(R/aR, K) → Hom(R/aR, L) → 0 is epic. Thus ε is min-pure by Lemma 2.4, and so
every homomorphism A → B with B min-pure injective factors through E.

(2) ⇔ (7) follows by [28, Proposition 2.3]. �

Recall by Puninski et al. [34] that, R is an RD-ring provided that purity and RD-purity
coincides (this property is right-left symmetric). A serial ring and a regular ring are always
RD (see [11, Theorem I.4] and [34, Remark 2.7]). By Puninski et al. [34, Proposition 4.5],
a commutative RD ring is exactly an arithmetic ring, i.e., the rings with a distributive
lattice of ideals.

Proposition 2.9. The next statements hold for a ring R:
(1) If all min-pure sequences are pure, then R is an RD-ring.
(2) If R is commutative and all min-pure sequences are pure, then R is arithmetic and

all min-injective R-modules are Absolutely pure.
(3) If R is commutative Noetherian ring such that all min-pure sequences are pure,

then R is quasi-Frobenius arithmetic.

Proof. (1). If we assume that every min-pure exact sequence is pure, then every RD-exact
sequence is pure, whence R is an RD-ring.

(2). By (1) and [34, Proposition 4.5], R is arithmetic. Also, if A is min-injective, then
0 → A ↪→ E(A) → E(A)/A → 0 is min-pure by Proposition 2.8. So, it is pure exact and
this implies that A is Absolutely pure.

(3). Being arithmetic comes from (2). Again by (2) and Noetherianity of R, all min-
injective R-modules are injective, whence R is Artinian by [2, Theorem 1] and the fact
that simple injectives are min-injective. Thus RR is pure-injective, whence RR is min-pure
injective by hypothesis. Hence by Theorem 4.6, R is quasi-Frobenius. �

Relationship between min-pure injective (resp. min-pure projective, min-pure flat) mod-
ules and injective (resp. projective, flat) modules is given below.

Corollary 2.10. The next conditions are true for any ring R:
(1) Any min-pure injective absolutely min-pure right R-module is injective.
(2) Any min-flat min-pure projective right R-module is projective.

Moreover, if R is commutative, then
(3) Any min-pure injective min-injective R-module is injective.
(4) Any min-pure flat min-flat R-module is flat.

Proof. (1). For any min-pure injective absolutely min-pure right R-module A, By Propo-
sition 2.8, there is a min-pure sequence 0 → A → E → B → 0 with E injective. Splitting
of this sequence gives us the injectivity of A.

(2). For any min-pure projective min-flat right R-module A, we always have 0 → K →
F → A → 0 where F projective. Since A is min-flat, this exact sequence is min-pure.
Splitting of this sequence gives us the projectivity of A.

(3) follows by Proposition 2.8.
(4). For any min-flat min-pure flat module A, A+ is min-pure injective and min-injective

by Theorem 2.3. This gives the injectivity of A+ by (2), whence is flatness of A. �
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Recall by [33] that, R is left universally mininjective ring if all left R-modules are min-
injective, equivalently R is left min-injective and left PS. Now, we obtain new equivalent
conditions of left universally mininjective rings via min-purity.

Proposition 2.11. The next statements are equal for a ring R:
(1) R is left universally mininjective;
(2) Every exact sequences of right R-modules is min-pure;
(3) Every right R-module is absolutely min-pure;
(4) Every min-pure injective right R-module is injective;
(5) Every min-pure injective right R-module is absolutely min-pure;
(6) Every min-pure flat left module is flat;
(7) Every min-pure projective right R-module is projective.

Proof. (1) ⇔ (2) follows by [28, Theorem 4.3] and (3) ⇔ (2) ⇒ (5) are clear.
(5) ⇒ (4). Hypothesis implies that any min-pure injective right R-module is a direct

summand of an injective module, and so (2) follows.
(4) ⇒ (6). For any min-pure flat left module A, A+ is min-pure injective, whence is

injective by (2). Therefore A would be flat.
(6) ⇒ (1). Let M be a min-pure flat left R-module. We always have a sequence

ε : 0 → D → E → A → 0 where E is projective. Flatness of M , gives the monic map
0 → D⊗M → E ⊗M , and so ε is min-pure by Lemma 2.4. Thus, any right R-module A is
min-flat by [28, Proposition 2.2], whence R is left universally mininjective by [28, Theorem
4.3].

(1) ⇒ (7). Since R is left universally mininjective, for any a ∈ R such that Ra is
simple, R/aR is min-flat by [28, Theorem 4.3], whence is projective by [29, Corollary 3.3].
If C = {R/aR |for any a ∈ R such that Ra is simple}, any min-pure projective module
contained in Add(C ∪ {RR}) by Lemma 2.7(2). Since any R/aR ∈ C is projective, (7)
follows.

(7) ⇒ (1). Since by (7), R/aR is projective for any minimal left ideal Ra, (1) follows
by [29, Theorem 5.10]. �

The rings all of whose minimal left ideals are projective is called left PS [32]. Nonsingular
rings, Semiprime rings and V-rings are left PS. A ring R is left FS [27], if every simple left
ideal of R is flat.

Proposition 2.12. The next statements are equal for a ring R:
(1) R is left FS;
(2) Id(A) ≤ 1 for any min-pure injective module AR;
(3) Fd(A) ≤ 1 for any min-pure flat module RA.

Proof. (1) ⇒ (2). By [28, Theorem 4.1], for any right R-module F , we have 0 → D →
E → F → 0 with E projective and D min-flat. This gives by [28, Proposition 2.2], for any
min-pure injective right R-module A, Ext2(F, A) ∼= Ext1(D, A) = 0. That is, Id(A) ≤ 1.

(2) ⇒ (3). For any min-pure flat R-module RA, A+ is min-pure injective by Theorem
2.3. By (2), for any R-module DR, we have Tor2(D, A)+ ∼= Ext2(D, A+) = 0. So,
Tor2(D, A) = 0, and hence fd(A) ≤ 1.

(3) ⇒ (1). Since R/S is min-pure flat for any minimal left ideal S, flat dimension of
R/S is ≤ 1. In this case S is flat and so R is left FS. �

Next we discuss the conditions related to min-pure projective modules which exactly
characterizes left PS rings as follows.

Proposition 2.13. The next statements are equal for a ring R:
(1) aR is projective for any a ∈ R such that Ra is simple;
(2) Pd(A) ≤ 1 for any min-pure projective module AR;



Homological objects of min-pure exact sequences 349

(3) Absolutely min-pure left R-modules is closed under homomorphic images.
Also, when R is commutative, above conditions are equal to:

(4) R is PS.

Proof. (1) ⇒ (3). Let B be a submodule of an absolutely min-pure right R-module A.
We shall show that A/B is absolutely min-pure. For any a ∈ R such that Ra is simple,
consider the induced exact sequence

Ext1(R/aR, A) → Ext1(R/aR, A/B) → Ext2(R/aR, B)

By Proposition 2.8, Ext1(R/aR, A) = 0. Consider Ext2(R/aR, B) ∼= Ext1(aR, B) the iso-
morphism. Projectivity of aR gives that Ext2(R/aR, B) = 0. Thus Ext1(R/aR, A/B) = 0,
and so A/B is absolutely min-pure by Proposition 2.8.

(3) ⇒ (2). Let A be a min-pure projective right R-module. For any right R-module
C, we always have 0 → C → D → E → 0 with D injective, that gives the exactness of
0 = Ext1(A, D) → Ext1(A, E) → Ext2(A, C) → Ext2(A, D) = 0. By (2), E is absolutely
min-pure and so Ext2(A, C) ∼= Ext1(A, E) = 0 by Proposition 2.8. This means that
projective dimension of A is ≤ 1.

(2) ⇒ (1). Since R/aR is min-pure projective for any a ∈ R such that Ra is simple,
projective dimension of R/aR is ≤ 1. In this case aR is projective.

(1) ⇔ (4). If R is commutative, it is easy. �

3. Some (pre)envelopes and (pre)covers
Let Y be a class of right modules.
For a module XR, a module Y ∈ Y is called a Y-envelope of X, if there is a homomor-

phism f : X → Y such that the next conditions hold:
(1) For any homomorphism g : X → Z with Z ∈ Y, there is a map h : Y → Z with
g = hf .
(2) If an endomorphism h : Y → Y is such that f = hf , then f must be an automorphism.

If only (1) holds, we call f : X → Y a Y-preenvelope. Dually, it can be defined a
Y-cover and Y-precover. In general Y-envelopes and Y-covers not always exsist, but they
are unique (up to isomorphism) if they exist (see [15]).

Lemma 3.1. Let R be a ring. Then:
(1) Extensions, pure submodules, pure quotients, direct sums and direct summands of

absolutely min-pure right R-modules are absolutely min-pure.
(2) Finite direct sums, direct summands and direct products of min-pure injective right

R-modules are min-pure injective.
(3) Direct sums and direct summands of min-pure projective right R-modules are min-

pure projective.
(4) Direct sums, pure quotients and pure submodules of min-pure flat left R-modules

are min-pure flat.

Proof. (1). Using the properties of the Ext functor, closedness of absolutely min-purity
under extensions is obvious by Proposition 2.8. Also, using the properties of the tensor
functor, closedness under direct sums and direct summands is easy. Also closedness of
absolutely min-pure modules under pure submodules is by Proposition 2.8. Now let C
a pure submodule of an absolutely min-pure right module D. Then the exact sequence
0 → (D/C)+ → D+ → C+ → 0 splits. So, the isomorphism

Tor1(R/aR, D+) ∼= Tor1(R/aR, C+) ⊕ Tor1(R/aR, (D/C)+)

induces the isomorphism

Ext1(R/aR, D)+ ∼= Ext1(R/aR, C)+ ⊕ Ext1(R/aR, D/C)+
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for any a ∈ R such that Ra is simple. Since D and C absolutely min-pure, for any a ∈ R
such that Ra is simple, Ext1(R/aR, D) = 0 and Ext1(R/aR, C) = 0 by Proposition 2.8,
and so Ext1(R/aR, D/C) = 0. Thus D/C is absolutely min-pure by Proposition 2.8,
again.

(2) and (3). By using a standard technique as in the proofs of (pure-)injectivity and
(pure-)projectivity.

(4). For a pure exact sequence 0 → X → Y → Z → 0 of left R-modules with Y
min-pure flat, we get the splitting of 0 → Z+ → Y + → X+ → 0. Since Y + is min-pure
injective by Theorem 2.3, X+ and Z+ are min-pure injective by (2), whence X and Z are
min-pure flat by Theorem 2.3. Moreover, direct sums of min-pure flat left R-modules are
min-pure flat can be easily seen by using the tensor product properties. �

Proposition 3.2. Let R be a ring. Then:
(1) All min-pure injective right R-modules have an injective cover.
(2) If R is left min-coherent (all minimal left ideals are finitely presented), then all

min-pure projective right R-modules have a projective preenvelope.
Proof. (1). Lemma 3.1(1) and [23, Theorem 2.5] yield that any min-pure injective R-
module AR has an absolutely min-pure cover β : B → A. Absolutely min-purity of B

gives a min-pure sequence 0 → B
i−→ E → C → 0 with E injective by Proposition 2.8,

whence there exists α : E → A such that αi = β. Being β an absolutely min-pure cover
gives the existence of λ : E → B such that βλ = α. So β(λi) = (βλ)i = αi = β, whence
λi is an isomorphism. This means that E has a summand which is isomorphic to B. This
makes B injective and g an injective cover of A.

(2). If AR is min-pure projective, then AR has a min-flat preenvelope β : A → B by
[29, Theorem 4.6]. By [28, Proposition 2.2], there exist α : A → D and λ : D → B with
D projective such that β = λα. It follows that α is a projective preenvelope of A. �

Proposition 3.3. All left R-modules can be embedded as a min-pure submodule of a min-
pure injective module.
Proof. Let F = {R/aR |for any a ∈ R such that aR is simple} and A a left R-module.
Then by [30, Proposition 1.2], there exist an F -pure sequence 0 → C → D → A+ → 0
where D is a direct sum of copies of modules in F ∪ {RR}. By the isomorphism used in
(2) ⇔ (7) from the Lemma 2.4, the sequence 0 → A++ → D+ → C+ → 0 is min-pure.
Since A is pure in A++ by [18, Corollary 1.30], A is min-pure in D+. Moreover, since any
R/aR ∈ F , any (R/aR)+ is min-pure injective by Theorem 2.3, D+ is min-pure injective
by Lemma 3.1(2). �

Next, we consider the existence of a min-pure injective envelope and a min-pure pro-
jective (pre-)cover.
Proposition 3.4. Let R be a ring. Then:

(1) All right R-modules have a min-pure injective envelope.
(2) All right R-modules have a min-pure projective precover. Moreover, if min-pure

projective right R-modules is closed under pure quotients, all right R-module have
a min-pure projective cover.

(3) All left R-modules have a min-pure flat cover.
Proof. (1). By Proposition 3.3, all right R-modules have a min-pure injective preenvelope.
Let a pair (E,A), with E is a class of min-pure monomorphism between right R-modules
and A is a class of min-pure injective right R-modules. Then the pair (E,A) is an injective
structure on the category of right R-modules determined by the class F = {R/aR |for
any a ∈ R such that aR is simple} by Lemma 2.4 and [15, Definitions 6.6.2 and 6.6.3].
Thus, (1) follows by [15, Theorem 6.6.4].
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(2). Min-pure projective modules are precovering by Lemma 2.7. If min-pure projective
right R-modules are closed under pure quotients, every right R-module has a min-pure
projective cover by [23, Theorem 2.5].

(3) follows by Lemma 3.1(4) and [23, Theorem 2.5]. �

4. Rings whose injective modules are min-pure projective
Next we characterize min-pure injctive and min-pure projective modules via min-purity.

Proposition 4.1. For a module AR, the next statements are equal:
(1) A is min-pure injective;
(2) All min-pure sequences 0 → A → M → N → 0 are split;
(3) A is injective relative to all min-pure sequences 0 → M → N → L → 0 with N

min-pure projective;
(4) A is a direct summand of every min-pure extension of it.

Proof. (1) ⇒ (2) is obvious and (1) ⇔ (3) follows by [30, Theorem 1.6].
(2) ⇒ (1). By Proposition 3.3, there is a min-pure exact sequence 0 → A → M → N →

0 with M min-pure injective. So A is min-pure injective by (2).
(1) ⇒ (4). Suppose A is a min-pure submodule of a module B. Since A is min-pure

injective then the identity map of A extends to a map B → A meaning that A is a direct
summand of B.

(4) ⇒ (1) is clear by Lemma 3.1(2). �

Proposition 4.2. For a module AR, the next statements are equal:
(1) A is min-pure projective;
(2) All min-pure exact sequences 0 → M → N → A → 0 are split;
(3) A is projective with respect to all min-pure sequences 0 → M → N → L → 0 with

N min-pure injective.

Proof. (1) ⇒ (2) is clear and (1) ⇔ (3) follows by [30, Theorem 1.6].
(2) ⇒ (1). By Lemma 2.7, there is a min-pure exact sequence 0 → M → N → A → 0

with N min-pure projective. So, A is min-pure projective by (2). �

Recall that R is called a semisimple ring provided that all right (or left) R-modules are
projective (resp. injective). A ring R is said to be quasi-Frobenius if R is left (or right)
artinian and left (or right) self-injective. By a well-known result of Faith and Walker [16],
R is quasi-Frobenius if and only if the class of injective modules and the class of projective
modues are the same.

Theorem 4.3. The next statements are equal for a ring R:
(1) R is semisimple;
(2) All min-pure injective right R-modules are projective;
(3) All min-pure projective right R-modules are injective.

Proof. (1) ⇒ (3) and (1) ⇒ (2) are easy.
(2) ⇒ (1). Our hypothesis implies that all injective right R-modules are projective,

whence R is quasi-Frobenius. For each right R-module A, by Proposition 3.3, there is a
min-pure extension B of A such that B is min-pure injective. Since B is projective by
(2), B is injective. This means that A is absolutely min-pure by Proposition 2.8. Thus
R is left universally mininjective by Proposition 2.11, whence R is left PS. Being R is left
Kasch gives that all simple left R-modules are projective, i.e. R is semisimple.

(3) ⇒ (1) By our hypothesis again, R is quasi-Frobenius. Let A be a min-pure projective
right R-module. By hypothesis, A is injective, and so is projective. Thus, R is left
universally mininjective by Theorem 2.11, whence R is left PS. By the same reason of
(2) ⇒ (1), R is semisimple. �
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Proposition 4.4. Let R be a right Artinian ring and C = {R/aR | such that Ra is simple
for any a ∈ R}. Then a right R-module A is min-pure projective if and only if A ∼= P ⊕ L
where P is projective and L ∈ Add(C ).

Proof. The sufficiency follows directly. For the necessity, let AR be min-pure projective
R-module. Then A⊕B = (⊕i∈IRi)⊕(⊕λ∈ΛAλ) where Ri

∼= R, Aλ is in C for all i ∈ I and
λ ∈ Λ for some index sets I and Λ, and B a right R-module by Lemma 2.7. Artinianity of
R implies that composition lengths of each Ri and Aλ are finite, and each Ri and Aλ can be
written as a finite direct sum of indecomposable cyclic modules. So, each indecomposable
components of Ri and Aλ has local endomorphism ring by [18, Lemma 2.21]. Thus each Aλ

have the exchange property, this means that there exist some submodules A1, A′
1, B1, B′

1
such that A ⊕ B = A1 ⊕ B1(⊕λ∈ΛAλ) and A1 ⊕ A′

1 = A and B1 ⊕ B′
1 = B. Thus,

A1 ⊕ B1 ∼= ⊕i∈IRi and A′
1 ⊕ B′

1
∼= ⊕λ∈ΛAλ. So A1 is projective and A′

1 is in Add(C ). �

A ring R is right CF if all cyclic right R-modules embedded in a free module. In general,
a right CF ring need not be a quasi-Frobenius ring even if it is two-sided Artinian (see
[7]). Now, we attempt to understand when the right CF rings would be quasi-Frobenius
by min-purity.

Theorem 4.5. The next statements are equal for a ring R:
(1) R is right CF and all injective right R-modules are min-pure projective;
(2) R is a quasi-Frobenius ring.

Proof. (2) ⇒ (1) is clear.
(1) ⇒ (2). Let AR be an R-module with its injective hull E(A). Since E(A) is min-

pure projective, by Lemma 2.7, E(A) is contained in a direct sum of fininitely generated
modules, and so A can be embedded in a direct sum of fininitely generated modules,
whence R is right artinian by [17, Theoram 3.1]. Artinianity of R implies that all injective
modules E can be seen as a direct sum of indecomposable cyclic modules by Proposition
4.4, and by (2), each cyclic indecomposable summands of E can be embedded in a free
right R-module. By this we say that E can be embedded in a free module, whence R is
quasi-Frobenius. �

By the next result, commutative quasi-Frobenius rings are determined in terms of min-
pure injective and min-pure projective modules.

Theorem 4.6. The next statements are equal for a commutative ring R:
(1) R is a quasi-Frobenius ring;
(2) All injective R-modules are min-pure projective;
(3) R is Artinian and E(R) is min-pure projective;
(4) R is an Artinian ring and all projective R-modules are min-pure injective;
(5) R is an Artinian and min-pure injective ring.

Proof. (1) ⇒ (4) ⇒ (5) and (1) ⇒ (2) are clear.
(2) ⇒ (3). Let A be any R-module. Since A embeds in a min-pure projective R-module

E(A), by Lemma 2.7, E(A) is a direct summand of a direct sum of fininitely generated
modules, whence R is artinian by [17, Theoram 3.1].

(3) ⇒ (1). Since E(R) is min-pure projective, by Proposition 4.4, E(R) is a direct
sum of finitely many cyclic indecomposable modules. Thus, by similar arguments used in
[5, Theorem 4.12] from (6) ⇒ (1), we conclude that R is a quasi-Frobenius.

(5) ⇒ (1). Without loss of the generality, we may assume that R is a local ring with
maximal ideal J . Let E be the injective hull of the field R/J . Since R is a commutative
min-pure injective ring and R ∼= HomR(E, E), E is min-pure flat by Theorem 2.3(5), and
so by Theorem 2.3, there exists a pure exact sequence ξ : 0 → A → B → E → 0 where B
is in Add(F ∪ {RR}). But it is known that E is finitely presented. It follows that ξ splits
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and so E is min-pure projective. Thus by Proposition 4.4, E can be written as a direct sum
of cyclic indecomposable modules. Moreover, E is indecomposable by [20, Lemma 5.14],
whence is finitely presented cyclic. Also, [26, Theorem 3.64] implies that E is faithful, and
so E ∼= R. Thus R is quasi-Frobenius. �

The rings whose all right R-modules are direct sum of cyclic modules are called right
Köthe ring. By a Köthe ring we mean that both right and left Köthe ring. Köthe in [25]
proved that an Artinian principal ideal ring is a Köthe ring and then Cohen and Kaplansky
in [9] showed that a commutative ring R is a Köthe ring if and only if R is an Artinian
principal ideal ring. Recently, in [4, Theorem 3.1], it is shown that every normal (i.e., all
the idempotents are central) right Köthe ring is an Artinian principal left ideal ring.

Proposition 4.7. The next statements are equal for a ring R:
(1) All right R-modules are min-pure projective;
(2) All right R-modules are min-pure injective;
(3) All min-pure exact sequences 0 → M → N → L → 0 are split;
(4) All right R-modules are a direct sum of a module in Add(C ) and a projective

module.

Proof. (4) ⇒ (3) ⇔ (2) ⇔ (1) are obvious.
(1) ⇒ (4). Since min-pure projectivity implies pure projectivity, R is right pure-

semisimple, whence is right Artinian. Thus (4) follows by Proposition 4.4. �

Proposition 4.8. The next statements hold for a ring R:
(1) If all right R-modules are min-pure projective, then R is two-sided Köthe.
(2) If R is normal and all right R-modules are min-pure projective, then R is an

Artinian principal ideal ring.
(3) If R is commutative and all right R-modules are min-pure projective, then R is a

quasi-Frobenius serial ring.

Proof. (1). Our hypothesis implies that every right R-module is RD-projective and so R
is a right pure-semisimple RD-ring. Thus, [34, Proposition 6.5] implies that R is two-sided
Köthe.

(2) follows from (1) and [4, Theorem 3.1].
(3). By (2), R is a commutative Artinian principal ideal ring and so it is Artinian serial.

In this case, R is quasi-Frobenius serial by Theorem 4.6. �

Recall by [8] that, a submodule C of a right R-module D is said to be neat in D provided
that for any simple right R-module S, HomR(S, D) → HomR(S, D/C) is epic. Now, the
following gives a particular answer to Proposition 4.7.

Corollary 4.9. Let R be a commutative indecomposable ring with J(R)2 = 0. Then R is
either a field or a quasi-Frobenius ring of composition length 2 if and only if all R-modules
are min-pure projective.

Proof. There is nothing to prove for if R is a field. If R is not a field, cl(R) = 2, whence
R is local with unique simple and maximal ideal S such that (R/S) ∼= S. Thus any
min-pure exact sequence is neat-exact, and so closed-exact by [19, Theorem 5]. On the
other hand, since R is Artinian serial with J(R)2 = 0, every closed exact sequence is
splitting by [14, 13.5]. Thus, every min-pure exact sequence is splitting by Proposition
4.7, whence the necessity follows by Proposition 4.7. Conversely, R is quasi-Frobenius
serial by Proposition4.8. Since R is indecomposable and J(R)2 = 0, either R is a field or
R is a quasi-Frobenius ring of cl(R) = 2 by [3, Proposition 3.4]. �
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5. Questions
For future research, we close the paper by giving next questions that are partially

answered throughout the paper.

It was shown in [31, Theorem 2.4] that right perfectness of a ring R is equivalent to the
fact that each RD-flat right R-module is RD-projective. Now, we have if every min-pure
flat right R-module min-pure projective, then R is right perfect.
Q1: “Whether the converse of this fact is true or not?"

In Proposition4.8, we know that if every right R-module is min-pure projective, then
R is a right and left Köthe ring. Also, a commutative ring over which modules are
min-pure projective is quasi-Frobenius serial. Finally, in Corollary4.9, it is shown that
over a commutative indecomposable ring with J(R)2 = 0, every R-module is min-pure
projective if and only if R is either a field or a quasi-Frobenius ring of composition length
2. Now,
Q2: “What is the class of (commutative) rings R for which every R-module is min-pure
projective?"

Obviously every pure (resp. RD) exact sequence is min-pure, but not conversely (see
Remark 2.5). Now,
Q3: “What is the class of rings R for which min-pure exact sequences are pure (resp.
RD-pure)?"
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