Homological objects of min-pure exact sequences

Yusuf Alagöz1, Ali Moradzadeh-Dehkordi2,3*

1Siirt University, Department of Mathematics, Siirt, Turkey.
2Department of Science, Shahreza Campus, University of Isfahan, Iran.
3School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Abstract

In a recent paper, Mao has studied min-pure injective modules to investigate the existence of min-injective covers. A min-pure injective module is one that is injective relative only to min-pure exact sequences. In this paper, we study the notion of min-pure projective modules which is the projective objects of min-pure exact sequences. Various ring characterizations and examples of both classes of modules are obtained. Along this way, we give conditions which guarantee that each min-pure projective module is either injective or projective. Also, the rings whose injective objects are min-pure projective are considered. The commutative rings over which all injective modules are min-pure projective are exactly quasi-Frobenius. Finally, we are interested in the rings all of its modules are min-pure projective. We obtain that a ring R is two-sided Köthe if all right R-modules are min-pure projective. Also, a commutative ring over which all modules are min-pure projective is quasi-Frobenius serial. As consequence, over a commutative indecomposable ring with $J(R)^2 = 0$, it is proven that all R-modules are min-pure projective if and only if R is either a field or a quasi-Frobenius ring of composition length 2.

Mathematics Subject Classification (2020). 16E10, 16E30, 16D40, 13C10, 16D50, 13C11

Keywords. (min-)purity, Köthe rings, universally mininjective rings, quasi-Frobenius rings

1. Introduction

Throughout, R will stand for associative ring with identity, and R-modules will be unitary modules unless otherwise specified. A_R (R_A) stands for any module A considered as a right (left) R-module.

As a generalization of injectivity, the concept of min-injectivity is introduced by Harada (see [22]). R_A is called min-injective provided that $\text{Ext}^1_R(R/S, A) = 0$ for any minimal left ideal S. A_R is called min-flat provided that $\text{Tor}^1_R(A, R/S) = 0$ for any minimal left ideal S (see [29]). By the natural equivalence $\text{Ext}^1_R(R/S, A^+) \cong \text{Tor}^1_R(A, R/S)^+$ for any minimal left ideal S, we can conclude a right module A is min-flat provided that A^+ is min-injective.

Min-injective rings and min-injective modules are the most important and most studied subjects of homological algebra along with module and ring theory. The main reason for this is that...
min-injective rings are naturally occurring in characterizing quasi-Frobenius (QF) rings. The importance of finite (quasi-Frobenius) rings has increased with the study of the rings of algebraic coding theory (see [21,24,38]).

In [28], Mao introduced the concept of min-purity and min-pure injectivity, to give further homologic characterizations of min-injective modules and to investigate the existence of min-injective covers. In the literature, purity has a considerable impact on module-ring theory, and several crucial generalizations of this notion are given since it was firstly introduced (see, [1,5,6,8,10,31,35,36]). In accordance with the terminology of Mao [28], a sequence $0 \to D \to E \to F \to 0$ of right R-modules is called min-pure exact if $\text{Hom}(R/aR,E) \to \text{Hom}(R/aR,F) \to 0$ is epic for any $a \in R$ such that Ra is simple. A_R is called min-pure injective provided that A has injective property relative to all min-pure exact sequences. So far, min-purity, min-injectivity, min-pure injectivity and their homological objects are studied by many authors (see [22,28,29,33]).

Motivated by min-pure injective modules, in this article, we first introduce the homological objects which are flat and projective relative to the min-pure exact sequences. We shall call A_R is min-pure projective provided that A_R is projective relative to min-pure exact sequences. Also, R_A is called min-pure flat if R_A is flat relative to min-pure exact sequences. Naturally, flat left modules are min-pure flat, and projective right modules are min-pure projective, but not conversely (see Example 2.2(2)).

In section 2, we give some preliminary properties of min-pure projective and min-pure flat modules. After giving various equivalent conditions of min-purity, absolutely min-purity of modules are described via min-purity. Moreover, it is shown that R is left universally mininjective if and only if all min-pure projective (resp. flat) right R-modules are projective (resp. flat). Also, we show that R is left FS if and only if injective dimensions of min-pure injective right R-modules ≤ 1 if and only if flat dimension of min-pure flat left R-modules ≤ 1. Finally, injective dimensions of min-pure projective right R-modules ≤ 1 equivalent to that for any $a \in R$ such that Ra is simple, aR is projective.

In section 3, we consider the covering and enveloping properties of min-pure injective and min-pure projective modules. We show that all min-pure injective modules have an injective cover, and if R is left min-coherent, then all min-pure projective right R-modules have a projective preenvelope. Also, we get that all right modules have a min-pure projective precovers and min-pure injective envevelope.

In section 4, we focused on the rings whose all injective modules are min-pure projective. Along the way, being R is quasi-Frobenius equivalent to that R is right CF and every injective right R-module is min-pure projective. For a commutative ring R we prove that all injective R-modules are min-pure projective if and only if R is quasi-Frobenius. Moreover, it is shown that R is semisimple if and only if every min-pure projective (resp. injective) right R-module is injective (resp. projective). Finally, we focused on the rings whose all R-modules are min-pure projective (resp. injective). For this purpose, we prove that R is a two-sided Köthe ring provided that every right R-module is min-pure projective (resp. injective). Consequently, for a commutative indecomposable ring with $J(R)^2 = 0$, it is shown that R is either a field or a quasi-Frobenius ring of composition length 2 if and only if all R-modules are min-pure projective.

For future research, we close the paper by giving some questions that are partially answered inside the paper.

2. Min-pure projective and min-pure flat modules

A sequence $0 \to D \to E \to F \to 0$ of right R-modules is called min-pure exact if for any $a \in R$ such that Ra is simple, $0 \to D \otimes (R/Ra) \to E \otimes (R/Ra) \to F \otimes (R/Ra) \to 0$ is exact. Moreover, A_R is called min-pure injective provided that A_R is injective relative to every min-pure sequence (see [28]). Motivated by min-pure injective modules, we introduce the homological objects which are projective and flat with respect to the min-pure sequences.
Definition 2.1. (a) A_R is called min-pure projective if for all min-pure sequences $0 \to D \to E \to F \to 0$ of right R-modules, the induced map $\beta : \text{Hom}(A, E) \to \text{Hom}(A, F)$ is an epimorphism.

(b) R_A is called min-pure flat if for all min-pure sequences $0 \to D \to E \to F \to 0$ of right R-modules, the induced map $\alpha : D \otimes A \to E \otimes A$ is a monomorphism.

Example 2.2. (1) For any $a \in R$ such that Ra is simple, R/aR is min-pure projective and R/Ra is min-pure flat.

(2) Any projective right module is min-pure projective and any flat left module is min-pure flat. However, in general case, the converses need not be true. Consider the ring $R := \mathbb{Z}/p^2\mathbb{Z}$ for some prime integer p. R/pR is a min-pure flat and min-pure projective R-module since pR is simple ideal. Whereas the module R/pR is not flat, otherwise R/pR would be projective by [29, Corollary 3.3]. But the epimorphism $R \to R/pR \to 0$ does not split.

By the following theorem, further equivalent conditions of min-pure flatness are given.

Theorem 2.3. Let $\mathcal{F} = \{ R/Ra \ | \text{for any } a \in R \text{ such that } Ra \text{ is simple} \}$. The following are equivalent for R_A:

1. A is min-pure flat;
2. $A^+ = \text{min-pure injective};$
3. $A \cong E/D$ where E is in $\text{Add}(\mathcal{F} \cup \{ R\})$ and D is pure in E;
4. A can be written as a direct limit of finite direct sums of modules from $\mathcal{F} \cup \{ R\}$.

Also, when R is commutative, above statements are equivalent to:

5. $\text{Hom}(A, D)$ is min-pure injective, for any injective R-module D;
6. $A \otimes C$ is min-pure flat, for any flat R-module C.

Proof. (1) \Rightarrow (2). Let R_A be min-pure flat and $0 \to D \to E \to F \to 0$ a min-pure sequence of right R-modules. So, $0 \to D \otimes A \to E \otimes A$ is monic, whence $(E \otimes A)^+ \to (D \otimes A)^+ \to 0$ is epic. This implies that $\text{Hom}(E, A^+) \to \text{Hom}(D, A^+) \to 0$ is also epic and so A^+ is min-pure injective.

(2) \Rightarrow (3). Assume that A^+ is min-pure injective. By [30, Proposition 1.2], there exist an \mathcal{F}-pure sequence $0 \to D \to E \to A \to 0$ where E is in $\text{Add}(\mathcal{F} \cup \{ R\})$. Also, by the isomorphism used in (2) \Leftrightarrow (7) from the Lemma 2.4, the sequence $0 \to A^+ \to E^+ \to D^+ \to 0$ would be min-pure. Since A^+ is min-pure injective, $0 \to A^+ \to E^+ \to D^+ \to 0$ splits and so the sequence $0 \to D \to E \to A \to 0$ is pure.

(3) \Rightarrow (4). Easily follows by [37, Theorem 34.2].

(4) \Rightarrow (1). Let $0 \to D \to E \to F \to 0$ be a min-pure sequence of right R-modules and $\{ F_\alpha \}_{\alpha \in \Lambda}$ is a finite family of right R-modules such that for each $\alpha \in \Lambda$, $A = \lim F_\alpha$, where F_α’s is a finite direct sums of modules from $\mathcal{F} \cup \{ R\}$. Since F_α is min-pure flat for each $\alpha \in \Lambda$, $0 \to D \otimes F_\alpha \to E \otimes F_\alpha \to F \otimes F_\alpha \to 0$ is exact. So by [37, Theorem 24.11], the sequence $0 \to D \otimes \lim F_\alpha \to E \otimes \lim F_\alpha \to F \otimes \lim F_\alpha \to 0$ is exact. Therefore, A is min-pure flat.

(1) \Rightarrow (5). Let D be an injective R-module. If we consider the splitting map $0 \to D \to \prod R^+$, we would have the map $0 \to \text{Hom}(A, D) \to \text{Hom}(A, \prod R^+)$ which is also splits. Being A^+ is min-pure injective by (1) together with the isomorphisms $\prod A^+ \cong \text{Hom}(A, \prod R^+)$ implies that $\prod A^+$ is min-pure injective. This gives the min-pure injectivity of $\text{Hom}(A, D)$.

(5) \Rightarrow (6). Assume that C is any flat R-module. Since $(A \otimes C)^+$ is isomorphic to $\text{Hom}(A, C^+)$, it is min-pure injective by (5) and by the injectivity of C^+. This gives the min-pure flatness of $A \otimes C$.

(6) \Rightarrow (1) straightforward by putting $C = R$. \qed

Now, we are ready to give further characterizations of min-purity.

Lemma 2.4. Let $0 \to D \to E \to F \to 0$ be a sequence of right R-modules. The following are equivalent:

...
Corollary 2.6. The next statements are equal for a ring R:

1. $0 \to D \to E \to F \to 0$ is min-pure;
2. $\text{Hom}(R/aR, E) \to \text{Hom}(R/aR, F) \to 0$ is epic for any $a \in R$ such that Ra is simple;
3. $\text{Hom}(A, E) \to \text{Hom}(A, F) \to 0$ is epic for any min-pure projective R-module A;
4. $\text{Hom}(E, A) \to \text{Hom}(D, A) \to 0$ is epic for any min-pure injective R-module A;
5. $\text{Hom}(R/Ra, E^+) \to \text{Hom}(R/Ra, D^+) \to 0$ is epic for $a \in R$ such that Ra is simple;
6. $0 \to D \otimes B \to E \otimes B$ is monic for any min-pure flat R-module RB;
7. $0 \to R/aR \otimes F^+ \to R/aR \otimes E^+$ is monic for any $a \in R$ such that Ra is simple.

Also, if R is commutative or two sided mininjective, then the above are equivalent to:
8. $\text{Hom}(R/aR, E) \to \text{Hom}(R/aR, F) \to 0$ is epic for any $a \in R$ such that aR is simple.

Proof. (1) \iff (2) follows by [28, Lemma 2.1].

(1) \iff (3) \implies (4) and (1) \implies (6) are obvious.

(4) \implies (1). Let $a \in R$ such that Ra is simple. Min-pure flatness of R/Ra implies the min-pure injectivity of $(R/Ra)^+$ by Theorem 2.3. Thus by (4), the induced sequence $0 \to \text{Hom}(F, (R/Ra)^+) \to \text{Hom}(E, (R/Ra)^+) \to \text{Hom}(D, (R/Ra)^+) \to 0$ can be obtained, and that gives the sequence $0 \to (F \otimes R/Ra)^+ \to (E \otimes R/Ra)^+ \to (D \otimes R/Ra)^+ \to 0$. So (1) follows by the exactness of $0 \to D \otimes R/Ra \to E \otimes R/Ra \to F \otimes R/Ra \to 0$.

(1) \iff (5). Let $a \in R$ such that Ra is simple. Then the right exactness of $0 \to D \otimes (R/Ra) \to E \otimes (R/Ra) \to F \otimes (R/Ra) \to 0$ is equivalent to the left exactness of $0 \to (F \otimes (R/Ra))^+ \to (E \otimes (R/Ra))^+ \to (D \otimes (R/Ra))^+ \to 0$, equivalently $0 \to \text{Hom}(R/Ra, F^+) \to \text{Hom}(R/Ra, E^+) \to \text{Hom}(R/Ra, D^+) \to 0$ is exact. Now, (1) \iff (5) is obvious.

(6) \implies (1) is obvious since every R/S is min-pure flat for any simple left ideal S.

(2) \iff (7). Let $a \in R$ such that Ra is simple. Take into consideration the next diagram:

\[
\begin{array}{cccccc}
0 & \to & R/aR \otimes F^+ & \to & R/aR \otimes E^+ & \to & R/aR \otimes D^+ & \to & 0 \\
\mu^+ & & \delta^+ & & \lambda^+ & & & \\
0 & \to & \text{Hom}(R/aR, F^+) & \to & \text{Hom}(R/aR, E^+) & \to & \text{Hom}(R/aR, D^+) & \to & 0
\end{array}
\]

By [12, Lemma 2], μ, δ and λ are isomorphisms. Thus exactness of the first row is equivalent to the exactness of the second row, and equivalently the map $\text{Hom}(R/aR, E) \to \text{Hom}(R/aR, F)$ $\to 0$ is epic.

(2) \iff (8). If R is commutative, it is easy.

Let R be left-right mininjective and $a \in R$. Then being aR is a minimal right ideal equivalent to that Ra is a minimal left ideal by [33, Theorem 1.14]. So in either cases (2) \iff (8) follows.

Remark 2.5. (1). Obviously purity implies the min-purity, but not conversely. Indeed, by [13, Example 3.1(ii)], there is an R-algebra S over a local Artinian ring R, such that the inclusion homomorphism $R \to S$ is cyclically pure, and so is min-pure. But $R \to S$ is not pure.

(2). By (1), every min-pure injectivity (resp. min-pure projectivity) of modules implies pure-injectivity (resp. pure-projectivity), but not conversely. Every Artinian R-module is well known as pure-injective. Hence the Artinian ring R in [13, Example 3.1(ii)] is pure-injective. But it is not min-pure injective, otherwise the inclusion map $R \to S$ above splits.

(3). By (2) and the following corollary, we ensure that the existence of pure-projective module which is not min-pure projective.

A ring R is a valuation ring (commutative but not necessarily a domain) provided that all ideals of R are totally ordered by inclusion.

Corollary 2.6. The next statements are equal for a ring R:

1. All left modules are min-pure flat;
2. All pure-projective right modules are min-pure projective;
3. All pure-injective right modules are min-pure injective;
4. All min-pure exact sequences of right modules are pure.

Moreover, if R is commutative, R_p is a valuation ring for every prime ideal p.
Proposition 2.9. The ring is exactly an arithmetic ring, i.e., the rings with a distributive lattice of ideals. Thus by Theorem 2.3, we conclude that is min-pure flat.

Since cyclically pure exact sequences are min-pure, the last statement follows by [13, Theorem 2.7]. □

Let \(\mathscr{C} \) denotes the set \(\mathscr{C} = \{ R/aR \mid \text{for any } a \in R \text{ such that } Ra \text{ is simple} \} \). Note that min-pure= \(\mathscr{C} \)-pure= \(\mathscr{C} \cup \{ R_R \} \)-pure. The following due to Warfield Jr. (see [36, Proposition 1, p. 700]).

Lemma 2.7. ([30, Proposition 1.2]) For a module \(A_R \) we have:

1. There exists a min-pure exact sequence \(0 \to D \to E \to A \to 0 \) where \(E \) is a direct sum of copies of modules in \(\mathscr{C} \cup \{ R_R \} \).
2. The class of all min-pure projective right modules is exactly \(\text{Add}(\mathscr{C} \cup \{ R_R \}) \).

We will call \(A_R \) is absolutely min-pure (similar to absolutely purity) provided that \(A \) is min-pure in every extension of it.

Proposition 2.8. The next statements are equal for an \(R \)-module \(A_R \):

1. \(A_R \) is absolutely min-pure;
2. All exact sequences starting with \(A \) are min-pure;
3. \(\text{Ext}^1(D, A) = 0 \) for any min-pure projective \(R \)-module \(D_R \);
4. \(\text{Ext}^1(R/aR, A) = 0 \) for any \(a \in R \) such that \(Ra \) is simple;
5. There exists a min-pure sequence \(0 \to A \to E \to C \to 0 \) with \(E \) injective;
6. For all min-pure injective \(R \)-modules \(D_R \), all homomorphisms from \(A \) to \(D \) factors through an injective \(R \)-module.

Also, if \(R \) is commutative, then the above conditions are equivalent to:
7. \(A \) is min-injective.

Proof. (1) \(\iff \) (2) is easy by definition.

(2) \(\Rightarrow \) (5). Let \(f : A \to B \) be a homomorphism for any min-pure injective \(R \)-module \(B_R \).

(5) \(\Rightarrow \) (6). Let \(g : A \to D \) be any homomorphism with \(D \) min-pure injective and \(\xi : 0 \to A \to K \to L \to 0 \) be an exact sequence. So, there are a map \(h : A \to E \) with \(E \) injective and a map \(f : E \to D \) such that \(fh = g \) by (6). By injectivity of \(E \), there is a map \(\alpha : K \to E \) such that \(\alpha \xi = h \). So \(g = f \alpha \xi \), whence \(\xi \) is min-pure by Lemma 2.4.

(1) \(\Rightarrow \) (3) and (3) \(\Rightarrow \) (4) follows from Lemma 2.7.

(4) \(\Rightarrow \) (6). We always have a sequence \(\varepsilon : 0 \to A \to K \to L \to 0 \) with \(K \) injective. Since by (4), \(\text{Ext}^1(R/aR, A) = 0 \) for any \(a \in R \) such that \(Ra \) is simple, \(\text{Hom}(R/aR, K) \to \text{Hom}(R/aR, L) \) \(\to 0 \) is epic. Thus \(\varepsilon \) is min-pure by Lemma 2.4, and so every homomorphism \(A \to B \) with \(B \) min-pure injective factors through \(E \).

(2) \(\iff \) (7) follows by [28, Proposition 2.3]. □

Recall by Puninski et al. [34] that, \(R \) is an \(RD \)-ring provided that purity and \(RD \)-purity coincides (this property is right-left symmetric). A serial ring and a regular ring are always \(RD \) (see [11, Theorem 1.4] and [34, Remark 2.7]). By Puninski et al. [34, Proposition 4.5], a commutative \(RD \) ring is exactly an arithmetic ring, i.e., the rings with a distributive lattice of ideals.

Proposition 2.9. The next statements hold for a ring \(R \):

1. If all min-pure sequences are pure, then \(R \) is an \(RD \)-ring.
2. If \(R \) is commutative and all min-pure sequences are pure, then \(R \) is arithmetic and all min-injective \(R \)-modules are Absolutely pure.
If R is commutative Noetherian ring such that all min-pure sequences are pure, then R is quasi-Frobenius arithmetic.

Proof. (1). If we assume that every min-pure exact sequence is pure, then every RD-exact sequence is pure, whence R is an RD-ring.

(2). By (1) and [34, Proposition 4.5], R is arithmetic. Also, if A is min-injective, then $0 \to A \to E(A) \to E(A)/A \to 0$ is min-pure by Proposition 2.8. So, it is pure exact and this implies that A is Absolutely pure.

(3). Being arithmetic comes from (2). Again by (2) and Noetherianity of R, all min-injective R-modules are injective, whence R is Artinian by [2, Theorem 1] and the fact that simple injectives are min-injective. Thus R_R is pure-injective, whence R_R is min-pure injective by hypothesis. Hence by Theorem 4.6, R is quasi-Frobenius. □

Relationship between min-pure injective (resp. min-pure projective, min-pure flat) modules and injective (resp. projective, flat) modules is given below.

Corollary 2.10. The next conditions are true for any ring R:

1. Any min-pure injective absolutely min-pure right R-module is injective.
2. Any min-flat min-pure projective right R-module is projective.
3. Any min-pure injective min-injective R-module is injective.
4. Any min-flat min-flat R-module is flat.

Proof. (1). For any min-pure injective absolutely min-pure right R-module A, By Proposition 2.8, there is a min-pure sequence $0 \to A \to E \to B \to 0$ with E injective. Splitting of this sequence gives us the injectivity of A.

(2). For any min-pure projective min-flat right R-module A, we always have $0 \to K \to F \to A \to 0$ where F projective. Since A is min-flat, this exact sequence is min-pure. Splitting of this sequence gives us the projectivity of A.

(3) follows by Proposition 2.8.

(4). For any min-flat min-pure flat module A, A^+ is min-pure injective and min-injective by Theorem 2.3. This gives the injectivity of A^+ by (2), whence is flatness of A. □

Recall by [33] that, R is left universally mininjective ring if all left R-modules are min-injective, equivalently R is left min-injective and left PS. Now, we obtain new equivalent conditions of left universally mininjective rings via min-purity.

Proposition 2.11. The next statements are equal for a ring R:

1. R is left universally mininjective;
2. Every exact sequences of right R-modules is min-pure;
3. Every right R-module is absolutely min-pure;
4. Every min-pure injective right R-module is injective;
5. Every min-pure injective right R-module is absolutely min-pure;
6. Every min-pure flat left module is flat;
7. Every min-pure projective right R-module is projective.

Proof. (1) \iff (2) follows by [28, Theorem 4.3] and (3) \iff (2) \Rightarrow (5) are clear.

(5) \Rightarrow (4). Hypothesis implies that any min-pure injective right R-module is a direct summand of an injective module, and so (2) follows.

(4) \Rightarrow (6). For any min-pure flat left module A, A^+ is min-pure injective, whence is injective by (2). Therefore A would be flat.

(6) \Rightarrow (1). Let M be a min-pure flat left R-module. We always have a sequence $\varepsilon : 0 \to D \to E \to A \to 0$ where E is projective. Flatness of M, gives the monic map $0 \to D \otimes M \to E \otimes M$, and so ε is min-pure by Lemma 2.4. Thus, any right R-module A is min-flat by [28, Proposition 2.2], whence R is left universally mininjective by [28, Theorem 4.3].
Some (pre)envelopes and (pre)covers

(1) ⇒ (7). Since R is left universally mininjective, for any $a \in R$ such that Ra is simple, R/aR is min-flat by [28, Theorem 4.3], whence is projective by [29, Corollary 3.3]. If $\mathcal{C} = \{R/aR \mid \text{for any } a \in R \text{ such that } Ra \text{ is simple}\}$, any min-pure projective module contained in $\text{Add}(\mathcal{C} \cup \{R_i\})$ by Lemma 2.7(2). Since any $R/aR \in \mathcal{C}$ is projective, (7) follows.

(7) ⇒ (1). Since by (7), R/aR is projective for any minimal left ideal Ra, (1) follows by [29, Theorem 5.10].

The rings all of whose minimal left ideals are projective is called left PS [32]. Nonsingular rings, Semiprime rings and V-rings are left PS. A ring R is left FS [27], if every simple left ideal of R is flat.

Proposition 2.12. The next statements are equal for a ring R:

1. R is left FS;
2. $\text{Id}(A) \leq 1$ for any min-pure injective module AR;
3. $\text{Fid}(A) \leq 1$ for any min-pure flat module RA.

Proof. (1) ⇒ (2). By [28, Theorem 4.1], for any right R-module F, we have $0 \to D \to E \to F \to 0$ with E projective and D min-flat. This gives by [28, Proposition 2.2], for any min-pure injective right R-module A, $\text{Ext}^2(F, A) \cong \text{Ext}^2(D, A) = 0$. That is, $\text{Id}(A) \leq 1$.

(2) ⇒ (3). For any min-pure flat R-module RA, A^+ is min-pure injective by Theorem 2.3. By (2), for any R-module DR, we have $\text{Tor}_2(D, A^+) \cong \text{Ext}^2(D, A^+) = 0$. So, $\text{Tor}_2(D, A) = 0$, and hence $\text{fd}(A) \leq 1$.

(3) ⇒ (1). Since R/S is min-pure flat for any minimal left ideal S, flat dimension of R/S is ≤ 1. In this case S is flat and so R is left FS.

Next we discuss the conditions related to min-pure projective modules which exactly characterizes left PS rings as follows.

Proposition 2.13. The next statements are equal for a ring R:

1. aR is projective for any $a \in R$ such that Ra is simple;
2. $\text{Pd}(A) \leq 1$ for any min-pure projective module AR;
3. Absolutely min-pure left R-modules is closed under homomorphic images.

Also, when R is commutative, above conditions are equal to:

4. R is PS.

Proof. (1) ⇒ (3). Let B be a submodule of an absolutely min-pure right R-module A. We shall show that A/B is absolutely min-pure. For any $a \in R$ such that Ra is simple, consider the induced exact sequence

$$\text{Ext}^1(R/aR, A) \to \text{Ext}^1(R/aR, A/B) \to \text{Ext}^2(R/aR, B)$$

By Proposition 2.8, $\text{Ext}^1(R/aR, A) = 0$. Consider $\text{Ext}^2(R/aR, B) \cong \text{Ext}^1(aR, B)$ the isomorphism. Projectivity of aR gives that $\text{Ext}^2(R/aR, B) = 0$. Thus $\text{Ext}^1(R/aR, A/B) = 0$, and so A/B is absolutely min-pure by Proposition 2.8.

(3) ⇒ (2). Let A be a min-pure projective right R-module. For any right R-module C, we always have $0 \to C \to D \to E \to 0$ with D injective, that gives the exactness of $0 = \text{Ext}^1(A, D) \to \text{Ext}^1(A, E) \to \text{Ext}^2(A, C) \to \text{Ext}^2(A, D) = 0$. By (2), E is absolutely min-pure and so $\text{Ext}^2(A, C) \cong \text{Ext}^1(A, E) = 0$ by Proposition 2.8. This means that projective dimension of A is ≤ 1.

(2) ⇒ (1). Since R/aR is min-pure projective for any $a \in R$ such that Ra is simple, projective dimension of R/aR is ≤ 1. In this case aR is projective.

(1) ⇔ (4). If R is commutative, it is easy.

3. Some (pre)envelopes and (pre)covers

Let \mathcal{B} be a class of right modules.
For a module X_R, a module $Y \in \mathcal{P}$ is called a \mathcal{P}-envelope of X, if there is a homomorphism $f : X \to Y$ such that the next conditions hold:

1. For any homomorphism $g : X \to Z$ with $Z \in \mathcal{P}$, there is a map $h : Y \to Z$ with $g = hf$.
2. If an endomorphism $h : Y \to Y$ is such that $f = hf$, then f must be an automorphism.

If only (1) holds, we call $f : X \to Y$ a \mathcal{P}-precover. Dually, it can be defined a \mathcal{P}-cover and \mathcal{P}-preenvelope. In general \mathcal{P}-envelopes and \mathcal{P}-covers not always exist, but they are unique (up to isomorphism) if they exist (see [15]).

Lemma 3.1. Let R be a ring. Then:

1. Extensions, pure submodules, pure quotients, direct sums and direct summands of absolutely min-pure right R-modules are absolutely min-pure.
2. Finite direct sums, direct summands and direct products of min-pure injective right R-modules are min-pure projective.
3. Direct sums and direct summands of min-pure projective right R-modules are min-pure injective.
4. Direct sums, pure quotients and pure submodules of min-pure flat left R-modules are min-pure flat.

Proof. (1). Using the properties of the Ext functor, closedness of absolutely min-purity under extensions is obvious by Proposition 2.8. Also, using the properties of the tensor functor, closedness under direct sums and direct summands is easy. Also closedness of absolutely min-pure modules under pure submodules is by Proposition 2.8. Now let C a pure submodule of an absolutely min-pure right module D. Then the exact sequence $0 \to (D/C)^+ \to D^+ \to C^+ \to 0$ splits. So, the isomorphism

$$\text{Tor}_1(R/aR, D^+) \cong \text{Tor}_1(R/aR, C^+) \oplus \text{Tor}_1(R/aR, (D/C)^+)$$

induces the isomorphism

$$\text{Ext}^1(R/aR, D^+) \cong \text{Ext}^1(R/aR, C^+) \oplus \text{Ext}^1(R/aR, D/C)^+$$

for any $a \in R$ such that Ra is simple. Since D and C absolutely min-pure, for any $a \in R$ such that Ra is simple, $\text{Ext}^1(R/aR, D) = 0$ and $\text{Ext}^1(R/aR, C) = 0$ by Proposition 2.8, and so $\text{Ext}^1(R/aR, D/C) = 0$. Thus D/C is absolutely min-pure by Proposition 2.8, again.

(2) and (3). By using a standard technique as in the proofs of (pure-)injectivity and (pure-)projectivity.

(4). For a pure exact sequence $0 \to X \to Y \to Z \to 0$ of left R-modules with Y min-pure flat, we get the splitting of $0 \to Z^+ \to Y^+ \to X^+ \to 0$. Since Y^+ is min-pure injective by Theorem 2.3, X^+ and Z^+ are min-pure injective by (2), whence X and Z are min-pure flat by Theorem 2.3. Moreover, direct sums of min-pure flat left R-modules are min-pure flat can be easily seen by using the tensor product properties.

Proposition 3.2. Let R be a ring. Then:

1. All min-pure injective right R-modules have an injective cover.
2. If R is left min-coherent (all minimal left ideals are finitely presented), then all min-pure projective right R-modules have a projective preenvelope.

Proof. (1). Lemma 3.1(1) and [23, Theorem 2.5] yield that any min-pure injective R-module A_R has an absolutely min-pure cover $\beta : B \to A$. Absolutely min-purity of B gives a min-pure sequence $0 \to B \xrightarrow{i} E \to C \to 0$ with E injective by Proposition 2.8, whence there exists $\alpha : E \to A$ such that $\alpha i = \beta$. Being β an absolutely min-pure cover gives the existence of $\lambda : E \to B$ such that $\beta \lambda = \alpha$. So $\beta(\lambda i) = (\beta \lambda)i = \alpha i = \beta$, whence λi is an isomorphism. This means that E has a summand which is isomorphic to B. This makes B injective and g an injective cover of A.
(2). If \(A_R \) is min-pure projective, then \(A_R \) has a min-flat preenvelope \(\beta : A \to B \) by [29, Theorem 4.6]. By [28, Proposition 2.2], there exist \(\alpha : A \to D \) and \(\lambda : D \to B \) with \(D \) projective such that \(\beta = \lambda \alpha \). It follows that \(\alpha \) is a projective preenvelope of \(A \).

\[\square \]

Proposition 3.3. All left \(R \)-modules can be embedded as a min-pure submodule of a min-pure injective module.

Proof. Let \(\mathcal{F} = \{ R/aR \mid \text{for any } a \in R \text{ such that } aR \text{ is simple} \} \) and \(A \) a left \(R \)-module. Then by [30, Proposition 1.2], there exist an \(\mathcal{F} \)-pure sequence \(0 \to C \to D \to A^+ \to 0 \) where \(D \) is a direct sum of copies of modules in \(\mathcal{F} \cup \{ R_R \} \). By the isomorphism used in (2) \(\Leftrightarrow \) (7) from the Lemma 2.4, the sequence \(0 \to A^{++} \to D^+ \to \tilde{C}^+ \to 0 \) is min-pure. Since \(A \) is pure in \(A^{++} \) by [18, Corollary 1.30], \(A \) is min-pure in \(D^+ \). Moreover, since any \(R/aR \in \mathcal{F} \), any \((R/aR)^+ \) is min-pure injective by Theorem 2.3, \(D^+ \) is min-pure injective by Lemma 3.1(2).

Next, we consider the existence of a min-pure injective envelope and a min-pure projective (pre-)cover.

Proposition 3.4. Let \(R \) be a ring. Then:

1. All right \(R \)-modules have a min-pure injective envelope.
2. All right \(R \)-modules have a min-pure projective precover. Moreover, if min-pure projective right \(R \)-modules is closed under pure quotients, all right \(R \)-module have a min-pure projective cover.
3. All left \(R \)-modules have a min-pure flat cover.

Proof. (1). By Proposition 3.3, all right \(R \)-modules have a min-pure injective preenvelope. Let a pair \((\mathcal{E}, \mathfrak{A}) \), with \(\mathcal{E} \) is a class of min-pure monomorphism between right \(R \)-modules and \(\mathfrak{A} \) is a class of min-pure injective right \(R \)-modules. Then the pair \((\mathcal{E}, \mathfrak{A}) \) is an injective structure on the category of right \(R \)-modules determined by the class \(\mathcal{F} = \{ R/aR \mid \text{for any } a \in R \text{ such that } aR \text{ is simple} \} \) by Lemma 2.4 and [15, Definitions 6.6.2 and 6.6.3]. Thus, (1) follows by [15, Theorem 6.6.4].

(2). Min-pure injective modules are precovering by Lemma 2.7. If min-pure projective right \(R \)-modules are closed under pure quotients, every right \(R \)-module has a min-pure projective cover by [23, Theorem 2.5].

(3) follows by Lemma 3.1(4) and [23, Theorem 2.5].

\[\square \]

4. Rings whose injective modules are min-pure projective

Next we characterize min-pure injective and min-pure projective modules via min-purity.

Proposition 4.1. For a module \(A_R \), the next statements are equal:

1. \(A \) is min-pure injective;
2. All min-pure sequences \(0 \to A \to M \to N \to 0 \) are split;
3. \(A \) is injective relative to all min-pure sequences \(0 \to M \to N \to L \to 0 \) with \(N \) min-pure projective;
4. \(A \) is a direct summand of every min-pure extension of it.

Proof. (1) \(\Rightarrow \) (2) is obvious and (1) \(\Rightarrow \) (3) follows by [30, Theorem 1.6].

(2) \(\Rightarrow \) (1). By Proposition 3.3, there is a min-pure exact sequence \(0 \to A \to M \to N \to 0 \) with \(M \) min-pure injective. So \(A \) is min-pure injective by (2).

(1) \(\Rightarrow \) (4). Suppose \(A \) is a min-pure submodule of a module \(B \). Since \(A \) is min-pure injective then the identity map of \(A \) extends to a map \(B \to A \) meaning that \(A \) is a direct summand of \(B \).

(4) \(\Rightarrow \) (1) is clear by Lemma 3.1(2).

\[\square \]

Proposition 4.2. For a module \(A_R \), the next statements are equal:

1. \(A \) is min-pure projective;
2. All min-pure exact sequences \(0 \to M \to N \to A \to 0 \) are split;
A is projective with respect to all min-pure sequences $0 \to M \to N \to L \to 0$ with N min-pure injective.

Proof. (1) \Rightarrow (2) is clear and (1) \Leftrightarrow (3) follows by [30, Theorem 1.6].

(2) \Rightarrow (1). By Lemma 2.7, there is a min-pure exact sequence $0 \to M \to N \to A \to 0$ with N min-pure projective. So, A is min-pure projective by (2). \qed

Recall that R is called a semisimple ring provided that all right (or left) R-modules are projective (resp. injective). A ring R is said to be quasi-Frobenius if R is left (or right) artinian and left (or right) self-injective. By a well-known result of Faith and Walker [16], R is quasi-Frobenius if and only if the class of injective modules and the class of projective modules are the same.

Theorem 4.3. The next statements are equal for a ring R:

1. R is semisimple;
2. All min-pure injective right R-modules are projective;
3. All min-pure projective right R-modules are injective.

Proof. (1) \Rightarrow (3) and (1) \Rightarrow (2) are easy.

(2) \Rightarrow (1). Our hypothesis implies that all injective right R-modules are projective, whence R is quasi-Frobenius. For each right R-module A, by Proposition 3.3, there is a min-pure extension B of A such that B is min-pure injective. Since B is projective by (2), B is injective. This means that A is absolutely min-pure by Proposition 2.8. Thus R is left universally mininjective by Proposition 2.11, whence R is left PS. Being R is left Kasch gives that all simple left R-modules are projective, i.e. R is semisimple.

(3) \Rightarrow (1) By our hypothesis again, R is quasi-Frobenius. Let A be a min-pure projective right R-module. By hypothesis, A is injective, and so is projective. Thus, R is left universally mininjective by Theorem 2.11, whence R is left PS. By the same reason of (2) \Rightarrow (1), R is semisimple. \qed

Proposition 4.4. Let R be a right Artinian ring and $\mathcal{C} = \{ R/aR \mid \text{such that } Ra \text{ is simple for any } a \in R \}$. Then a right R-module A is min-pure projective if and only if $A \cong P \oplus L$ where P is projective and $L \in \text{Add}(\mathcal{C})$.

Proof. The sufficiency follows directly. For the necessity, let A_R be min-pure projective R-module. Then $A \oplus B = (\oplus_{i \in I} R_i) \oplus (\oplus_{\lambda \in \Lambda} A_\lambda)$ where $R_i \cong R, A_\lambda$ is in \mathcal{C} for all $i \in I$ and $\lambda \in \Lambda$ for some index sets I and Λ, and B a right R-module by Lemma 2.7. Artinianity of R implies that composition lengths of each R_i and A_λ are finite, and each R_i and A_λ can be written as a finite direct sum of indecomposable cyclic modules. So, each indecomposable components of R_i and A_λ has local endomorphism ring by [18, Lemma 2.21]. Thus each A_λ have the exchange property, this means that there exist some submodules A_1, A'_1, B_1, B'_1 such that $A \oplus B = A_1 \oplus B_1$ and $A_1 \oplus A'_1 = A$ and $B_1 \oplus B'_1 = B$. Thus, $A \oplus B \cong \oplus_{i \in I} R_i$ and $A_1 \oplus A'_1 \cong \oplus_{\lambda \in \Lambda} A_\lambda$. So A_1 is projective and A'_1 is in $\text{Add}(\mathcal{C})$. \qed

A ring R is right CF if all cyclic right R-modules embedded in a free module. In general, a right CF ring need not be a quasi-Frobenius ring even if it is two-sided Artinian (see [7]). Now, we attempt to understand when the right CF rings would be quasi-Frobenius by min-purity.

Theorem 4.5. The next statements are equal for a ring R:

1. R is right CF and all injective right R-modules are min-pure projective;
2. R is a quasi-Frobenius ring.

Proof. (2) \Rightarrow (1) is clear.

(1) \Rightarrow (2). Let A_R be an R-module with its injective hull $E(A)$. Since $E(A)$ is min-pure projective, by Lemma 2.7, $E(A)$ is contained in a direct sum of finitely generated modules, and so A can be embedded in a direct sum of finitely generated modules, whence R is right artinian by [17, Theorem 3.1]. Artinianity of R implies that all injective modules E can be seen
as a direct sum of indecomposable cyclic modules by Proposition 4.4, and by (2), each cyclic indecomposable summands of E can be embedded in a free right R-module. By this we say that E can be embedded in a free module, whence R is quasi-Frobenius.

By the next result, commutative quasi-Frobenius rings are determined in terms of min-pure injective and min-pure projective modules.

Theorem 4.6. The next statements are equal for a commutative ring R:

1. R is a quasi-Frobenius ring;
2. All injective R-modules are min-pure projective;
3. R is Artinian and $E(R)$ is min-pure projective;
4. R is an Artinian ring and all projective R-modules are min-pure injective;
5. R is an Artinian and min-pure injective ring.

Proof. (1) \Rightarrow (4) \Rightarrow (5) and (1) \Rightarrow (2) are clear.

(2) \Rightarrow (3). Let A be any R-module. Since A embeds in a min-pure projective R-module $E(A)$, by Lemma 2.7, $E(A)$ is a direct summand of a direct sum of finitely generated modules, whence R is artinian by [17, Theorem 3.1].

(3) \Rightarrow (1). Since $E(R)$ is min-pure projective, by Proposition 4.4, $E(R)$ is a direct sum of finitely many cyclic indecomposable modules. Thus, by similar arguments used in [5, Theorem 4.12] from (6) \Rightarrow (1), we conclude that R is a quasi-Frobenius.

(5) \Rightarrow (1). Without loss of the generality, we may assume that R is a local ring with maximal ideal J. Let E be the injective hull of the field R/J. Since R is a commutative min-pure injective ring and $R \cong \text{Hom}_R(E, E)$, E is min-pure flat by Theorem 2.3(5), and so by Theorem 2.3, there exists a pure exact sequence $\xi : 0 \to A \to B \to E \to 0$ where B is in Add($\mathcal{F} \cup \{ R_R \}$). But it is known that E is finitely presented. It follows that ξ splits and so E is min-pure projective. Thus by Proposition 4.4, E can be written as a direct sum of cyclic indecomposable modules. Moreover, E is indecomposable by [20, Lemma 5.14], whence is finitely presented cyclic. Also, [26, Theorem 3.64] implies that E is faithful, and so $E \cong R$. Thus R is quasi-Frobenius.

The rings whose all right R-modules are direct sum of cyclic modules are called right Köthe ring. By a Köthe ring we mean that both right and left Köthe ring. Köthe in [25] proved that an Artinian principal ideal ring is a Köthe ring and then Cohen and Kaplansky in [9] showed that a commutative ring R is a Köthe ring if and only if R is an Artinian principal ideal ring. Recently, in [4, Theorem 3.1], it is shown that every normal (i.e., all the idempotents are central) right Köthe ring is an Artinian principal left ideal ring.

Proposition 4.7. The next statements are equal for a ring R:

1. All right R-modules are min-pure projective;
2. All right R-modules are min-pure injective;
3. All min-pure exact sequences $0 \to M \to N \to L \to 0$ are split;
4. All right R-modules are a direct sum of a module in Add(\mathcal{C}) and a projective module.

Proof. (4) \Rightarrow (3) \Leftrightarrow (2) \Leftrightarrow (1) are obvious.

(1) \Rightarrow (4). Since min-pure projectivity implies pure projectivity, R is right pure-semisimple, whence is right Artinian. Thus (4) follows by Proposition 4.4.

Proposition 4.8. The next statements hold for a ring R:

1. If all right R-modules are min-pure projective, then R is two-sided Köthe.
2. If R is normal and all right R-modules are min-pure projective, then R is an Artinian principal ideal ring.
3. If R is commutative and all right R-modules are min-pure projective, then R is a quasi-Frobenius serial ring.

Proof. (1). Our hypothesis implies that every right R-module is RD-projective and so R is a right pure-semisimple RD-ring. Thus, [34, Proposition 6.5] implies that R is two-sided Köthe.
(2) follows from (1) and [4, Theorem 3.1].

(3). By (2), R is a commutative Artinian principal ideal ring and so it is Artinian serial. In this case, R is quasi-Frobenius serial by Theorem 4.6. □

Recall by [8] that, a submodule C of a right R-module D is said to be neat in D provided that for any simple right R-module S, HomR(S, D) → HomR(S, D/C) is epic. Now, the following gives a particular answer to Proposition 4.7.

Corollary 4.9. Let R be a commutative indecomposable ring with J(R)^2 = 0. Then R is either a field or a quasi-Frobenius ring of composition length 2 if and only if all R-modules are min-pure projective.

Proof. There is nothing to prove if R is a field. If R is not a field, cl(R) = 2, whence R is local with unique simple and maximal ideal S such that (R/S) ≅ S. Thus any min-pure exact sequence is neat-exact, and so closed-exact by [19, Theorem 5]. On the other hand, since R is Artinian serial with J(R)^2 = 0, every closed exact sequence is splitting by [14, 13.5]. Thus, every min-pure exact sequence is splitting by Proposition 4.7, whence the necessity follows by Proposition 4.7. Conversely, R is quasi-Frobenius serial by Proposition 4.8. Since R is indecomposable and J(R)^2 = 0, either R is a field or R is a quasi-Frobenius ring of cl(R) = 2 by [3, Proposition 3.4]. □

5. Questions

For future research, we close the paper by giving next questions that are partially answered throughout the paper.

It was shown in [31, Theorem 2.4] that right perfectness of a ring R is equivalent to the fact that each RD-flat right R-module is RD-projective. Now, we have if every min-pure flat right R-module min-pure projective, then R is right perfect.

Q1: “Whether the converse of this fact is true or not?”

In Proposition 4.8, we know that if every right R-module is min-pure projective, then R is a right and left Köthe ring. Also, a commutative ring over which modules are min-pure projective is quasi-Frobenius serial. Finally, in Corollary 4.9, it is shown that over a commutative indecomposable ring with J(R)^2 = 0, every R-module is min-pure projective if and only if R is either a field or a quasi-Frobenius ring of composition length 2. Now,

Q2: “What is the class of (commutative) rings R for which every R-module is min-pure projective?”

Obviously every pure (resp. RD) exact sequence is min-pure, but not conversely (see Remark 2.5). Now,

Q3: “What is the class of rings R for which min-pure exact sequences are pure (resp. RD-pure)?”

There is no conflict of interest.

Acknowledgment. The research of the second author was in part supported by a grant from IPM (No. 1402160411). This research is partially carried out in the IPM-Isfahan Branch.

References

