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CONVEXITY VIA JENSEN’S GAP
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ABSTRACT. This paper demonstrates through a numerical experiment that
utilization of strongly convex functions strengthens the bound presented for
the Jensen gap in . Consequently the improved result enables to present
improvements in the bounds obtained for the Hoélder and Hermite-Hadamard
gaps and proposes such improvements in the results obtained for various en-
tropies and divergences in information theory.

1. INTRODUCTION

Being a part of analysis, the field of mathematical inequalities in the sense of
convexity has seen exponential growth in numerous domains of science, art, and
technology (13517 BY14 16,22} 21,26,27)29} B1JB057/0, /1| 3,15 Among these
inequalities, the Jensen inequality is the most important inequality. Many other
well-known used inequalities such as Young’s, Holder’s, the arithmetic-geometric,
the Hermite-Hadamard, and Minkowski’s inequality etc can be obtained from this
inequality by manipulating suitable substitutions. Furthermore, this inequality
is comprehensively used in distinct areas of science and technology for example
statistics , qualitative theory of differential and integral equations , engi-
neering [17], economics [34], finance [10], information theory and coding [6}25]
etc. In addition, there are countless papers dealing with counterparts, refinements,
generalizations, improvements and converse results of Jensen’s inequality, (see, for

instance [11] ) In fact, this inequality generalizes the classical notion
of convexity and states that :

Theorem 1. If ¢ : [01,02] = R is a convex function and ¥; € [01,02], ki > 0
for each i € {1,2,...,n} with Y i, k; := K,, > 0, then for K%L St ki, =1, the
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following inequality holds

¢ (V) < Kizk%ﬂwi)'

n .
In reference [2|, the integral form of Theorem |1 can be seen, also here it is:

Theorem 2. Assume that [01,02] C R and &,,&, : [p1,ps) = R are two functions
with the condition that £4(t) € [o1,02], ¥V t € [py,ps]. Further, assume that the
function ¢ : [01,02] = R is conver and &, £5&1, (v 0 &y).E, are integrable on
[01, pa]. Furthermore, suppose that £&,(t) > 0 for all t € [py, ps] and fppf & (t)dt ==

D >0, 4 [ &6 (t)dt =& then

_ 1 P2
0@ <5 [ Coson
P1

Following is the definition of a strongly convex function while the next theorem
gives a criteria for checking the strong convexity of twice differentiable functions
[44]:

Definition 1. Let ¢ : [01,02] = R be a function, then with modulus A > 0, it is
strongly convex, if the following inequality holds

P(r01 + (1 =7)02) < vp(0h) + (1 = p(92) = My(1 =) (V1 = D2)%,
for all 91,99 € [01,02] and v € [0,1].

It is significant that every strongly convex function is convex but the converse is
not true generally.

Theorem 3. If the function ¢ is twice differentiable then it is strongly convex with
modulus A > 0, if and only if " (Y1) > 2X for all 91 € |01, 03]

In this manuscript, we make use of the well-known Taylor formula and the con-
cept of strong convexity to improve an existing bound for the Jensen gap. Many
results may be found in the literature regarding Jensen’s inequality for strongly
convex functions (see for instance [21}35}38}/42]).

Following is the Taylor Formula [4]:

Theorem 4. If 93 € [01,02] C R and ¢ : [01,02] — R is a function, then for a
point pu € [o1,03], the well-known Taylor’s formula is given by

n—1 (i) ) Vs
o) =3 00—+ s [0 -0 ()
=0 T

2.

provided that "~ is absolutely continuous for natural number n.

Setting n = 2 in Equation , we get
192 1"

o(92) = () + & (1) (02 — 1) + / & (£)(0s — t)dt. (2)
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2. MAIN RESULTS

The following theorem actually gives the improvement in an existing bound for
the classical Jensen gap through the concept of strong convexity:

Theorem 5. Let |¢”| be a strongly convex function with modulus \ for twice dif-
ferentiable functions ¢ defined on [o1,02]. Also, let p,¥; € [01,02], ki > 0 for
i=1,2,- ,nwith Y, ki =K, >0 and 7= >, ki¥; := 0, then

1
K, Z kip(di) — (V)
=1
1 ¢ " (W, e @)l | pA 9\
< ) —1)? 2209, — _
=K, ;kl(ﬁi 1) 3 + 6 + 12 (9 ) 12 (0 — )
e T O | O | L P ) g
) [ Wl e Ol 2y~ 22— Q
Proof. Using (2)) in — Z +0(19;) and (1J), then some calculations lead towards
the following id entlty
1 & v "
= D kel — ¢ Zk / (0 — )" (Bt / @ - )" (D, (4
i=1

Inequality can be acquired by taking absolute value of both sides of and
then applying triangle inequality

= > kiplos) - ¢(0)

L& 9; 7
= K—n;k (9; — ) (t)dt — (19—t) “(t)dt

n 19L .
< Iinz_:k/p, W — )¢ (t |dt+/ J—1t)|e (t)|dt. (5)

Change of the variable t = fu+ (1 — 0)9; for 0 € [0, 1] will give the following result
95 1
[ @0l Ol =0 =) [ 00— )l -+ (1= 0)1a6. (0
°w 0
Using the strong convexity of |<p”| in @, the following result acquires

9 .
[ wi-ol 0l

< Oi) | (0040 (01 ()| + (1= )" (01)] = (1 = 0) (= 9,)?) o
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= (9 — ) / (930 — u6) 6" ()] + 1" (9)] = 81" (9]
(i — 03)% + AP (e — 191-)2] df
= (9 — ) / (9:6°1" ()| = 81" ()| + 0:61" (9:)] = " (9)

—0:6°(@" (9:)| + pb? 0" (9:)| — 9:M0% (1 — 95)® + pA0* (1 — 9s)°
FINO (10— 95)2 — A (1 — 19i)2)d9.

- lwi ) <|so”<u>| . so”wm) e P, H)Q]

3 6 12 12
= (- ['*" Ay 12 WLy 12, — )~ 220, m] . (7

Substitution of ¥; by ¥ in (7)) gives the following inequality

9 ” " o,— —
[ =0l 0l < @3-y ['*” Wl o F Gy - f;w—m] .
®

From , and we get . [l

Example 1. Let o(t) = t*,t € [0,1], then ¢ (t) = 1212 > 0, |¢"|"(t) = 24 > 2(12)
for all t € [0,1]. Which show that ¢ 1is conver and with modulus A = 12 the
function |<p”| is strongly convex on [0,1]. Now, let ki,ko,ks = 0.2,0.3,0.5 and
v1,vg,v3 = 0.5,0.25,0.2 respectively, then applying these values in (@ , we get

3 3
0<> kip(di) — ¢ <Z Im%) < 6pt —2.24% +0.000142% + 0.0202 = T(p)  (9)
i=1 =1

Here at g = 0.275 , T'(u) will reach towards its minimum value, which is 0.0086
and hence from ([9) we have

3 3
0< Y kip(¥:) — ¢ (Z kiﬁi> < 0.0086. (10)
i=1 =1

For |<p”| as a convex function and for the above values of ki, ks, k3 and vy, vs, v3,
the following result has been obtained in [4].

3 3
0<> kip(di) — ¢ (Z kﬂ%) < 0.0092. (11)
=1 i=1

It is easy to understand that inequality gives better result than the results
obtained in inequality for the Jensen gap. Thus through this gap it is under-
standable that strongly convex functions actually strengthens the results.
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Proposition 1. Let (a,...,a,), and (by,...,b,) be two positive n — tuples and

[01,02] be a positive interval. Then .

1. forq > 1,p € (1,2)U(3,4) such that 1 +f =1 with pu, inlag{lfi,a,biz € [o1,09]
fori=1,...,n, the following mequalzty holds

£ (2 24

i=1 = i=1

S p(p qu (azb i >2
’L 1 7, i=1

a_ _a 2
X [W"z +4a? % T — (p—2)(p—3)oh " (aibi "= M) ]
_a 2
Y DY ST,
Zz lbg

_4g p_2 _a 2
oab, " a Db T
8 p—2 4 Zz 1a’Z _ ) -3 p—4 =1 " _
* a * ( Ez lbg (p >(p )02 Z'L 1b3 :

(12)
2. If the statement of part 1 satisfied, then the following inequality holds but this
time keeping the condition that p > 4

G (59 5
_a 2
< P ot ()

1127;1

x [8u7=2 + 40?207 ! (p—2)(p—3)0f_4(aib;5—u)Q]
az
7, 1 ’L
—2

_a\p
_ :L ab; ” _ z" a;b;
x| 8uP 2+4<Zzlbq> —(r=2)(p—3)o7 4<Z : M

2

i=1"1 Z'le
(13)

Proof. 1. Let @(t) = t?,t € [01,09] then ¢”(t) = p(p—1)t?=2 > 0, |¢"|" (t) = p(p—

1)(p—2)(p—3)tP~—*, which show that the function ¢ is convex, and for the given value
v 7y _ — _ 0'7174

of p, the function |¢ | (¢) is decreasing while |¢ | (t) > 2 (p(p L 22)(p 8)7 )

for all t € [01,02). Therefore the function || is strongly convex with A =
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S

o(p— _ - o_:v—4 . _
pp=1)(p 22)(p 3)o3 , SO using for p(t) = tP,k; = b and 9; = a;b

%
rive

() (% b?)p_l (&)

= p(p24 bq qu (™ - )2

’leil

, we de-

_a 2
X [&t” 2 4 dab” 207" — (p—2)(p— 3)o (albi ’ *u) }
—4a
4 Zz la’lb 3 —
Z’L lbg
-2

A p —_9

" ab, ? _ "t ab,
X Sup‘2+4<2’ 1abq ) —(p—2)(p—3)o] 4<Z’ Lo —u)
(
«

2

2

Zz 17 Z’L lbz
14

By applying the inequality o® — 8° < (a — 8)5,8 € [0,a],s € [0,1] for
(Cieaf) (i, b;’])p_l B = (20, aiby)” and s = % we obtain

(£) () - (o)< (B) ) - (e )

From and , we get

_ pe=D)(p-2)(p-3)07"" -
2. We get A\ = 5 , as by applying the same proposed value of

p, the function | |" become an increasing function. Now by applying the same
method of part 1 the inequality can be obtained. O

Here in the following theorem, we present a generalized version of Theorem
Theorem 6. Let o € C2[o, 03] such that | | is strongly convex function with mod-
ulus A, and &, > 0 integrable function such that &, : [py, py] = R with f;f & (t)dt =
D > 0. Also, assuming the integrable function £, such that &5 : [py,ps] — R

where &(t) € [Ul,ag] YVt € [p1,ps)- Then the following inequality holds for
fp2§2 1(t)dt and p € [o1,02].

%—p2ﬂwwogﬂwﬁ—@@

P1

<5 [ a0 @ -
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(£ 4 28 | 1 0 - ) - 220600 - )

Proof. Using (2) in & f;f E1(t) (po&,) (t)dt and p(€), then some calculations lead
towards the following identity.

L[ et woe) 0 - 0@

P1

P2 &5(t) . Ei )
— %/ (&(t)/u (&a(t) —t)e (t)dt) dt—/ E -t (Hydt. (A7)

m

From here, adopting the procedure of the proof of Theorem[5] we get the result. O

Remark 1. The integral form of Proposition[]] may be shown as an application of
Theorem [A.

Corollary 1. Let ® : [py,p5] — R be such that |®"]| is strongly convex function
with modulus \ and p € [py, ps], then the following inequality can be obtained:

1 P2
/ O(t)dt — @ (”1”2)
P2 — P1 1 2

1 /p2 2211 1 ‘ " (P1+Pz>‘ 2
< —— t—p)2®"(t)dt + — |® p1+py—2pu
S [ e g o (B2 ) ok -2

"

@ (u)

+36

(70T + 7p5 + 10p1 py — 24ppy — 24ppy + 244°)

UA

+ 12 2 o6 201+ 02) (1 + 03) — 4 (01 + 93 + prpa) — 4®) + (o1 + py = 21)°

A p3—pd 1 (M3—nl)  Bulpl—p}) 2 (= )
12(py — p1) 5 2 4 ? !
Alpy + p2)

— o5 (P1¥p2— 2p)%. (18)

Proof. By utilizing (16 for ® = ¢, [01,02] = [p1,02] and &; () = 1,£5(¢) =t for all
te[p17p2]7we get " 0
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3. APPLICATIONS IN INFORMATION THEORY

In information theory, we study about the storage, quantification and communi-
cation of information about certain events in different aspects. In this field, various
such events may be practiced through different divergences, distances or entropies
for example Kullback-Leibler and Rényi-divergences, Hellinger distance, Shannon
and Zipf-Mandelbrot entropies etc, which are special cases of the Csiszar divergence.
In analysis, the Jensen inequality is one of the most important inequalities which
produces various results for Csiszar divergence by manipulating suitable substitu-
tions. Such practices are made in this section. Following is the Csiszar divergence
functional [18]:

Definition 2 (Csiszér divergence). Let [01,02] C R and T : [01,02] — R be a
function, then for h = (hy,...,hy,) € R" and z = (z1,...,2,) € R} such that
% € [o1,09], fori=1,...,n, the Csiszdr divergence is defined as:
C(h,z) = i 2T hi
o i=1 s/

Theorem 7. Let for the function T € C?[o1,05], such that with modulus \, |T"|

is strongly convex function. Also, leth = (hy,...,h,) ER™ and z = (21,...,2,) €
R, such that p, §£11 Zl , Z— €lo1,02] CR, fori=1,2,...,n then,
1

Z?:l hi> '
Dim1 i Dim1 i

1 & hs 2
< N
DR 2 (Z M)

i=1 v

me g () - B ()

6 12 \ z

" 2 o iy ha ‘ "
i Dimi hi 7" ()] ‘T (Zle Z) pA (i hi
Do % 8 g

3 + 6 * 12 D %
2y hi) n
B (z;;m- ASih i (19)
12 D1 % .
Proof. Utilizing ¢ = T,0; = % and k; = = in (8) we obtain (L9). -

Definition 3 (Rényi-divergence). For two positive probability distributions h =
(h1y..oshn)yz=(21,...,2n) and n > 0,n # 1, the Rényi-divergence is defined as:

1 n
R(b,z) = — log (Z h?z}—"> :
=1

C(h,z) T<

X

n—
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Corollary 2. Let h = (hy,...,h,),2 = (21,...,2n) be two positive probability

n n—1
distributions and n > 1 such that p,» ;2 (Z—) ,(Z—) € [o1,02] € R for
i=1,2...,n then

1 & h;
hz)— —— ) hilog(—
R(h, z) n—lgg og(%>

n—1

(20)

Proof. Let ¢(t) = —%log(t),t € [o1,02], then @' (t) = e 1)t2 and |¢"|" (t) =

6 >2 ( 3 4) which 1mphes that ¢ is convex and with A = —3—, |¢"| is
(n—1)t (n—1)o3 (n— 1)0
strongly convex. Thus we get (20) by applying (3) for ¢(t) = _ﬁ log(t), k; = h;

and ¥; = (Z—:)n_l. O

Definition 4 (Shannon entropy). Let z = (z1,...,2,) be a positive probability
distribution , then the information divergence or shannon entropy is define as:

=— 2”: z; log(z;).
i=1

Corollary 3. Suppose a positive probability distributionz = (21, ..., 2n) and p, zi €

[01,02] CRY fori=1,...,n. then
n 2 2 2
1 1 1
logn—S(z) <S 2 [~ — L .
ogn (Z)—;z (Zz /‘) 32 + 6 40,421 (,U Z?,) ‘|
1 1 1
) | — 4+ — — —(n—u)?|. 21
H = 0+ o~ a0 ) 1)

Proof. Let ¢(t) = —logt, t € [o1, 03] then ¢” () = % > 0 and l"|” (t) = $>23,

2

which presented that the function ¢ is convex and with A\ = %, || is strongly
2

convex . Therefore applying for p(t) = —log(t), (h1,...,hy) = (1,...,1), we

get . (I
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Definition 5 (Kullback-Leibler divergence). For two positive probability distribu-
tions, h = (hy,...,hy) and z = (21,...,2n), the Kullback-Leibler divergence is

defined as:
KL(h,z) = h;l — .
) = Yt ()

Corollary 4. Consider that [01,02] CRT and h = (hy,...,hy),z2 = (21,...,25)
are two positive probability distributions, with u, Z— € [o1,09], then

n hl 2 ]. Zi 1 hZ ?
KL(h,z) <> 2| — - 30 6h, 1208 \ 7
LXEp [Sﬁm (- ‘M

(e — 1)2] . (22)

Proof. Let ¢(t) = tlogt,t € [01,03], then ¢”(t) = + > 0, which conclude that ¢

is convex function. Also, |¢”|" (t) = Z>2 (ﬁ), which implies, with \ = % >0
2 2

the function |¢”| is strongly convex. Thus we get by applying for p(t) =
tlogt. O

Definition 6 (Bhattacharyya coefficient). If z = (21,...,2,) and h = (hy,..., hy)
are two positive probability distributions, then the mathematical form of Bhat-
tacharyya coefficient is given by:

B(h,z)=> Vhiz.
i=1

Corollary 5. Consider that h = (hy,...,hy) and z = (21,...,2,) are some pos-
itive probability distributions with the following conditions p, }ZL—Z € [o1,02] where
[01,01] CRY andi=1,2,...,n then

1 5
_— -(1 —u)ﬂ . (23)
12p2 12803

Proof. Let ¢(t) = —\/t,t € [01,09] then ¢"(t) = 4%% > 0 and |@"|"(t) = 1;;’%

2 < 15, ) Which show that the function ¢ is convex and with A = —5- |¢"| is
3207

3202

strongly convex. Therefore by putting ¢(t) = —/%, in 7 we can get . (Il
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Definition 7 (Hellinger distance). For two positive probability distributions z =
(z1,.-+,2n), h = (h1,..., ha), the Hellinger distance is define as:

H(h,z) = ;i (\/IZ— \/Z)Z

Corollary 6. let h = (hy,--- ,hy,) and z = (21, -+, z,) be two positive probability
distributions, such that u, % € [o1,002), where [01,01] C RT and i =1,2,...,n
then

3

u hi 11 1 5
H(hvz)§221 <z/u'> 12“3 + 3 - T
=1 2

1 1 5 2
+(1-p? =+ —5 - 1-p)%. 24
Ol EY R T 12802%( “)] (@4)
Proof. Let o(t) = 2(1 —V/1)?, t € [01,02], then ¢”(t) = 4% > 0 and |¢”|"(t) =
t2
161 > < 7) This shows that ¢ is convex and |¢”| is strongly convex with
+3 3202

modulus A = —15- . Hence we can obtained by utilizing for p(t) =
3202
31 V. 0
Definition 8 (Triangular discrimination). Assume that h = (hy,...,hy) and z =

(21,...,2n) are two positive probability distributions then the mathematical formula
for the Triangular discrimination is given by:

Tith) =3

Corollary 7. let z = (21,...,2,) and h = (hy, ..., hy) be two positive probability
distributions. Further assume that p, % € [o1,02] where [o1,01] C RT and i =
1,2,...,n then

n hz 2
Ty(h,z) < ZZZ (z - ,u)
i=1 ¢

8 423 4 hi ?
+ - 2
3(u + 1)3 3(h1 + Zi)?’ (0'2 + 1)5 Zi

8 4
+(1—p)? - 1—p)?. 25
=0 g~ - ) 25)
Proof. Let ¢(t) = ((ttlll);,t € [o1,029], then ¢"(t) = (t+1)3 > 0 and |<p”| ()
(tibi)s > 2 ((U;fl)s). This presented that ¢ is a convex function and with A =

$7 |©”] is a strongly convex function. Therefore using 1] for such values we

may deduce .
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4. CONCLUDING REMARKS

In fact, among the mathematical inequalities for convex functions, the Jensen
inequality is the most powerful inequality whose gap can be utilized for various pur-
poses specially in the approximation of certain parameters in optimization prob-
lems. In this regard, better estimates for its gap can be used to obtain better
results. The strongly convex functions are some tools to strengthen such estimates.
In this paper, it is demonstrated through a numerical experiment that replacing
convex functions by strongly convex functions actually strengthens the bound pre-
sented for the Jensen gap in [4]. Similarly the improved result enabled us to present
improvements in the bounds obtained for the Holder and Hermite-Hadamard gaps
and proposed such improvements in the results obtained for various entropies and
divergences in information theory. The idea presented in the paper, further moti-
vates the mathematicians to establish such results in future.
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