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Abstract 

Prediction of the drag forces acting on a truck trailer with/without spoiler is carried out by using artificial 

neural network (ANN). ANN model data set include the experiments of spoiler positions which have 

zero level to trailer front corner, -2 mm, -4.5 mm, -9 mm, +4.5 mm and +9 mm and truck trailer without 

spoiler. The experiments were carried out in the wind tunnel in the range of the free stream velocity 

between 4.6 m/s and 19.3 m/s, corresponding the Re number range, 1.0×105 -5.0×105. Mean absolute 

percentage error (MAPE) for training, validation and testing is 2.24%, 3.75% and 4.58% in the 

prediction of the drag forces, respectively. Prediction performance of the developed ANN model has a 

very good accuracy. According to the drag coefficients results, Reynolds number independence for truck 

trailer model is obtained at Reynolds number between 1.97×105 and 4.89×105. For spoiler position cases, 

while minimum drag coefficient acting on truck trailer with spoiler is seen at – 2mm offset, maximum 

drag coefficient is seen at -9 mm offset. 

Keywords: Drag force, Truck trailer, Artificial neural network. 

Nomenclature 
AFC Active flow control, 

𝐴𝑓𝑟  Frontal area of the truck trailer model 

ANN Artificial neural network, 

b Bias value of input, 

CD Drag coefficient, 

d Deviation 

DBD Dielectric barrier discharge, 

f activation function, 

F Estimated value, 

FD Drag force, 

L Length of truck trailer 

MAPE Mean absolute percentage error, 

MLP Multilayer perceptron, 

MSE Mean squared error, 

PFC Passive flow control, 

Pi Predicted value, 

R Regression, 

Re Reynolds number, 

Ri Real measuring value, 

𝑈∞ Free stream velocity  

v Weight of output layer, 

w Weight of input layer, 

xi input variables 

µ Dynamic viscosity 

𝜌 Density of the air 

𝑢𝐶𝐷
  Uncertainty of the drag coefficient 
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1. Introduction 

Drag reduction is important to reduce the fuel 

consumption at passenger car and truck 

trailer therefore drag reduction leads to 

decreased fuel expense of the freight industry 

and carbon emission at long term. In order to 

obtain the drag reductions of vehicles, 

buildings, circular cylinders and square 

cylinder in the flow, there are two different 

flow control methods that are active and 

passive flow control methods. In the active 

flow control (AFC) methods, which need 

external energy supply, devices such as 

synthetic jet [1,2], continues jet [3], dielectric 

barrier discharge (DBD) plasma actuator [4] 

and so forth can be used. Passive flow control 

(PFC) methods which require some 

geometrical modification over body 

including splitter plate [5–7], spoiler [8,9], 

passive air channel[8,9], boat tail (flap) 

[10,11] and so on. AFC methods have been 

taken interest by the researcher for vehicles. 

But such methods need energy this means 

that fuel consumption and air pollution 

increase. Therefore, researchers focus 

especially on PFC methods in order to 

control the flow past truck trailer because of 

some advantages such as no energy 

requirement, no moving part and robust. 

Available studies related truck trailer in 

literature will briefly be summarized 

following paragraphs. 

Özel et al. [8] investigated different cases 

including passive air channel, three different 

redirector and spoiler for reduction of drag at 

Re = 15900 - 453000. They obtained as 

23.15% at combination of spoiler, passive 

channel and redirector. Akansu et al. [9] 

extended the study of Ozel at al. [8] by 

designing different passive air channel. Their 

result indicated that drag reduction of 

combination of spoiler, new passive channel 

design and redirector is 25.58%. El-Alti et al. 

[10] carried out an experimental and 

numerical study using boat tail placed on the 

rear of 1:10 scaled model of VOLVO FH16. 

Their results showed that drag reduction is 

obtained up to 0.7% with flap. Raemdonck 

and Tooren [11] is also used boat tail having 

different slant angle and obtained drag 

reduction of 12%. Fourrie et al. [12] 

investigated the effect of deflector placed 

behind Ahmet body by using particle image 

velocimetry (PIV) at Re = 3.1 - 7.7×105. They 

obtained 9% drag reduction. For tractor 

trailer model with boat tail, Lanser et al. [13] 

and Khalinghi et al. [14] reduced drag up to 

10% and 20%, respectively. Bayındırlı et al. 

[15] conducted to an experimental study for 

truck trailer by measuring pressure and force 

at Re = 117000 – 844000. Their results 

showed that trailer placed behind the truck 

increased drag coefficient from 0.608 to 

0.704 when compared with the alone truck. 

Bayındırlı et al. [16] numerically 

investigated  effect of aerodynamic forces 

over truck trailer model at Re = 59000 – 

844000. 

In order to decrease the number of required 

experiments such as force and pressure 

measurement at wind tunnel and develop 

closed/opened loop control system, artificial 

neural network (ANN) has a promising 

potential because of substantially superior 

learning ability for models varied 

linear/nonlinear. As defined by Bishop [17], 

artificial neural network is inspired from 

human neural network. A neural network can 

be considered as a non-linear mathematical 

function which provided a connection 

between input and output variables. ANN 

model is developed for prediction at wide 

range research area including car fuel 

consumption [18], airfoil aerodynamic force 

[19], decreasing the number of wind tunnel 

test [20], flight test data estimation [21], 

aircraft control design [22] and so forth. Wu 

and Liu [18] investigated prediction 

performance of ANN model for car fuel 

consumption. Engine style, weight of car, 

type of car, transmission types and car brand 

has been used as an input parameter in ANN 

model. Their results showed that developed 

ANN model is satisfactory for prediction of 

fuel consumption. Kurtulus [19] studied to 

estimate the drag and lift coefficient of 

NACA 0012 airfoil with the help of 

developed ANN model. Input parameters of 

their ANN model are translational velocity, 

translation displacement, attack angle and 
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angular velocity. This coefficient estimation 

indicated that ANN model has good ability 

for flapping airfoil. In the study of Ross et al. 

[20], ANN is used in order to reduce required 

wind tunnel tests at a new airplane design. 

Input variables of ANN model are leading 

edge flap angle, trailing edge flap angle and 

attack angle. They predicted lift, drag and 

pitching moment coefficient and lift to drag 

ratio, separately by using the input variables. 

They indicated that ANN had very good 

estimation accuracy when compared with the 

experimental results. 

Aim of this paper is to predict drag force 

acting on a truck trailer model with/without 

spoiler by means of ANN and reveal 

prediction ability of ANN for this case. 

Effects of spoiler placed over truck in terms 

of drag reduction are investigated at six 

different spoiler positions. 

2. Experimental Setup 

Experiments were carried out at a suction 

type wind tunnel having 57 cm × 57 cm of 

square test section at velocity of air having 

4.6, 6.2, 7.8, 9.4, 11, 12.6, 14.2, 15.8, 17.45 

and 19.3 m/s. 1/32 scaled truck trailer model 

and spoiler are used as in Özel et al. [8] and 

Akansu et al. [9]. As shown in Fig. 1, a 

spoiler placed over the truck has 6 different 

positions as an experimental parameter. Zero, 

-9mm and +9 mm positions of spoiler are just 

given as an example in Fig. 1. These six 

different positions of the spoiler are -9 mm, -

4.5 mm, -2 mm, zero, +4.5 mm and +9 mm. 

Force measurements were performed with 

the help of a six axis ATI Gamma DAQ F/T 

load cell at aforementioned ten different 

velocity. Force measurement data were 

collected as 5000 sample at sampling 

frequency 500 Hz.  More details of 

measurement system and specifications of 

the model can be seen in Özel et al. [8] and 

Akansu et al. [9]. 

Uncertainty analysis method is described in 

Eq.(1) by Coleman and Steele [23] in their 

book. 

Uncertainty of the drag coefficient can be 

expressed in Eq. (2) like in the study of 

Bayındırlı et al.. [15] and Akansu et al. [9] by 

editing Eq. (1). 

𝑢𝑟 = [𝑎2 (
𝑢𝑥1

𝑋1
)

2

+ 𝑏2 (
𝑢𝑥2

𝑋2
)

2

+ 𝑐2 (
𝑢𝑥3

𝑋3
)

2

+

⋯ ]

1
2⁄

     (1) 
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𝑑𝐹𝐷

𝐹𝐷
)

2

+ (−1)2 (
𝑑𝜌

𝜌
)

2

+

(−2)2 (
𝑑𝑈∞
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)

2

+ (−1)2 (
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)

2

]

1
2⁄

 (2) 

where, 𝑢𝐶𝐷
is total uncertainty of the drag 

coefficient, CD is drag coefficient, d is 

deviation, FD is drag force, 𝜌 is density of the 

air, 𝑈∞ is free stream velocity, 𝐴𝑓𝑟 is the 

frontal area of the truck trailer model. For Re 

= 4.89×105, the uncertainty of the drag 

coefficient is calculated as 6.8%. 

 
Fig. 1. Schematic view of truck trailer with 

spoiler having different positions 

In order to obtain the relationship between 

the prototype and the real model, similarity 

including geometric, kinematic and dynamic 

must be provided. In this study, the geometric 

similarity was provided by using 1/32 scaled 

truck trailer model. For the kinematic 

similarity, blockage ratio is key parameter. 

The blockage ratio can be expressed as the 

ratio of truck-trailer frontal area to cross 

section area of the wind tunnel test section. As 

suggested in the study of Özel et al. [8] and 

Akansu et al. [9], blockage ratio must be 

smaller than 7.5%. In the present study, the 

blockage ratio is equal to 3.63% for +9 mm 

spoiler position having a greater frontal area 

that the other. Therefore, kinematic similarity 

is validated by providing the uniform 

velocity profile acting on the model by using 

flat plate over 8cm from the wind tunnel wall 

except moving surface for the ground effect. 
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Reynolds number can be defined as in Eq. (3) 

𝑅𝑒 =
𝜌𝐿𝑈∞

µ
    (3) 

here, Re is the Reynolds number, L is the 

total length of the truck-trailer model, µ is the 

dynamic viscosity, 𝑈∞ is the free stream 

velocity and 𝜌 is the density of the air. For 

the dynamic similarity, it is necessary for the 

Reynolds number independence between real 

and prototype. As seen in Fig. 5, Reynolds 

number independence is provided at Re 

between 1.97×105 and 4.89×105 because the 

drag coefficient is nearly constant. This 

means that the dynamic similarity is valid for 

these Reynolds number ranges. 

3. Artificial Neural Network 

Artificial neural network which is inspired 

from biological neural network is composed 

of input variables such as weight, bias, 

activation function and output. For the 

neuron, bias (b) and weight (w) can be 

adjustable with a relation between input and 

output variable. Given ANN model structure 

in Fig. 2 is known as Multilayer perceptron 

(MLP). As shown in Fig. 2, Multilayer 

perceptron consist of three layers that are 

input, hidden and output layer. Output value 

can be calculated below; 

F=𝑓 (𝑎 + ∑ 𝑣𝑗

10

𝑗=1
[∑ 𝑔(𝑤𝑖𝑗𝑥𝑖 +

4

𝑖=1

𝑏𝑗)])      (4) 

here, F is estimated value , a is the bias value 

for output, vj is the weight of output value, wij 

is the weight of input layer, b is the bias value 

for input and xi is input variable. f and g are 

the activation function for input and output 

layer, respectively. 

Input variables for the developing ANN 

model are determined as velocity, frontal 

area of truck trailer model, total height of 

truck trailer with spoiler and given number 

for each model having different height. By 

using these input variables, drag forces acting 

truck trailer are predicted for aforementioned 

cases. Total 70 input data is used in order to 

train, validate and test. These input data is 

divided as 70% training, 15% validation and 

15% test. As an activation function, S-shape 

sigmoid is used to train the ANN model. S-

shape sigmoid activation function is express 

as in Eq. (5). 

𝑓(𝑎) =
1

1+e−a    (5) 

 
Fig. 2. Build ANN model structure. 

Training algorithm is utilized Levenberg-

Marquardt back propagation method. This 

algorithm is commonly used in literature by 

Wu and Liu [18], Kurtulus [19], Ross et al. 

[20] and Paksoy and Aradag [25]. 

In order to determine the performance of 

developed ANN model, mean squared error 

(MSE) and mean absolute percentage error 

(MAPE) are employed. MSE and MAPE can 

be defined as; 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑅𝑖 − 𝑃𝑖)2𝑛

𝑖=1   (6) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ (

|𝑅𝑖−𝑃𝑖|

𝑅𝑖
)

2

𝑥100𝑛
𝑖=1  (7) 

Here n is the number of measurement data, Ri 

is real measuring value and Pi is the predicted 

value. 

4. Result and Discussion 

For truck and trailer without spoiler and with 

different spoiler positions that are zero, -2 

mm, -4.5 mm, -9 mm, +4.5 mm and +9 mm, 

drag force measurement results are presented 

by reproducing with the help of ANN model 

at 4.6, 6.2, 7.8, 9.4, 11, 12.6, 14.2, 15.8, 17.45 

and 19.3 m/s. MAPE, MSE and regression 

(R) values are given in order to evaluate the 

prediction performance of developed ANN 

model including training, validation and 
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testing sections in table 1. As mentioned by 

Lewis[26], if MAPE is smaller than 10%, 

prediction evaluation is high accuracy. When 

examined Table 1. MAPE values for training, 

validation and testing are 2.24%, 3.75% and 

4.58%, respectively. This means that the 

developed ANN model has high accuracy. It 

should be noted that if R and MSE is equal or 

very close to 1 (for R) and 0 (for MSE), 

respectively, prediction performances are 

very good. MSE for training, validation and 

testing is nearly equal to zero, therefore, error 

between actual and predicted value has 

scarcely any. Regression value indicates 

relationship between measured and predicted 

drag force. Variation of regression values of 

training, validation and test is plotted in Fig. 

3. Training, validation and testing values of 

R is nearly 1. That is, developed ANN model 

shows a good agreement with measured drag 

forces.

Table 1. Prediction performance of developed ANN model in drag force acting on truck trailer 

 Training Validation Testing 

MAPE 2.24% 3.75% 4.58% 

MSE 5.468×10-5 2.546×10-4 1.02×10-4 

R 0.999831 0.999713 0.99946 

 
Fig. 3. Relationship between measured and estimated values for training, validation and test. 
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Variation of CD as a function of the Reynolds 

number is given in Fig. 4 by comparing the 

present study and the study of Özel et al. [8]. 

The results of the present study exhibit 

similar trend with that of Özel et al. [8] for 

truck trailer with/without spoiler cases. Özel 

et al. [8] didn’t take into account the position 

of spoiler but the results of their spoiler 

position show a good agreement with that of 

the spoiler position of the present study at -9 

mm. Özel et al. [8] used worst spoiler 

position when compared with the present 

study. CD for the studies of the present and 
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Özel et al. [8] is 0.6 at Re = 3.2×105 and 0.65 

at Re = 3.23×105, respectively. Fig. 5 shows 

the comparison of measurement and 

predicted drag forces as a function of the 

velocity. These figures indicate that 

predicted drag values via developed ANN 

model shows nearly similar trend with 

measurement results. 
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-9 mm +4.5 mm and +9 mm spoiler positions and truck trailer without spoiler. 

The variation of drag coefficient (CD) with 

Reynolds number is plotted for comparison 

between experimental results and prediction 

in Fig. 6. Straight lines represent the drag 
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coefficients of the experimental results while 

dash lines denote calculated drag coefficients 

from the predicted drag forces. At -2 mm 

spoiler position, the drag reduction is 

obtained as 22.6% at Re = 3.2×105 when 

compared with the truck trailer without 

spoiler. For -9 mm spoiler position, the drag 

coefficient is higher than those of the other 

spoiler positions from Re = 1.97×105 to 

4.89×105. It can be say that there is a very low 

Reynolds number dependence at the 

Reynolds number between 1.97×105 and 

4.89×105. 
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Fig. 6. Variation of the drag coefficient as a function of Re for truck and trailer with spoiler 

5. Conclusion 

An experimental study was carried out to 

measure the drag forces acting on truck 

trailer for different cases including spoiler 

positions at 4.6, 6.2, 7.8, 9.4, 11, 12.6, 14.2, 

15.8, 17.45 and 19.3 m/s. In order to predict 

the drag forces divided randomly training, 

validation and testing, artificial neural 

network model is developed. MAPE value 

has 2.24% for training, 3.75% for validation 

and 4.58% for testing. Prediction 

performance of the developed ANN model 

has very good accuracy. The results indicated 

that ANN can be successfully used in an 

aerodynamic application in order to reduce 

the number of experiment. Drag reduction is 

obtained as 22.6% for -2mm spoiler position. 

There is Reynolds independent at Reynolds 

number between 1.97×105 and 4.89×105. 

Authors suggests that ANN model can be 

used to decrease the number of experiments 

by saving time and cost. Especially, the 

prediction of the intermediate values will be 

useful for the optimizations of the 

parameters, like the spoiler offset position. 
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