# Spherical Curves with Modified Orthogonal Frame 

Bahaddin BUKCU ${ }^{a, 1}$ (bbukcu@yahoo.com)<br>Murat Kemal KARACAN ${ }^{b}$ (murat.karacan@usak.edu.tr)<br>${ }^{a}$ Gazi Osman Pasa University, Faculty of Sciences and Arts, Department of Mathematics,60250,Tokat-TURKEY<br>${ }^{b}$ Usak University, Faculty of Sciences and Arts, Department of Mathematics, 1 Eylul Campus, 64200,Usak-TURKEY


#### Abstract

In [2-4,8-9], the authors have characterized the spherical curves in different spaces.In this paper, we shall characterize the spherical curves according to modified orthogonal frame

Keywords - Spherical curves, Modified orthogonal frame in Euclidean 3-space.


## 1 Introduction

In the Euclidean space $E^{3}$ a spherical unit speed curves and their characterizations are given in $[8,9]$. In $[2-4,7]$, the authors have characterized the Lorentzian and Dual spherical curves in the Minkowski 3 -space $E_{1}^{3}$. In this paper, we shall characterize the spherical curves according to modified orthogonal frame in the Euclidean 3-space.

## 2 Preliminaries

We first recall the classical fundamental theorem of space curves, i.e., curves in Euclidean 3 -space $E^{3}$. Let $\alpha(s)$ be a curve of class $C^{3}$, where $s$ is the arc-length parameter. Moreover we assume that its curvature $\kappa(s)$ does not vanish anywhere. Then there exists an orthonormal frame $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ which satisfies the Frenet-Serret equation

$$
\left[\begin{array}{c}
\mathbf{t}^{\prime}(s)  \tag{1}\\
\mathbf{n}^{\prime}(s) \\
\mathbf{b}^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{t}(s) \\
\mathbf{n}(s) \\
\mathbf{b}(s)
\end{array}\right]
$$

[^0]where $\mathbf{t}, \mathbf{n}$ and $\mathbf{b}$ are the tangent, principal normal and binormal unit vectors, respectively, and $\tau(s)$ is the torsion. Given a function $\kappa(s)$ of class $C^{1}$ and a continuous function $\tau(s)$, there exists a curve of class $C^{3}$ which admits an orthonormal frame $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ satisfying the Eq.(1) with given $\kappa$ and $\tau$ as its curvature and torsion, respectively. Such a curve is uniquely determined by a motion of $E^{3}$.

Let $\alpha_{i}(i=1,2,3)$ be coordinates in $E^{3}$. Let $\alpha(s)$ an analytic curve, where $s$ runs through some interval and $\alpha(s)$ be analytic in $s$. We assume that $\alpha$ is non-singular, i.e.,

$$
\sum_{i=1}^{3}\left(\frac{d \alpha_{i}}{d s}\right)^{2}
$$

is nowhere zero. Therefore we can parametrize $\alpha$ by its arc length $s$. In the rest of this paper, we only consider $\alpha$ in the following form:

$$
\alpha=\alpha(s)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), s \in I
$$

where $\alpha(s)$ is analytic in $s$ and $I$ is a non-empty open interval. We assume that the curvature $\kappa(s)$ of $\alpha$ is not identically zero. Now we define an orthogonal frame $\{T, N, B\}$ as follows:

$$
T=\frac{d \alpha}{d s}, N=\frac{d T}{d s}, B=T \times N
$$

where $T \times N$ is the vector product of $T$ and $N$. The relations between those and the classical Frenet frame $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ at non-zero points of $\kappa$ are

$$
\left\{\begin{array}{c}
T=\mathbf{t}  \tag{2}\\
N=\kappa \mathbf{n} \\
B=\kappa \mathbf{b} .
\end{array}\right.
$$

Thus $N\left(s_{0}\right)=B\left(s_{0}\right)=0$ when $\kappa\left(s_{0}\right)=0$ and squares of the length of $N$ and $B$ vary analytically in $s$. By the definition of $\{T, N, B\}$ or Eq.(2), a simple calculation shows that

$$
\left[\begin{array}{l}
T^{\prime}(s)  \tag{3}\\
N^{\prime}(s) \\
B^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\kappa^{2} & \frac{\kappa^{\prime}}{\kappa} & \tau \\
0 & -\tau & \frac{\kappa^{\prime}}{\kappa}
\end{array}\right]\left[\begin{array}{c}
T(s) \\
N(s) \\
B(s)
\end{array}\right]
$$

where a dash denotes the differentiation with respect to the arc length $s$ and

$$
\tau=\tau(s)=\frac{\operatorname{det}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right)}{\kappa^{2}}
$$

is the torsion of $\alpha$. From the Frenet-Serret equation, we know that any zero point of $\kappa^{2}$ is a removable singularity of $\tau$. The Eq.(3) corresponds to the Frenet-Serret equation in the classical case. Moreover, $\{T, N, B\}$ satisfies:

$$
\left\{\begin{array}{c}
\langle T, T\rangle=1,\langle N, N\rangle=\langle B, B\rangle=\kappa^{2}  \tag{4}\\
\langle T, N\rangle=\langle T, B\rangle=\langle N, B\rangle=0
\end{array}\right.
$$

where $\langle$,$\rangle denotes the inner product of E^{3}$. We note that the essential quantities in Eqs.(3) and (4) are $\kappa^{2}(s)$ and $\tau(s)$ which are analytic in $s[7]$.

## 3 Spherical Curves with Modified Orthogonal Frame

Definition 3.1. Let $\alpha$ be in $E^{3}$ given with coordinate neighborhood $(I, \alpha)$. If $\alpha \subset E^{3}$ then $\alpha$ is called a spherical curve of $E^{3}$.

Definition 3.2. The sphere having sufficiently close common four points at $m \in \alpha$ with the curve $\alpha \subset E^{3}$ is called the osculating sphere or curvature sphere of the curve $\alpha$ at the point $m \in \alpha$.

Now let us calculate the geometric locus of the sphere having sufficiently close common three points with curve $\alpha \subset E^{3}$ at the point $m \in \alpha$.

Theorem 3.3. Let $\alpha$ be in $E^{3}$ given with coordinate neighborhood $(I, \alpha)$. The geometric locus of the centers of the spherical curves having sufficiently close common three points with the curve $\alpha$ providing the modified orthogonal frame vectors $\{T, N, B\}$ at the point $\alpha(s), s \in I$ is

$$
\mathbf{a}(s)=\alpha(s)+m_{2}(s) N(s)+m_{3}(s) B(s),
$$

where

$$
m_{2}: I \rightarrow R, m_{2}(s)=\kappa^{-2}, \quad m_{3}(s)= \pm \kappa^{-2} \sqrt{r^{2} \kappa^{2}-1}
$$

Proof. Let $(I, \alpha)$ be a coordinate neighborhood, and $s \in I$ be parameter for the curve $\alpha$. Let also a be the center and $r$ be the radius of the sphere having sufficiently close common three points with $\alpha$. In accordance to this, let us consider

$$
\begin{align*}
f: I & \rightarrow R \\
& s \tag{5}
\end{align*} \rightarrow f(s)=\langle\mathbf{a}-\alpha(s), \mathbf{a}-\alpha(s)\rangle-r^{2} .
$$

Since

$$
\begin{equation*}
f(s)=f^{\prime}(s)=f^{\prime \prime}(s)=0 \tag{6}
\end{equation*}
$$

at the point $\alpha(s)$, then the sphere

$$
S^{2}=\left\{x \in E^{3}:\langle x-\mathbf{a}, x-\mathbf{a}\rangle=r^{2}\right\},(x \text { generic point of the sphere })
$$

with the curve $\alpha$ at this point passes sufficiently close three points. So, considering Eqs.(5) and (6) together

$$
f^{\prime}(s)=-2\langle T, \mathbf{a}-\alpha(s)\rangle=0 .
$$

is obtained. From this, since $f^{\prime \prime}(s)=0$, we get

$$
\langle T, T\rangle+\langle a-\alpha(s),-N\rangle=0 .
$$

Considering Eq.(3) with this, we have

$$
\langle\mathbf{a}-\alpha(s), N\rangle=1 .
$$

On the other hand, for the base $\{T, N, B\}$,

$$
\begin{equation*}
\mathbf{a}-\alpha(s)=m_{1}(s) T(s)+m_{2}(s) N(s)+m_{3}(s) B(s) ; \quad m_{1}(s), m_{2}(s), m_{3}(s) \in R \tag{7}
\end{equation*}
$$

is obtained. However, by using Eq.(6), we have

$$
\begin{equation*}
m_{1}(s)=\langle\mathbf{a}-\alpha(s), T(s)\rangle \Rightarrow m_{1}(s)=0, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa^{2} m_{2}=\langle\mathbf{a}-\alpha(s), N(s)\rangle \Rightarrow m_{2}=\frac{1}{\kappa^{2}}, \tag{9}
\end{equation*}
$$

By using $f(s)=0$, we get

$$
\begin{equation*}
\langle\mathbf{a}-\alpha(s), \mathbf{a}-\alpha(s)\rangle=r^{2} \Rightarrow m_{1}^{2}(s)+m_{2}^{2}(s) \kappa^{2}(s)+m_{3}^{2}(s) \kappa^{2}(s)=r^{2} . \tag{10}
\end{equation*}
$$

Considering Eq.(8) in Eq.(10), we have

$$
\begin{equation*}
\left[m_{2}^{2}(s)+m_{3}^{2}(s)\right] \kappa^{2}(s)=r^{2} . \tag{11}
\end{equation*}
$$

Considering also Eq.(9) in Eq.(11) then

$$
\begin{equation*}
m_{3}(s)= \pm \kappa^{-2} \sqrt{r^{2} \kappa^{2}-1}=\lambda . \tag{12}
\end{equation*}
$$

Therefore, subtituting Eqs.(8),(9),(12) in Eq.(3)

$$
\mathbf{a}(s)=\alpha(s)+\frac{1}{\kappa^{2}} N(s) \pm \kappa^{-2} \sqrt{r^{2} \kappa^{2}-1} B(s) .
$$

Here a and $r$ change when the spheres change. Hence, $m_{3}(s)=\lambda \in R$ is a parameter. This completes the proof of the theorem.

Corollary 3.4. Let the curve $\alpha$ in $E^{3}$ be given with neighborhood coordinate ( $I, \alpha$ ). Then the centers of the spheres which pass sufficiently close common three points with $\alpha$ at the points $\alpha(s) \in \alpha$ are located on a straight line.

Proof. By Theorem 3.3, we have

$$
\mathbf{a}(s)=\alpha(s)+\frac{1}{\kappa^{2}(s)} N(s)+\lambda B(s)
$$

The equation with $\lambda$ parameter denotes a line which pass through the point $C(s)=$ $\alpha(s)+\frac{1}{\kappa^{2}(s)} N(s)$ and is parallel to the $B$.

Definition 3.5. The line $\mathbf{a}(s)=\alpha(s)+\frac{1}{\kappa^{2}} N(s)+\lambda B(s)$ is the geometric locus of the centers of the spheres which have sufficiently close common three points with the curve $\alpha \subset E^{3}$ at the point $m \in \alpha$ is called curvature the axis at the point $m \in \alpha$ of curve $\alpha \subset E^{3}$. The point

$$
C\left(s_{0}\right)=\alpha\left(s_{0}\right)+\frac{1}{\kappa^{2}\left(s_{0}\right)} N\left(s_{0}\right)
$$

on curvature the axis is called curvature the center at the point $m=\alpha\left(s_{0}\right)$ of curve $\alpha \subset E^{3}$.

Theorem 3.6. Let curve $\alpha \subset E^{3}$ be given by $(I, \alpha)$ coordinate neighborhood. If

$$
\mathbf{a}(s)=\alpha(s)+m_{2}(s) N(s)+m_{3}(s) B(s)
$$

is the center of the osculating sphere at the point $\alpha(s) \in \alpha$, then

$$
m_{2}(s)=\kappa^{-2}(s), m_{3}(s)=\frac{\left(\kappa^{-2}\right)^{\prime}}{2 \tau} \text { or } m_{3}(s)=\frac{m_{2}^{\prime}}{2 \tau}
$$

Proof. The proof of the theorem is similar to the proof of Theorem3.3. The osculating sphere with the curve $\alpha$ have sufficiently close common four points. Therefore, since $f^{\prime \prime}(s)=0$ in (6) thus $f^{\prime \prime \prime}(s)=0$. Then we have

$$
\langle-T, N\rangle-\kappa^{2}\langle\mathbf{a}-\alpha(s), T\rangle+\frac{\kappa^{\prime}}{\kappa}\langle\mathbf{a}-\alpha(s), N\rangle+\tau\langle\mathbf{a}-\alpha(s), B\rangle=0
$$

Considering Eqns.(1), (8) and (9) in the last equality, we obtain

$$
\langle\mathbf{a}-\alpha(s), B\rangle=-\frac{\kappa^{\prime}}{\tau \kappa} .
$$

or

$$
m_{3}(s)=-\frac{\kappa^{\prime}}{\tau \kappa^{3}} \text { or } m_{3}=\frac{\left(\kappa^{-2}\right)^{\prime}}{2 \tau}
$$

Using Eq.(4) in the last equation yields

$$
m_{3}=\frac{m_{2}^{\prime}}{2 \tau}
$$

Corollary 3.7. Let curve $\alpha$ in $E^{3}$ is given by $(I, \alpha)$ neighbouring coordinate. If $r$ is the radius of the osculating sphere at $\alpha(s) \in \alpha$, then

$$
r=\sqrt{\left[m_{2}^{2}(s)+m_{3}^{2}(s)\right] \kappa^{2}}=\sqrt{\frac{1}{\kappa^{2}}+\left[\frac{\left(\kappa^{-2}\right)^{\prime}}{2 \tau}\right]^{2}} .
$$

Proof. If the center of the osculating sphere at $\alpha(s)$ is $\mathbf{a}$, then by Theorem 3.3,

$$
\mathbf{a}=\alpha(s)+m_{2}(s) N(s)+m_{3}(s) B(s) .
$$

Thus we have

$$
r=\|\mathbf{a}-\alpha(s)\|=\sqrt{\kappa^{2}(s) m_{2}^{2}(s)+\kappa^{2}(s) m_{3}^{2}(s)}=\sqrt{\frac{1}{\kappa^{2}}+\left[\frac{\left(\kappa^{-2}\right)^{\prime}}{2 \tau}\right]^{2}}
$$

Theorem 3.8. Let $S_{0}^{2}$ be a sphere centered at 0 and also $\alpha \subset S_{0}^{2}$ be a spherical curve. In this case, since $(I, \alpha)$ is a neighbouring coordinate for $\alpha$ and $s \in I$ is arclength parameter, then

$$
-m_{1}(s)=\langle\alpha(s), T\rangle,-m_{2}(s)=\frac{\langle\alpha(s), N\rangle}{\kappa^{2}},-m_{3}(s)=\frac{\langle\alpha(s), B\rangle}{\kappa^{2}} .
$$

Proof. Since $\alpha(s) \in S_{0}^{2}$ for all $s \in I$, and $r$ is a radius, then we have

$$
\vec{O}=\alpha(s)+m_{1} T+m_{2} N+m_{3} B
$$

and

$$
\langle\alpha(s), \alpha(s)\rangle=r^{2}
$$

Thus, taking consecutive derivatives from the above equations with respect to $s$ we get

$$
\begin{aligned}
\langle\alpha(s), T\rangle & =0, \\
\langle\alpha(s), N\rangle & =-1,
\end{aligned}
$$

and

$$
\langle\alpha(s), B\rangle=\frac{\kappa^{\prime}}{\tau \kappa}
$$

or

$$
\frac{\kappa^{\prime}}{\tau \kappa^{3}}=\frac{\langle\alpha(s), B\rangle}{\kappa^{2}} .
$$

Thus since $\frac{\kappa^{\prime}}{\tau \kappa^{3}}=-m_{3}$, we can write the last equality as

$$
-m_{3}=\frac{\langle\alpha(s), B\rangle}{\kappa^{2}} .
$$

The following theorem characterize the relationship between the radii and the centers of the osculating spheres.

Theorem 3.9. Let $S_{0}^{2} \subset E^{3}$ be a sphere centered at 0 . If $\alpha$ is a curve on $S_{0}^{2}$, then the osculating sphere of the curve $\alpha$ at every point is $S_{0}^{2}$.

Proof. Let the curve $\alpha$ with ( $I, \alpha$ ) neighbouring coordinate such that $s \in I$ is arclenght parameter. By Theorem 3.6,

$$
\mathbf{a}(s)=\alpha(s)+m_{2}(s) N(s)+m_{3}(s) B(s) .
$$

By Theorem 3.8, this expression can be written as

$$
\mathbf{a}(s)=\alpha(s)-\frac{\langle\alpha(s), N(s)\rangle}{\kappa^{2}} N(s)-\frac{\langle\alpha(s), B(s)\rangle}{\kappa^{2}} B(s) .
$$

Since $\langle\alpha(s), T(s)\rangle=0$, we have

$$
\alpha(s)=\frac{\langle\alpha(s), N(s)\rangle}{\kappa^{2}} N(s)+\frac{\langle\alpha(s), B(s)\rangle}{\kappa^{2}} B(s) .
$$

Thus we get

$$
\mathbf{a}=\alpha(s)-\alpha(s) \Rightarrow \mathbf{a}=0
$$

On the other hand, we can write

$$
d(\alpha(s), O)=r
$$

This completes the proof of the theorem.
Theorem 3.10. Let the curve $\alpha \in E^{3}$ be given with neighbouring coordinate (I, $\alpha$ ). The radius of the osculating sphere at the point $\alpha(s)$ for all $s \in I$ such that $m_{3}(s) \neq 0, \tau \neq 0$ is constant if and only if the centers of the osculating sphere are the same.

Proof. $\Rightarrow$ : By Corollary 3.4, we can write as follows

$$
\kappa^{2}\left(m_{2}^{2}(s)+m_{3}^{2}(s)\right)=r^{2}(s)
$$

Since $r=$ constant, from the derivative of this equation with respect to $s$, we have

$$
\kappa m_{2} m_{2}^{\prime}+\kappa m_{3} m_{3}^{\prime}+\kappa^{\prime} m_{2}^{2}+\kappa^{\prime} m_{3}^{2}=0
$$

or

$$
m_{3}^{\prime}+\frac{\kappa^{\prime}}{\kappa} m_{3}=-\frac{\kappa^{\prime}}{\kappa} \frac{m_{2}}{m_{3}} m_{2}-\frac{m_{2}}{m_{3}} m_{2}^{\prime}
$$

Inserting values $m_{2}=\frac{1}{\kappa^{2}}, m_{2}^{\prime}=\frac{-2 \kappa^{\prime}}{\kappa \tau}$ and $m_{3}=-\frac{\kappa^{\prime}}{\tau \kappa^{3}}$ in right side of the last equality, we obtain

$$
m_{3}^{\prime}+\frac{\kappa^{\prime}}{\kappa} m_{3}=-\frac{1}{\kappa^{2}} \tau .
$$

Finally, since $m_{2}=\frac{1}{\kappa^{2}}$, we get

$$
\begin{equation*}
m_{3}^{\prime}+\frac{\kappa^{\prime}}{\kappa} m_{3}+\tau m_{2}=0 . \tag{13}
\end{equation*}
$$

On the other hand for base $\{T, N, B\}$ we have

$$
\mathbf{a}(s)=\alpha(s)+m_{1} T+m_{2}(s) N(s)+m_{3}(s) B(s) .
$$

From derivative with respect to $s$ of the last equality, we get

$$
\begin{align*}
\mathbf{a}^{\prime}(s)= & \left(1+m_{1}^{\prime}-m_{2} \kappa^{2}\right) T+\left(m_{1}+m_{2} \frac{\kappa^{\prime}}{\kappa}+m_{2}^{\prime}-\tau m_{3}\right) N  \tag{14}\\
& +\left(\frac{\kappa^{\prime}}{\kappa} m_{3}+m_{3}^{\prime}+\tau m_{2}\right) B .
\end{align*}
$$

Since $1+m_{1}^{\prime}-m_{2} \kappa^{2}$ and $m_{1}+m_{2} \frac{\kappa^{\prime}}{\kappa}+m_{2}^{\prime}-\tau m_{3}$ for values $m_{1}=0$ and $m_{2}=\frac{1}{\kappa^{2}}$ are zero, we can write $\mathbf{a}^{\prime}(s)$ as follows

$$
\begin{equation*}
\mathbf{a}^{\prime}(s)=\left(\frac{\kappa^{\prime}}{\kappa} m_{3}+m_{3}^{\prime}+\tau m_{2}\right) B . \tag{15}
\end{equation*}
$$

So by (13) we find

$$
\mathbf{a}^{\prime}(s)=0 .
$$

Thus we have $\mathbf{a}(s)=$ constant for all $s \in I$
$\Leftarrow$ :Conversely, let $a(s)$ be constant for all $s \in I$. Considering the equation

$$
\langle a(s)-\alpha(s), a(s)-\alpha(s)\rangle=r^{2}(s)
$$

taking derivative of this equation with respect to $s$, and if necessary calculations are made, we find

$$
r(s) r^{\prime}(s)=0 .
$$

Here, either $r(s)=0$ or $r^{\prime}(s)=0$. If $r(s)=0$, then by Corollary 3.7, we have

$$
\kappa^{2}\left[m_{2}^{2}(s)+m_{3}^{2}(s)\right]=0, \quad \kappa \neq 0
$$

or

$$
m_{2}^{2}(s)=-m_{3}^{2}(s)=0
$$

But this contradicts the theorem. Therefore $r^{\prime}(s)=0$. Thus $r(s)$ is constant for all $s \in I$.

Theorem 3.11. Let $\alpha$ be a curve in $E^{3}$ with $(I, \alpha)$ neighbouring coordinate and $m_{3}(s) \neq$ $0, \tau \neq 0$ for all $s \in I$. Then, $\alpha$ is a spherical curve if and only if the centers of the osculating spheres at the point $\alpha(s)$ for all $s \in I$ are located at the same point.

Proof. Let $\alpha$ be a curve on $S_{b}^{2}$ which have the radius $r$ and centered at any point $b$. By Theorem 3.8, the proof is clear. Conversely, let the centers of the osculating curve be the point $b$ in $\alpha(s) \in \alpha$ for all $s \in I$. Then by Theorem 3.10 all osculating spheres have the same radius $r$. Therefore

$$
d(\alpha(s), b)=r
$$

for all $s \in I$. This completes the proof of the theorem.
Theorem 3.12. Let $\alpha$ be curve in $E^{3}$ be given with ( $I, \alpha$ ) neighbouring coordinate. If $m_{3}(s) \neq 0, \tau \neq 0$ such that $s$ is a arclenght parameter, then $\alpha$ is a spherical curve if and only if

$$
\left[\left(\frac{1}{\kappa^{2}}\right)^{\prime} \frac{1}{2 \tau}\right]^{\prime}+\frac{\tau}{\kappa^{2}}-\frac{\kappa^{\prime}}{\tau \kappa^{3}}=0
$$

Proof. Let $\alpha$ be a spherical curve. By Theorem 3.11, for all $s \in I$, the center $\mathbf{a}(s)$ of the osculating spheres are constant. Additionally, the Eq.(13) yields

$$
m_{3}^{\prime}+\frac{\kappa^{\prime}}{\kappa} m_{3}+\tau m_{2}=0
$$

or

$$
\left[\left(\frac{1}{\kappa^{2}}\right)^{\prime} \frac{1}{2 \tau}\right]^{\prime}-\frac{\kappa^{\prime}}{\tau \kappa^{3}}+\frac{\tau}{\kappa^{2}}=0
$$

Conversely, let $m_{3}^{\prime}+\frac{\kappa^{\prime}}{\kappa} m_{3}+\frac{\tau}{\kappa^{2}}=0$. By Theorem 3.9 and $\mathbf{a}^{\prime}(s)=0$. Therefore $\mathbf{a}(s)=$ constant. Thus, by Theorem 3.11, the curve $\alpha$ is a spherical curve..

## References

[1] M.D.Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
[2] M.Bektas,M.Ergüt,D.Soylu,The Characterization of the Spherical Timelike Curves in 3-Dimensional Lorentzian Space, Bull. Malaysian Math. Soc., 21, 117-125, 1998.
[3] M.Petrovic-Torgasev, E.Sucurovic,Some Characterizations of The Lorentzian Spherical Timelike and Null Curves, Mat. Vesnik, 53, 21-27, 2001.
[4] N.Ayyildiz, A.C. Cöken, A.Yücesan, A Characterization of Dual Lorentzian Spherical Curves in The Dual Lorentzian Space, Taiwanese J. Math, 11(4), 999-1018, 2007.
[5] R.S. Milman, G.D. Parker, Elements of Differential Geometry, Prentice-Hall Inc., Englewood Clifs, New Jersey, 1977.
[6] T. Sasai, The Fundamental Theorem of Analytic Space Curves and Apparent Singularities of Fuchsian Differential Equations,Tohoku Math. Journ. 36, 17-24, 1984.
[7] U.Pekmen,S.Pasali, Some characterizations of Lorentzian Spherical Spacelike Curves, Math. Morav., 3, 33-37, 1999.
[8] Y. C.Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh.Math., 67, 363-365, 1963.
[9] Y.C.Wong, On an Explicit Characterization of Spherical Curves, Proc. Amer. Math. Soc., 34, 239-242, 1972.


[^0]:    ${ }^{1}$ Corresponding Author

