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Abstract — Let G = (V, E) be a simple graph with p vertices and q edges. A
subset S of V(G) is called a strong (weak) efficient dominating set of G if for

every veV(G), | NJVINS | =1(| N [VINS | =1).Ny(v) ={EV(G) uwvEE(G), Keywords -
deg(u) > deg(v)}.The minimum cardinality of a strong (weak) efficient Strong efficient
dominating set G is called strong (weak) efficient domination number of G and dominating sets, Strong

is denoted by Ys(G)(yue(G) ). A graph G is strong efficient if there exists a &fficient domination
strong efficient dominating set of G. In this paper, the authors introduced a new number anaf number of
parameter called the number of strong efficient dominating sets of a graph G sin ong efﬁczent
denoted by # v, (G) and studied some Nordhaus- Gaddum type relations on dominating sets

strong efficient domination number of a graph and its derived graph. The relation

between the number of strong efficient dominating sets of a graph and its derived

graph is also studied.

1. Introduction

Throughout this paper, only finite, undirected and simple graphs are considered. Let G =
(V,E) be a graph with p vertices and q edges. The degree of any vertex u in G is the number
of edges incident with u and is denoted by deg u. The minimum and maximum degree of a
vertex is denoted by &(G) and A(G) respectively. A vertex of degree 0 in G is called an
isolated vertex and a vertex of degree 1 in G is called a pendant vertex. A subset S of V(G)
of a graph G is called a dominating set of G if every vertex in V(G) \ S is adjacent to a
vertex in S [3]. The domination number ¥(G) is the minimum cardinality of a dominating
set of G. Sampathkumar and Pushpalatha introduced the concepts of strong and weak
domination in graphs [6]. A subset S of V(QG) is called a strong dominating set of G if for
every ve V — S there exists a ueS such that u and v are adjacent and deg u > deg v. A
subset S of V(G) is called an efficient dominating set of G if for every ve V(G), | N[v]NS |
= 1[1]. The concept of strong (weak) efficient domination in graphs was introduced by
Meena, Subramanian and Swaminathan [4]. A subset S of V(G) is called a strong (weak)
efficient dominating set of G if for every v e V(G), [NJ[v]INS| = 1(|Ny[vInS| = D).
Ns(v) = { u € V(G) : uv € E(G), deg(u) > deg(v) }.The minimum cardinality of a strong
(weak) efficient dominating set is called strong (weak) efficient domination number and is
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denoted by Vs (G)(ywelG)). A graph G is strong efficient if there exists a strong efficient
dominating set of G. In this paper, the authors introduced a new parameter called the
number of strong efficient dominating sets of a graph G denoted by # v. (G) and studied
some Nordhaus- Gaddum type relations on strong efficient domination number of a graph
and its derived graph. They also studied the Nordhaus- Gaddum type relations on the
number of strong efficient dominating sets of a graph and its derived graph. For all graph
theoretic terminologies and notations, Harary [2] is followed.

2. Basic Definitions and Results

The following basic definitions and results are necessary for the present study.

Definition 2.1: A graph G with vertex set V(G) = {v,v, v,, ..., v,} for n = 3 and edge
set E(G)= {vv,/1<i=n}U{vv,./l<i<n—1} U{v,v}is called a wheel graph
of length n and is denoted by W, The vertex v is called the axial or central vertex of the
wheel graph.

Definition 2.2: A gear graph G, is obtained from the wheel graph W, by adding a vertex
between every pair of adjacent vertices in the cycle.

Definition 2.3: The Bistar D, ,, is the graph obtained from K, by joining m pendant edges
to one end vertex of K, and n pendant edges to the other end of K;. The edge K, is called
the central edge of D,,, and the vertices of K, are called the central vertices of K;.

Definition 2.4: The H-graph of a path F, is the graph obtained from two copies of F,with

vertices vy, ¥y, ..., ¥, and U4,U4, ..., U, by joining the vertices wn+: and un+: if n is odd and
z z

the vertices vn and uzr_, if nis even.
z z

Definition 2.5: The complement G of a graph G has V (G) as its vertex set and two vertices
are adjacent in G if and only if they are not adjacent in G.

Definition 2.6 [7]: A vertex switching G, of a graph G is obtained by taking a vertex v of
G, removing all edges incident to v and adding edges joining v to every vertex which are
not adjacent to v in G.
Result 2.7 [4]: V.. [KLH) =1,nEN
nifm=3nns N
Result 2.8 [4]: For any path B,,, ¥., (P, ) =<n+1if m=3n+1ne N
n+2ifm=3n+2,neN
Result 2.9 [4]:%,. (Cs,) =n,nEN
Result 2.10 [4]:,, (K,) = L,nEN

Result 2.11 [4]:1,, (D,.) =r+ 1 wherer < s
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Result 2.12 [5]: A graph G does not admit a strong efficient dominating set if the distance
between any two maximum degree vertices is exactly two.

Result 2.13 [4]: Any strong efficient dominating set is independent.

Result 2.14: If G; and G, are strong efficient graphs, then G; U G, is strong efficient.

3. Main Results

In this section, the authors studied the strong efficient domination number of some graphs
and their derived graphs and also derived some Nordhaus- Gaddum type relations between
them. It was found that there are several strong efficient dominating sets for a given graph.
This motivated the authors to define a new parameter called the number of strong efficient
dominating sets denoted by #., (G). Using this parameter, the authors studied the
Nordhaus- Gaddum type relations on the number of strong efficient dominating sets of a
graph and its derived graph.

Definition 3.1: Let G be a graph with a strong efficient dominating number ¥, (G). The
number of distinct strong efficient dominating sets of a graph G is denoted by #¥;, (G).

Theorem 3.2: ¥, (Ki,,) + ¥.. (Kpn) = 3 for all n = 1 and #y,. (K1,,) + #v.. (K1,) = n+1
foralln =1

For: 'K, isthe graph K,, U K; Therefore ¥., (Ki.) =2 and #y.. (K1) = n. Hence the
theorem.

Theorem 3.3: B, is strong efficient if and only if n = 4. Also

5+ _ (3whenn=2or3
e (B + #1202 = P00 2

Proof: Let B, be strong efficient. Suppose n = 4. Let vy, 5, V5, ..., v, be the vertices of B,.
Let S be a strong efficient dominating set of B, . Deg(v;) = deg(w,, ) = n-2 and deg(v;) =
n-3 for 2 =i =n— 1. Since S is independent, ; and ¥, are adjacent, either v; €5 or
v, € 5. Suppose ; € 5.Then v, strongly dominates all ; where 3= i = n and ¥; must be
an element of S. Then IN,[v,]Nn S| =2 for 4 =i <n—1, a contradiction. The proof is
similar if v,, € 5. Further, when n = 2, P, is 2K, and when n = 3, P; is K, U K, which are
obviously strong efficient with y., (B;) =2, # y.. (F,) =1, ., (P;) =2 and # y, (PF;) =2.
In B,, {v, v, } and {v; v,} are the strong efficient dominating sets. Hence ¥,, (F,) =2 and #

Yee (Po) =2.

Thus #y, (B) + #y, (7)) = {3 #henn =2 or 3

Theorem 3.4: C,, is strong efficient if and only if n = 4

Proof: Let C,, be strong efficient. Let vy, v, 73 ..., ¥, be the vertices of C,,. Suppose n = 4.
Then C,, is a regular graph of degree n-3. Let S be a strong efficient dominating set of C,,.
Let v; be an element of S. v; strongly dominates all the vertices other than ¥;_; and v;3,.
Since S is independent and ¥;_4 and ;44 are adjacent, either v;_y €5 or ¥;141 € 5. Suppose
v;_4 €5. Then |N3[v}.] n 5| = 2,i+2=j, a contradiction. The proof is similar if
7,33 €5. Further, suppose n = 3. Then Cj is 3K; which has a unique strong efficient
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dominating set with strong efficient domination number 3. On the other hand, suppose n =
4. Then C, is 2K, which is also strong efficient with strong efficient domination number 2
and #y,, (C,) = 4. Therefore #y,,(C,) + # ¥..(C,) =4 whenn=3

Result 3.5: There exists a graph G for which ¥,, (G) + v.. (G) = #y.. (G) + #y..(C)

Example: Let G = K.

For, K, is nK; which has a unique strong efficient dominating set with strong efficient

domination number n. So ¥, (K, ) + ¥, (K,) =n+1 and #y,, (K,,) + #y,.(K,) =n + 1 for
alln = 1.

Theorem 3.6: The bistar D, is strong efficient with .. (D,.) + .o (D) =7 +3 and
#ee (D,s) +#%., (D) =7 +s+ 1forallr,s = 1 and where r < s

Proof: Let V(D,.) = {uy, u,,v,/1 <i < r+s}and

E(D,.) ={wvouv;;r+i<isr+si<j<riuf{vy/i<i#j<r+s]

In D, uy is adjacent with ¥y, Vpsgs s Vpys» Ugls adjacent with vy, 5, ., ¥y, vyis
adjacent with all the vertices other than 14;1 = © = 7 and v;is adjacent with all the vertices
other than u,; ¥+ 1 < j < r + 5. ujand u, are nonadjacent. Deg(u,) = =, deg(u,) =r=
5[%), deg(vi) =r+s= ﬂ[ﬂ_m); 1=i= r+s {vyud, (v ugd e 00U 1 V40, U0
{vps2, Uz}, o, iV s 15} are the strong efficient dominating sets of D,_. So ¥z, (D,.) =2
whereas #¥,, [D_m) = r + 5. Hence the theorem.

Corollary 3.7: ¥.. (D,.,.) + %o (D,.,) =1+ 3 and #1., (D,.,) + #1..(D,,) = 2r+1
Theorem 3.8: W_ is strong efficient if and only if n = 4

Proof: Suppose n = 5. Let W, be strong efficient. Let S be a strong efficient dominating set
of W. Let v,vy, ¥, ..., %, be the vertices of W,. v is isolated in W,_. v; is adjacent with all
the vertices other than ¥;_; and ¥;+4. As in the proof of theorem 2.4, a contradiction arises.
Hence n < 5. Conversely, suppose n = 3. Then W is 4K; which has a unique strong
efficient dominating set. Thus y,, ( W5) = 4 and #y,, ( W) = 1. Suppose n = 4. Then W is
K, U 2K, which is also strong efficient in which {v, vy Uy }, {v, va,;}, {v, vHng} and
{v,v5 v} are strong efficient dominating sets. Thus y,, ( W;) =3 and #y,, (W) = 4.

Result 3.9: Complement of a strong efficient graph need not be strong efficient.

Example: Consider the Gear graph G,,. Let V(G,) = {v,v,,v;,v5 ... ,v7;,, }. The vertex v
strongly dominates the vertices vy, ¥g, ..., V5, _1- Hence {V, v, ¥4, Vg ... , ¥, Jis the unique
strong efficient dominating set of G,,. Therefore G, is strong efficient. In G, v is adjacent
with ¥5; where 1< { < n. Deg(v) = n. Each v, ;-1 1s adjacent with all the vertices other
than v;;_; ; and v where 2 =j = n. v; 1s adjacent with all the vertices other than
VpnsVy and v. v5; is adjacent with all the vertices other than v;;_; and vi;44-
Deg(vs;—y) =2n—3;1<j <n and deg(vy) =2n—2;1<i<n  Suppose G, is
strong efficient. Let S be a strong efficient dominating set of G, . Since degree of any vy;

,iﬁ':
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1s maximum for some i, ¥y; €5 for some 1. v; strongly dominates all the vertices other
than v,;_4 and v,;44 Since vs;_y and v,;;iare adjacent and S is independent, either
Vg4 €5 or Vy;:4 €ES5.If v5;_4 €5, then v5;45 1s strongly dominated by both v'5;_4 and
vy [N [v5:3] NS| = 2, a contradiction. Proof is similar if v,,;, € 5. Hence G, is not
strong efficient.

Theorem 3.10: The complement of the H-graph H,, is strong efficient if and only if n = 4.

Proof: Suppose H, is strong efficient. Let vy, vy, V3 ..., ¥,, Uy, Uy, Uz ... , U, be the
vertices of H,. Suppose n > 4. Since the vertices vy, ¥, , 14 and u,, are pendant vertices in
H,, their degree is maximum in H, which is 2n-2. Let S be a strong efficient dominating
set of H,.Since the maximum degree vertices are mutually adjacent with each other S
contains exactly one of them. Without loss of generality, let vy € 5. 1 strongly dominates
all the vertices other than v, Therefore v, € 5. But u, is adjacent with both vy and v, in
H_ and deg(v,) = deg(u,). [IN.[u,] N S| = 2 = 1. Therefore n < 4. Conversely suppose n
= 3. H, is given in the figure 1.

Vi uy

V3

Figure 1 Figure 2

fvy v}, {vy, v} {ugu,} and {u,,ug) are strong efficient dominating sets of @ .
Therefore y,_ (Hy) = 2 and # y,, (H;) = 4. Suppose n = 4. H, is given in figure 2.
{vy,v5} and {us,u,} are strong efficient dominating sets of (H,). Therefore y,, (H,) = 2
and # v, (H,) = 2.

Theorem 3.11: The graph P
strong efficient with

mlw] Where ¥; is an end vertex of the path F, and m = 2is
3whenm=2
2whenm=3

Vg (B) + Voo [Pm[v,-]] =93 n+2 when m =3n,n =2,nEN

n+3when m=3n+1neN
n+4when m=3n+2neN

Iwhenm = 2
#Yso (P) + #Y2e [Prag] ={2 whenm = 3nandm = 3n+2,n€N
3whenm = 3n+1,neEN

Proof: Let vy, v;,v5, ... ¥, be the vertices of the path F,. Let i = 1. Let P, 1 be the
graph obtained by switching the end vertex v of the path B,-
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Case(1): Suppose m = 2. Then P;(y,118 2Ky which is strong efficient with a unique strong
efficient dominating set {vy, ¥;1. v, (P,) + ¥.. [Pg[yl_]] =3 and #y,, (P,) + #y.. [Pz[yl_]] =3

Case(ii): Suppose m = 3. Then Py, j is Py which is strong efficient with a unique strong
efficient dominating set {¥3}. In this case, ¥, [Ps, ;] = 1 and # v, [Psnq] = L.

Vs [PE:] + VEE [PE[L-I.]] =2.

Case(iii): Suppose m = 4. In P, 3, v is adjacent with all the vertices other than v;.
Deg (vy) =m-2=A( P,y 1). deg(v,) =1, deg(v,) =3;3 < i < m—1and deg(v,,) =
2. Now v, strongly dominates all the vertices of B,, other than ¥,. Therefore {vy,7,} is the
unique strong efficient dominating set of P, j-Therefore 1y, [F‘m[yd] ] =2 and
#y., [F'm [e.] ] = 1. Proof is similar if i = m. Hence the result.

Theorem 3.12: The graph F,,,, .. 1 where ¥y and v, are the end vertices of the path F,, is

strong efficient if and only if m # 4. More over

awhenm=2zorsz
4when m=50re
_ n+zwhenm=znandn =z
Voo (B + Ve [Pt | n+2z when m=3n+1,n >1
n+4when m=zn+zandn =1

3whenm = 2or3orm = 3norm = 3n+2,n =1

_ 2whenm = 5
#Yee (B) + #y,, [Pm[vuvm] ]_ 4whenm = 3n+1,n =1

6 whenm==6

Proof: Let vy, v;, Vg, ..., ¥, be the vertices of the path E,,.

Case(i): Suppose m = 2. The graph Py, ,, 1 is 2K; which has the unique strong efficient
dominating set {1'.:-‘1, EJE}- Yaa (P::] + Yae ['PE [, 2] :| =3 and #Tsa (PE:] + #Fss [PE [, 2] :| =3

Case (ii): Suppose m = 3. The graph Py, .1 is K; UK; which is obviously strong
efficient with ¥, [Psp,, 7 |=2 and #y, [Papy. 0y [=2

Case(iii): Suppose m = 5. In Pgp, ., v is adjacent with all the vertices. Deg
(v3) = A(Pgp,, ). There fore s strongly dominates all the vertices and {3} is the
unique strong efficient dominating set. Hence y.. [Fs[u. el ]= 1 and #y,, [Fs[u. el ]= 1.

Case(iv): Suppose m = 6. In the graph Pely, .1, ¥1 and v, are adjacent with all the
vertices other than v, 5 and v, are adjacent with all the vertices other than v,. Deg (v,) =
deg(v3) = deglvy) = deglve) =4 = '“—"*(Fe[u._,us],]a deg(v,) = deglvs) =2 = SIZFE.[u.,;:E] )
v, and v; are non adjacent. Therefore {¥y, ¥}, {v3, v}, {vy, v;} and {vg, v5} are strong
efficient dominating sets of Py, ,, 1. Therefore y,, [Pero. . ] = 2 and #y,, [P;... 2. ]=4

Case(v): Suppose m = 6. In the graph P, [v,» ], ¥1 1s adjacent with all the vertices other

than v,. Similarly v, is adjacent with all the vertices other than v¥,_, Deg (v;) = deg
(v,,) = 0-2 = A(Ppppy, 0, 1), deg (v2) = deg (v,,_1) =2 and deg(v;)=n-3;3 £i<n—2
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v, strongly dominates all the vertices other than v,. Therefore{t;,,} is a strong efficient
dominating set of Py, [y, 1 where m > 6. Similarly {#,, _4, ¥,»} is also a strong efficient

= 2. Hence the

m [, 2] ,:|

dominating set of P, .. 1-S0 ¥, [Pm[v.,vm],] =2 and #y,, [F
result.
Conversely suppose m = 4. Then Py, , 7 is the cycle €y which is not strong efficient.

Theorem 3.13: The graph P, . 1 is strong efficient if and only if m = 6. Also
Yoo (Bo) + ¥eo [F‘m[v”vﬂ ] = 3whenm = 4

YVeg (B) + ¥as [F‘m[y“yu] ] =4 whenm = 5,6

#1. (B,) + #Yoe [P, 1] =3 Wwhenm = 4

#1. (B) + #Yoe [P, o1 ] =2 Whenm=35,6

Proof: Let P,,, [, ., 1 be strong efficient. Let vy, ¥, ¥3, ..., ¥, be the vertices of the path Fp,.
Suppose m = 7 . Now 4 is adjacent with all the vertices other than 7, and v, is adjacent
with the vertices other than vy and v5. Deg(v,) is m-2 and deg(v,) is m-3, deg(v;) = 2,
degl(v,) =3, deg (v;)=4; 4 =i <n—1. Let S be a strong efficient dominating set of
P lv,», 0 Where m = 7. strongly dominates all the vertices other than v; So v €5.
v; and v, are non adjacent. This is a contradiction since |N5[v}.:| ns | =2 = 1for
4 = j = n— 1. Hence P,, [, .. ]1s not strong efficient when m = 7.

Further, suppose m = 2. Py, ., 7 18 2K, is strong efficient with a unique strong efficient
dominating set {vy, v,}. Suppose m = 3. Py, 1 is K5 U K; which is strong efficient with
strong efficient dominating sets {y, v,} and {3, v, }. Suppose m =4 or 5. In both Py, .3
and in Pgp,,_, 1, the vertex v, is adjacent with all the vertices. There fore {v,} is the unique
strong efficient dominating set. Suppose m = 6. In Pyr,, ,, 1, deg(v;) = deg(v,) = deg(vs)
=4, deg(v,) = deg(v,) =3 and deg(v;) = 2. v is adjacent with all the vertices other than
v5. Hence {v5, v} is the unique strong efficient dominating set. Hence the result.

Theorem 3.14: The graph P, .. 1.m = 3 is strong efficient. Also
n+2whenm = 3nn EN
Vg (Pp) + Ve [Pm[zr.,v;]] = { n+3whenm = 3n4+1,n EN

n+4d4whenm = 3n+2,n EN
{ Fwhenm = 3or6orm = 3n+1,neEN

#Yee (B) + #y,, [Pm[vuv;]:l "~ |2whenm = 3n,n =3o0orm = 3n+2,neEN

Proof: Case(i): Suppose m = 3. Then P [v,»,] 18 K3 UKy which is strong efficient with
strong efficient dominating sets {vy, %, } and {v,, v5].

Case(ii): Let m = 6. Then in Pely, w1, ¥1 and v5 are the maximum degree vertices which
are mutually adjacent and adjacent with all the vertices other than v,. Hence {v,,%,} and
{v,, v} are strong efficient dominating sets of Pelyy gl

Case(iii): Letm # 3 or 6. Then in P,,[, .1, ¥y is adjacent with all the vertices other than
v, and deg (v;) = n-2=A(P,,[,, .1 ) V2 is isolated. Therefore {3, ¥;}is the unique strong
efficient dominating set of P, ...1. Hence the result.
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Theorem 3.15: The graph C,,1,.1 is strong efficient with y,, (C3,) + ¥.. [an[yl_]] =n+3

S5forn = 2
and #Tsa (Canj + #'}'rss [Cﬂn[r;]] = { 4forn = 2

Proof: Let vy, vy, 73, ..., 73,, be the vertices of the cycle Cy,,.

Case(i): Suppose n = 1. Cyy,, ] is Ky U K; which is strong efficient with the strong efficient
dominating sets {vy, ;) and {vy,v5].

Case(if): Suppose n = 2. In Cefy,1- vistrongly dominates all the vertices of C; except
v, and v;. Clearly {vag, vE_}and {vﬂhvg, vE} are strong efficient dominating sets.

Case(iii): Suppose n = 3.In Ca,[,1, ¥ is adjacent with all the vertices other than v, and
Vg, Deg(vlj =3n-3= &[Cﬂn[y.]) R deg[:i?tj =3;3=i=3n—1, deg(”:j =deg (van] =L
Hence {vag + Vap } is the unique strong efficient dominating set of Cs,,.1- Hence the result.

Proposition 3.16: The graph K ,,; where v is the central vertex of the star K, ,, is strong
efficient. Also Veg (Kyy) + ¥eo [Kinty] =n+2 and # vop (Ki,) + #Vee [Kinpg] =2,n 2 1

Proof: Let v, v,,7,,...,77, be the vertices of the star Ky ,,. K, is the graph (n+1)K; So
¥ze [KL?'![L‘]] =n+ 1 and #y, [K:L.n[v]] = l.Thereforey, [K:L.n) + ¥ee [K:L.n [1—‘]] =n + 2 and
# Vee [KLH) T e [KLH[:':]] =2,n=1

Proposition 3.17: The graph K, ,[,; where v; is any pendant vertex of the star Ky, is
strong efficient if and only if n =1, 2

Proof: Let v, vy,7;,...,7, be the vertices of the starK, ,,. Let Ky ,[,, 7 is the graph obtained
by switching the pendant vertex v of the star Ky ,. When n = 1, the graph Ky, 1 is 2K,
which has the unique strong efficient dominating set {¥, v, }. When n = 2, the graph Kia0w,]

is the path P; which has the unique strong efficient dominating set {¥, }.
Conversely suppose n = 3. Let S be a strong efficient dominating set of K, 1.

Case(i): Suppose n = 3. Then the graph Kyars,1 18 the cycle €y which is not strong
efficient.

Case(ii): Suppose n = 4. Kinl,1 1s the graph in which v and v; are adjacent with
vy, V5 ...V, Deg(v) = deg(v,) =n-1,deg(v;) =2 for2 < i < n. Letv; €5.vand v, are
non adjacent so that {v,,v} S5 for every strong efficient dominating set S.
|N_?[v}.] N S| =2 = 1, a contradiction. From both cases (i) and (ii),n=1, 2.

Theorem 3.18: The gear graph G, is strong efficient for all n = 3.

Proof: Let v, vy, ¥;, ..., V3, be the vertices of the gear graph G,. The vertex v is adjacent
with v3;_y; 1= i = n. Deg(v) = n = A(G,), deg(vy_4) = 3; 1= i = n, deglvy) = 2;
1= i = n. v strongly dominates all the vertices v5;_4; 1= i = 1. The verticest’y; and v5;_4
are mutually non adjacent with each other. Therefore {v, ¥;, ¥, ..., ¥, } is the unique strong
efficient dominating set of G,,.Thus ¥, (G,,) = n+1 and #y., (G,) = 1.
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Theorem 3.19: The graph G, . ;, 1 = { =< nis strong efficient if and only if n = 4.

Proof: Let v, vy, 75, ..., V5, be the vertices of the graph G,. Suppose n =4. Leti1=1. Let
V,vy, 5, ..., U5 be the vertices of 64[1,:]. 7, 1s adjacent with all the vertices other than v, v,

and vg. Deg(w,) =5=A [64[1,‘]). Therefore v strongly dominates all the vertices other than
v, vz and vg and these vertices are mutually non adjacent with each other. Deglw,) =
Deg(vs) = 1. Deg(v) = 3. v is adjacent with v3, v7 and vs. Deg(v;) = Deg(v;) = Deg(vs) =
4. v, is adjacent with v3 and vg is adjacent with v7. Hence {v, v, 7, ¥ } is the unique strong
efficient dominating set of Gy, 3. Proof is similar if 2 = i = 4. Thus Gy, ., |=i= 4
is strong efficient Hence v,, [Gap,, 1] = 4 and #y,, [Gyr,.q] = 1. Conversely, let Gaulv.; .1
1= i = n be strong efficient. Suppose n# 4.

Case(i): Let n = 3. In Gy, deg(vs) = deg(vs) =4 = A(Gap,3) and d(vs,v5) = 2.
Hence by the result 1.12, Gyp,, 7 is not strong efficient.

Case(if): Suppose n = 5. Leti = 1. Let S be a strong efficient dominating set of G, -

In G, 1. the vertex vy is adjacent with all the vertices other than v, v, and v.
Deg(v;) = 2n— 3 = A(G,ypp 1)-deg(vy—1 =42 < i < n, deg(v,) =3;2< i< n—1,
deg(v) =n—1. The vertex v; is the unique maximum degree vertex and it strongly
dominates all the vertices other than v, v;,, and v. Therefore v; € 5. The vertices v, V5,
and v are mutually non adjacent with each other. Hence they belong to S.
But [N, [vy;_4] N S| = |{v,v,}| = 2> 1, for every i # j,a contradiction. Hence Gy, is
not strong efficient. Proof is similar for other values of 1.

Theorem 3.20: The graphG,,, . 1= { = m, is strong efficient. Further
Yas [an +'}'rsa [Gn[y.m-]] =n+4and

3whenn = 3
#rsa [Gn] + #YSE [Gn[y"-"]] - {E when n = 4

Proof: Let v,vy,1;,...,7%,, be the vertices of the graph G,,. Leti=1.

Case(i): Supposen=3.1In Gay, 1 » V2 and vz are mutually adjacent and are adjacent with
all the vertices other than v; and vs.Deg(v,) = deg(vs) = 4 = A(Gyp,y), degl(vy) =
deg(v;) = 2. v, and v strongly dominates all the vertices other than ¥; and v;. Therefore
{v:JvLiﬂa} and {1?’5, vy Uy }are strong efficient dominating sets of G, 1. Hence ¥, [ Ga[uu]] =
3 and #y,, [ Gap] = 2.

Case(ii): Suppose n = 4. In G, 3, ¥; is adjacent with all the vertices other than v; and v5.
Deglv,)= 2(n—1) = eﬁ[Gn[yJ}. v, is the unique maximum degree vertex.
deg(vy) = deg(vs) = 2 = (G, 7). v2 strongly dominates all the vertices other than vy
and v which are non adjacent. Hence {'”:,H'”a} is the unique strong efficient dominating
set of G [, - Proof is similar for other values of i. Hence the result.

Theorem 3.21: The graph G,[,; where v is the central vertex in a gear graph &,, is strong
efficient. Further ¥, (G,) + ¥ [Gara] = 2n+ 2 and #1.,(6,) + #y., [Gopg] = 2
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Proof: Let v,vy,77;,...,5, be the vertices of the graph G,,. In G, v is adjacent with all the
vertices ¥3;; L = i = n and non adjacent with all the vertices v5;_1; 1 = i = n. G,= G,p,.
Therefore G,y is strong efficient. Hence the result.

Theorem 3.22: The graph obtained by switching any one of the central vertices of the

bistar D, _, r,s=2 is not strong efficient.

Proof: Let uv,vy, %, ...V, V24, V.5, be the vertices of the bistar D__,
r,s=2. ¥y, vy, ..., ¥, are the pendant vertices adjacent with u and ¥,.:q,.... 7,5, are the
pendant vertices adjacent with v. In D, .7 both u and v are adjacent with the vertices

¥, 11, s Vs But u and v are non adjacent. Deg(w) = deg(v) = A(D, .3 ) and d(u, v) = 2.
Therefore by result 2.12, D, .7 is not strong efficient.

Corollary 3.23:D .., s = 2 where v is defined in theorem 3.22 is strong efficient.

Proof: Let v; be the pendant vertex adjacent with the central vertex u and v, 3 ..., V54
be the pendant vertices adjacent with v. Dy 1 is the graph P; UsK; which is strong
efficient. {vy, v, ..., ¥, ¥, 1} is the unique strong efficient dominating set of Dy .,

Corollary 3.24: D, 1,1, s = 2 where u is defined in theorem 3.22 is not strong efficient.

Proof: In Dy 1,7, u and v are adjacent with the vertices v, ¥3, ..., ¥, V;21. Also u and v are
non adjacent. Deg(u) = deg(v) =s = A(D, 1,1 ). Since d(u, v7) = 2,by result 2.12, the graph
D .. 1s not strong efficient.

Theorem 3.25: Let D, ., .q be the graph obtained by switching both the central vertices u
and v of the bistar D,. .. Then
¥as [D?‘ﬁ) + Yze [Drﬁ[mv]] =r+3whenr = s
#Ysa [:D?"ﬁ) + #rsa [D?".-S[?-L-L‘]] =2whenr < s
=3 whenr=s

Proof: Let u, v, vy, ¥, ..., ¥, ¥y q, -, U p . be the vertices of the bistar D, . vy, 17, ... ¥,
are the pendant vertices adjacent with u and ¥, +4. ..., ¥,.+, are the pendant vertices adjacent
with v. The graph D, .. is Ky, UK, which is strong efficient. {&, v} is the unique
strong efficient dominating set of . .., .. Hence the result.

Theorem 3.26: The graph D,. .1 where 1= = r + 5 obtained by switching a pendant
vertex of the bistar D, is strong efficient if and only ifr =1 andi=l ors =1 andi=r+1
or bothr,s =1.

Proof: Case(i):Let r,s >2and r<s. Suppose D, .7 ;
efficient. Let S be a strong efficient dominating set of D

1= i = r+s5 be strong

?"_.S'[L‘l'] -

Subcase i(a): Suppose 1= i =1 .InD, 1, ¥; is adjacent with all the vertices other than
u. Deg(v;) =r+s = A(D, 1 ), deg(v) = s+2, deg(w) =r, deg(v;) = 2 for j# i. v; strongly
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dominates all the vertices other than u. Hence w,u€S. [Ng[v ]nSs| =
2=1,k#i,1=k <r. This is a contradiction.

Subcase i(b): Suppose r+1 < i < r+s. In D, 1, v; is adjacent with all the vertices other
than v. Deg(v;) = r+s = 5[5:»,3[::.-] ). deg(v) =s, deg(u) = r+2 and deg[v}.) =2 for j# i. v;
strongly dominates all the vertices other than v. Hence v; , v €5. |Ng[w]n S| =
2=1,k #i,r+1 =k =r+s. This is a contradiction.

Case(ii): Suppose r,s = 2 and r = s. Proof is similar to that of subcase (a).

Case(iii): Suppose r, s =2 and 1=i = 2. In D, ,,;, ¥; is adjacent with all the vertices
other than u. Deg(v,) = deg(v) = 4 = ‘5‘[52,2[».-])’ degl(u) = 2,deg[vj} = 2 for j# i. Also
d(u, v) = 2. Hence by result 1.12, the graph D, ,, ; is not strong efficient. Proof is similar
if3=i=4

Case(iv): Supposer=1 andi = 2. In Dy o> Vs is adjacent with all the vertices other than
v. Deg(¥;) = s+1 = A(Dy.p,), deg(v) = s, deg(v;) = 2 for j # i. The vertex ; strongly
dominates all the vertices other than v. Hence v, ,vES.|N;[v,]JnS| =
2=1,k #1i,2 =k =5 + 1. This is a contradiction.

Case(v): Suppose s = 1 and 1= i =  Proof is similar to that of case(iv). Conversely

Case(i): Let r =1 and i =1. In D, the vertex ¥, is adjacent with all the vertices other
than u and v is the full degree vertex.{v} is the unique strong efficient dominating set of
DLS‘[L‘._].

Case(ii): Lets =1 and i =r+1. In Dy, the vertex v, is adjacent with all the vertices
other than v and u is the full degree vertex.{u} is the unique strong efficient dominating set
of Dyspy,,,1

Case(iii): Let r = s =1. Proof is similar to that of case(i) and case(ii).Hence from all the
above cases, the graph D is strong efficient.

?"_.3[1?.‘]

Theorem 3.27: The graph H,, 1 where u; is the pendant vertex of the H- graph H, is
strong efficient if and only if n # 3.

Proof: Let u;,7; where 1= i = n be the vertices of the graph H,,. Suppose n = 4. In H,,, 1.
the vertex 14 is adjacent with all the vertices other than u,. 14 strongly dominates all the
vertices all the vertices other than u,. Deg(uy) = 2n-2 = A(H,y,, 1), deg(u,) =1. Hence
{uy.u;} is the unique strong efficient dominating set. Similarly H,p, 1, H,[.1 and Hp, 3
are strong efficient.

Conversely, let Ha, 1 be strong efficient. Let S be a strong efficient dominating set. In
Hgp, 1o U4 1s adjacent with all the vertices other than u; and v, is adjacent with all the
vertices other than uz. Deg(uy) = deg(v,) =4 = A(Hy, 1) and uy,v,are adjacent.
Therefore S contains either %, or v,. Deg(w¥,) = deg(v;) = deglu,) = degluz)=2 =
5[5’3[&‘])- If uy € S.then u, €5 and |Ng[us;]n S| =2 = 1. This is a contradiction. If
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v, € 5,then u3 € 5 and |Ng[u,] N §| = 2 = 1. This is also a contradiction. Proof is similar
for the graphs Hyp, 3, Hyp,, 1 and Hpp, 1. Hence the graph H,p, 7 where v; is the pendant
vertex of the H- graph H,, is strong efficient if and only if n # 3.

Theorem 3.28: (i) H [ ,n = 3 and n is odd is strong efficient if and only if n # 3.

T Hﬁ]
z

(ii)H [ ], n = 4 and n is even is strong efficient f and only if n # 4.

H|un

z

Proof: Let u;,7; where 1= i = n be the vertices of the graph H,,.

z

Case(i): Suppose n # 3 and n be odd. In H [ ], un+: is adjacent with all the vertices

I Iz I Z

other than wun-:, un+= and wn+1. Deg (u&) = 2n4 =A|H [ ] , deg(uE)=

]

deg(uﬁ) =1=46|H

z

[ ] and deg(vﬁ) = 2 = deg(v,)= deg(v,)= deglu,) =

]

deg(u,,). deg(u,) = deg(vy) = 3 for k #

ntl
— .1 and n. Also un+1 , un-1, uns and wn+s are
= z z 2 z

mutually non adjacent. Therefore {u& ;RE;HE,E?E} is the unique strong efficient
] ] Z z

dominating set of H [ ] Hence H [ ] is strong efficient.
m|un+s m|un+s
z z

Conversely suppose n = 3. Hyp,, 1 is the graph €y U 2K;. Since €y is not strong efficient,

Hjp,, 1 18 not strong efficient.

Case(ii): Suppose n # 4 and n be even. In H [ ], the vertex ur is adjacent with all the
| z

n
z

vertices other than un-z ,un+z and vn+z. Also Deg(ug) =2n4=A|H [ ] . deg (uu) =
% z

deg(uﬁ) =1=6|H [ ] and deg(vﬂ) =2 = deg(vy)= deg(v, )= deg(u,) = deg(u,,).

n
z

All the other vertices are of degree 3. The vertex un. Strongly dominates all the vertices

other than un-z,un+z andvn+z . Therefore {ui,uﬂ,uﬂ,vﬂ} is the unique strong
z I I z ] ] T

n
Z

un
z

efficient dominating set of H [ ] Therefore H [ ] is strong efficient.
mn|w n

Conversely let n = 4. In Hyp, 3, deglu,) = 4 = A H[ ] . The vertex u, strongly
4 un

z

dominates all the vertices other than u,,u5 and 3. The vertex u, is an isolate. Deg(u;) =

1, deg(v3) = deg(w,) =2 = deg(v,), deg(w,) = 3. Suppose H, 1 is strong efficient. Let S

be a strong efficient dominating set of Hy,, 1. Hence u; € 5. 14,73, U3 and u; are mutually
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non adjacent. Hence they belong to S. [Ng[v,] n5| = |[{u,, v}l = 2> 1. This is a
contradiction. Hence the graph Hyp,,_j is not strong efficient. Hence the theorem.

4. Conclusion

In this paper, the authors studied some Nordhaus- Gaddum type relations on strong
efficient domination number of a graph and its derived graph. They introduced the concept
of number of strong efficient dominating sets and studied the relation between the number
of strong efficient dominating sets of a graph and its derived graph. Similar studies can be
made on this type for various derived graphs
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