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1 Introduction

Divergence measures are basically measures of distance between two probability distrib-
utions or compare two probability distributions. It means that any divergence measure
must take its minimum value zero when probability distributions are equal and maxi-
mum when probability distributions are perpendicular to each other.
Divergence measures have been demonstrated very useful in a variety of disciplines such
as economics and political science [22, 23], biology [17], analysis of contingency tables
[7], approximation of probability distributions [3, 13], signal processing [11, 12], pat-
tern recognition [1, 2, 10], color image segmentation [15], 3D image segmentation and
word alignment [21], cost- sensitive classification for medical diagnosis [18], magnetic
resonance image analysis [24] etc.
Also we can use divergences in fuzzy mathematics as fuzzy directed divergences and
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fuzzy entropies which are very useful to find the amount of average ambiguity or diffi-
culty in making a decision whether an element belongs to a set or not. Fuzzy information
measures have recently found applications to fuzzy aircraft control, fuzzy traffic control,
engineering, medicines, computer science, management and decision making etc.
Without essential loss of insight, we have restricted ourselves to discrete probability
distributions, so let Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,

∑n
i=1 pi = 1}, n ≥ 2 be

the set of all complete finite discrete probability distributions. The restriction here to
discrete distributions is only for convenience, similar results hold for continuous dis-
tributions. If we take pi ≥ 0 for some i = 1, 2, 3..., n, then we have to suppose that
0f (0) = 0f

(
0
0

)
= 0.

Jain and Saraswat [9] introduced new generalized f - divergence measure, which is given
by

Sf (P, Q) =
n∑

i=1

qif

(
pi + qi

2qi

)
, (1)

where f : (0,∞) → R (set of real no.) is real, continuous, and convex function and
P = (p1, p2, ..., pn) , Q = (q1, q2, ..., qn) ∈ Γn, where pi and qi are probabilities. Many
known divergences can be obtained from this generalized measure by suitably defining
the convex function f . Some resultant divergences by Sf (P, Q), are as follows.
(a). If we take f (t) = |t− 1| in (1), we obtain

Sf (P,Q) =
1

2

n∑
i=1

|pi − qi| = 1

2
V (P,Q) , (2)

where V (P,Q) is called the Variational distance (l1 distance) [14].
(b). If we take f (t) = − log t in (1), we obtain

Sf (P, Q) =
n∑

i=1

qi log

(
2qi

pi + qi

)
= F (Q,P ) . (3)

where F (Q,P ) is called adjoint of the Relative JS divergence F (P,Q) [19].
(c). If we take f (t) = (t− 1) log t in (1), we obtain

Sf (P, Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) , (4)

where JR (P,Q) is called the Relative J- divergence [6].
(d). If we take f (t) = t log t in (1), we obtain

Sf (P, Q) =
n∑

i=1

pi + qi

2
log

(
pi + qi

2qi

)
= G (Q,P ) , (5)

where G (Q,P ) is called adjoint of the Relative AG divergence G (P, Q) [20].

(e). If we take f (t) = (t−1)2

t
in (1), we obtain

Sf (P, Q) =
1

2

n∑
i=1

(pi − qi)
2

pi + qi

=
1

2
∆ (P,Q) , (6)
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where ∆ (P,Q) is called the Triangular discrimination [4].
(f). If we take f (t) = (t− 1)2 in (1), we obtain

Sf (P, Q) =
1

4

n∑
i=1

(pi − qi)
2

qi

=
1

4
χ2 (P, Q) , (7)

where χ2 (P, Q) is called the Chi- square divergence or Pearson divergence measure [16].
We can see that

JR (P,Q) = 2 [F (Q,P ) + G (Q,P )] , ∆ (P,Q) = 2 [1−W (P, Q)] ,

where W (P,Q) =
∑n

i=1
2piqi

pi+qi
is Harmonic mean and F (P, Q) , G (P, Q) are given by

(3) and (5) respectively. Divergences from (3) to (5) are non- symmetric and (2), (6)
are symmetric with respect to probability distribution P, Q ∈ Γn.
Now, for a differentiable function f : (0,∞) → R, consider the associated functions
g : (0,∞) → R and h : (0,∞) → R, are given by

g (t) = (t− 1) f ′ (t) (8)

and

h (t) = (t− 1) f ′
(

t + 1

2

)
. (9)

Put (8) and (9) in (1), we get the followings respectively.

ESf
(P, Q) =

n∑
i=1

(
pi − qi

2

)
f ′

(
pi + qi

2qi

)
(10)

and

E∗
Sf

(P, Q) =
n∑

i=1

(
pi − qi

2

)
f ′

(
pi + 3qi

4qi

)
. (11)

2 New information inequalities

In this section, we introduce new information inequalities on Sf (P, Q) in terms of
well known Variational distance. Such inequalities are for instance needed in order to
calculate the relative efficiency of two divergences. Now, firstly the following theorem
is well known in literature [9].

Theorem 2.1. If the function f is convex and normalized, i.e., f ′′ (t) ≥ 0 ∀ t > 0 and
f (1) = 0 respectively, then Sf (P,Q) and its adjoint Sf (Q,P ) are both non-negative
and convex in the pair of probability distribution (P,Q) ∈ Γn × Γn.

Now, the following lemma 2.2 is very useful for proving the new inequalities (15)
and (16). This lemma has been obtained from literature [5].

Lemma 2.2. Let ψ : [a, b] ⊂ R → R be a differentiable function and is of bounded

variation on [a, b], i.e., Ab
a (ψ) =

∫ b

a
|ψ′ (t)| dt < ∞. Then for all u ∈ [a, b], we have

∣∣∣∣
∫ b

a

ψ (t) dt− ψ (u) (b− a)

∣∣∣∣ ≤
(

b− a

2
+

∣∣∣∣u−
a + b

2

∣∣∣∣
)

Ab
a (ψ) . (12)
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Now for all u1, u2 ∈ [a, b], if we put u = ui and summing over i, we get the following
inequalities from (12)

∣∣∣∣∣
∫ b

a

ψ (t) dt−
(

b− a

2

) 2∑
i=1

ψ (ui)

∣∣∣∣∣ ≤
(

b− a

2
+

1

2

2∑
i=1

∣∣∣∣ui − a + b

2

∣∣∣∣
)

Ab
a (ψ) . (13)

If we put u = a+b
2

in (12), we get the following inequalities

∣∣∣∣
∫ b

a

ψ (t) dt− (b− a) ψ

(
a + b

2

)∣∣∣∣ ≤
(

b− a

2

)
Ab

a (ψ) . (14)

Now, the following theorem introduces new information inequalities on Sf (P, Q) by
using above lemma.

Theorem 2.3. Let f : [α, β] ⊂ (0,∞) → R be a twice differentiable function which
is normalized, i.e., f (1) = 0 and f ′ is of bounded variation on [α, β], i.e., Aβ

α (f ′) =∫ β

α
|f ′′ (t)| dt < ∞.

If P,Q ∈ Γn is such that 0 < α < 1
2
≤ pi+qi

2qi
≤ β < ∞ ∀ i = 1, 2, 3..., n for some α and

β with 0 < α ≤ 1 ≤ β < ∞, α 6= β, then we have the following inequalities

∣∣∣∣Sf (P, Q)− 1

2
ESf

(P,Q)

∣∣∣∣ ≤
1

2
V (P,Q) Aβ

α (f ′) (15)

and ∣∣∣Sf (P, Q)− E∗
Sf

(P,Q)
∣∣∣ ≤ 1

4
V (P, Q) Aβ

α (f ′) , (16)

where Sf (P, Q) , ESf
(P, Q) , E∗

Sf
(P, Q) and V (P, Q) are given by (1), (10) (11) and

(2) respectively.

Proof :
Case I (for 1 ≤ u): Put ψ = f ′, u1 = a = 1, and u2 = b = u ∈ [α, β] in (13) and put
ψ = f ′, a = 1, and b = u ∈ [α, β] in (14), we get respectively

∣∣∣∣
∫ u

1

f ′ (t) dt−
(

u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤
[
u− 1

2
+

1

2

(∣∣∣∣1−
u + 1

2

∣∣∣∣ +

∣∣∣∣u−
u + 1

2

∣∣∣∣
)]

Au
1 (f ′)

and ∣∣∣∣
∫ u

1

f ′ (t) dt− (u− 1) f ′
(

u + 1

2

)∣∣∣∣ ≤
(

u− 1

2

)
Au

1 (f ′) .

Or ∣∣∣∣f (u)− f (1)−
(

u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤
(

u− 1

2
+

∣∣∣∣
u− 1

2

∣∣∣∣
)

Au
1 (f ′)

and ∣∣∣∣f (u)− f (1)− (u− 1) f ′
(

u + 1

2

)∣∣∣∣ ≤
(

u− 1

2

)
Au

1 (f ′) .

Or ∣∣∣∣f (u)−
(

u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (u− 1) Au
1 (f ′) ≤ (u− 1) Aβ

α (f ′) (17)
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and ∣∣∣∣f (u)− (u− 1) f ′
(

u + 1

2

)∣∣∣∣ ≤
(

u− 1

2

)
Au

1 (f ′) ≤
(

u− 1

2

)
Aβ

α (f ′) . (18)

Case II (for u < 1): Put ψ = f ′, u1 = a = u ∈ [α, β], and u2 = b = 1 in (13) and put
ψ = f ′, a = u ∈ [α, β], and b = 1 in (14), we get similarly respectively

∣∣∣∣−f (u)−
(

1− u

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (1− u) A1
u (f ′) ≤ (1− u) Aβ

α (f ′)

and ∣∣∣∣−f (u)− (1− u) f ′
(

u + 1

2

)∣∣∣∣ ≤
(

1− u

2

)
A1

u (f ′) .

Or ∣∣∣∣f (u)−
(

u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (1− u) A1
u (f ′) ≤ (1− u) Aβ

α (f ′) (19)

and ∣∣∣∣f (u)− (u− 1) f ′
(

u + 1

2

)∣∣∣∣ ≤
(

1− u

2

)
A1

u (f ′) ≤
(

1− u

2

)
Aβ

α (f ′) . (20)

From (17), (19) and from (18), (20), we get respectively

∣∣∣∣f (u)−
(

u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ |u− 1|Aβ
α (f ′) (21)

and ∣∣∣∣f (u)− (u− 1) f ′
(

u + 1

2

)∣∣∣∣ ≤
∣∣∣∣
u− 1

2

∣∣∣∣Aβ
α (f ′) . (22)

Now put u = pi+qi

2qi
, i = 1, 2, 3..., n in (21) and (22), we get respectively

∣∣∣∣f
(

pi + qi

2qi

)
−

(
pi − qi

4qi

)[
f ′

(
pi + qi

2qi

)
+ f ′ (1)

]∣∣∣∣ ≤
∣∣∣∣
pi − qi

2qi

∣∣∣∣ Aβ
α (f ′)

and ∣∣∣∣f
(

pi + qi

2qi

)
−

(
pi − qi

2qi

)
f ′

(
pi + 3qi

4qi

)∣∣∣∣ ≤
∣∣∣∣
pi − qi

4qi

∣∣∣∣ Aβ
α (f ′) .

Now multiply the above expressions by qi and sum over all i = 1, 2, 3..., n by taking into
account

∑n
i=1 pi =

∑n
i=1 qi = 1, we get the desire results (15) and (16) respectively.

3 Application of new information inequalities

In this section, we obtain bounds of standard divergence measures by using new in-
equalities defined in (15), in terms of Variational (taking only convex functions here).

Proposition 3.1. Let F (P,Q) , V (P,Q), and G (P, Q) be defined as in (3), (2), and
(5) respectively. For P, Q ∈ Γn, we have

|G (P, Q)− F (P,Q)| ≤ log

(
β

α

)
V (P, Q) . (23)
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Proof : Let us consider

f (t) = t log t, t > 0, f (1) = 0, f ′ (t) = 1 + log t and f ′′ (t) =
1

t
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is convex and normalized function
respectively.
Now put f (t) in (1) and put f ′ (t) in (10), we get the followings respectively.

Sf (P, Q) =
n∑

i=1

(
pi + qi

2

)
log

pi + qi

2qi

= G (Q,P ) . (24)

ESf
(P,Q) =

n∑
i=1

(
pi − qi

2

)[
1 + log

pi + qi

2qi

]
=

n∑
i=1

(
pi − qi

2

)
log

pi + qi

2qi

=
n∑

i=1

(
qi − pi

2

)
log

2qi

pi + qi

=
n∑

i=1

(
qi − pi + qi

2

)
log

2qi

pi + qi

=
n∑

i=1

[
qi log

2qi

pi + qi

−
(

pi + qi

2

)
log

2qi

pi + qi

]

=
n∑

i=1

[
qi log

2qi

pi + qi

+

(
pi + qi

2

)
log

pi + qi

2qi

]
= F (Q,P ) + G (Q,P ) . (25)

Aβ
α (f ′) =

∫ β

α

|f ′′ (t)| dt =

∫ β

α

∣∣∣∣
1

t

∣∣∣∣ dt =

∫ β

α

1

t
dt = log

(
β

α

)
. (26)

The result (23) is obtained by using (24), (25), and (26) in (15), after interchanging P
and Q.

Proposition 3.2. Let JR (P,Q) , V (P,Q), and ∆ (P,Q) be defined as in (4), (2), and
(6) respectively. For P, Q ∈ Γn, we have

|JR (P,Q)−∆ (P,Q)| ≤ 2

(
β − α

αβ
+ log

β

α

)
V (P, Q) . (27)

Proof : Let us consider

f (t) = (t− 1) log t, t > 0, f (1) = 0, f ′ (t) =
t− 1

t
+ log t and f ′′ (t) =

1 + t

t2
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is convex and normalized function
respectively.
Now put f (t) in (1) and put f ′ (t) in (10), we get the followings respectively.

Sf (P, Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) . (28)

ESf
(P,Q) =

1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
+

1

2

n∑
i=1

(pi − qi)
2

pi + qi

=
1

2
[JR (P,Q) + ∆ (P,Q)] .

(29)

Aβ
α (f ′) =

∫ β

α

|f ′′ (t)| dt =

∫ β

α

∣∣∣∣
1 + t

t2

∣∣∣∣ dt =

∫ β

α

1 + t

t2
dt =

β − α

αβ
+ log

β

α
. (30)

The result (27) is obtained by using (28), (29) and (30) in (15).
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Proposition 3.3. Let F (P, Q) , V (P, Q), and ∆ (P,Q) be defined as in (3), (2), and
(6) respectively. For P, Q ∈ Γn, we have

|4F (P, Q)−∆ (P,Q)| ≤ 2

(
β − α

αβ

)
V (P,Q) . (31)

Proof : Let us consider

f (t) = − log t, t > 0, f (1) = 0, f ′ (t) = −1

t
and f ′′ (t) =

1

t2
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is convex and normalized function
respectively.
Now put f (t) in (1) and put f ′ (t) in (10), we get the followings respectively.

Sf (P, Q) =
n∑

i=1

qi log

(
2qi

pi + qi

)
= F (Q,P ) . (32)

ESf
(P,Q) =

n∑
i=1

(
qi − pi

2

)(
pi + qi

2qi

)−1

=
n∑

i=1

(qi − pi)

(
qi

pi + qi

)
=

n∑
i=1

q2
i − 2piqi + piqi

pi + qi

=
n∑

i=1

[
q2
i + piqi

pi + qi

− 2piqi

pi + qi

]
=

n∑
i=1

[
qi − 2piqi

pi + qi

]
= 1−W (P,Q) =

1

2
∆ (P,Q) . (33)

Aβ
α (f ′) =

∫ β

α

|f ′′ (t)| dt =

∫ β

α

∣∣∣∣
1

t2

∣∣∣∣ dt =

∫ β

α

1

t2
dt =

β − α

αβ
. (34)

The result (31) is obtained by using (32), (33), and (34) in (15), after interchanging P
and Q.

4 Numerical verification of obtained bounds

In this section, we give two examples for calculating the divergences

G (P, Q) , F (P, Q) , ∆ (P, Q) , JR (P, Q) , V (P,Q)

together with verification of the inequalities (23), (27), and (31).
Example 4.1 Let P be the binomial probability distribution with parameters (n = 10, p = 0.5)
and Q its approximated Poisson probability distribution with parameter (λ = np = 5)
for the random variable X, then we have

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .000976 .00976 .043 .117 .205 .246 .205 .117 .043 .00976 .000976
qi ≈ .00673 .033 .084 .140 .175 .175 .146 .104 .065 .036 .018

pi+qi

2qi
≈ .573 .648 .757 .918 1.086 1.203 1.202 1.063 .831 .636 .527

Table 1: (n = 10, p = 0.5, q = 0.5)

By using Table 1, we get the followings.

α (= .527) ≤ pi + qi

2qi

≤ β (= 1.203) . (35)
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G (P,Q) =
11∑
i=1

(
pi + qi

2

)
log

(
pi + qi

2pi

)
≈ .031. (36)

F (P,Q) =
11∑
i=1

pi log

(
2pi

pi + qi

)
≈ .036. (37)

∆ (P,Q) =
11∑
i=1

(pi − qi)
2

pi + qi

≈ .0917. (38)

JR (P,Q) =
11∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
≈ .0808. (39)

V (P, Q) =
11∑
i=1

|pi − qi| ≈ .3312. (40)

Put the approximated numerical values from (35) to (40) in (23), (27), and (31), we
get the followings respectively

5× 10−3 ≤ .2733, .0109 ≤ 1.253, and .0523 ≤ .7063.

Hence verified the inequalities (23), (27), and (31) for p = 0.5.
Example 4.2 Let P be the binomial probability distribution with parameters (n = 10, p = 0.7)
and Q its approximated Poisson probability distribution with parameter (λ = np = 7)
for the random variable X , then we have

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282
qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709

pi+qi

2qi
≈ .503 .510 .532 .586 .697 .788 1.002 1.392 1.396 1.099 .698

Table 2: (n = 10, p = 0.7, q = 0.3)

By using Table 2, we get the followings.

α (= .503) ≤ pi + qi

2qi

≤ β (= 1.396) . (41)

G (P, Q) =
11∑
i=1

(
pi + qi

2

)
log

(
pi + qi

2pi

)
≈ .0746. (42)

F (P, Q) =
11∑
i=1

pi log

(
2pi

pi + qi

)
≈ .0842. (43)

∆ (P,Q) =
11∑
i=1

(pi − qi)
2

pi + qi

≈ .1812. (44)

JR (P,Q) =
11∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
≈ .1686. (45)
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V (P, Q) =
11∑
i=1

|pi − qi| ≈ .4844. (46)

Put the approximated numerical values from (41) to (46) in (23), (27), and (31), we
get the followings respectively

9.6× 10−3 ≤ .4944, .0126 ≤ 2.22098, and .1556 ≤ 1.2320.

Hence verified the inequalities (23), (27), and (31) for p = 0.7.

5 Asymptotic Approximation

In this section, we introduce asymptotic approximation on Sf (P,Q) in terms of well
known Chi- square divergence.

Theorem 5.1. If f : (0,∞) → R is twice differentiable, convex, and normalized func-
tion, i.e., f ′′ (t) > 0 and f (1) = 0 respectively, then we have

Sf (P,Q) ≈ f ′′ (1)

8
χ2 (P, Q) . (47)

Equivalently ∣∣∣∣
Sf (P, Q)

χ2 (P, Q)
− f ′′ (1)

8

∣∣∣∣ < ε ,when |P −Q| < δ,

where ε, δ → 0, i.e., ε, δ are very small and Sf (P, Q) , χ2 (P,Q) are given by (1) and
(7) respectively.

Proof : We know by Taylor’s series expansion of function f (t) at t = 1, that

f (t) = f (1) + (t− 1) f ′ (1) +
(t− 1)2

2!
f ′′ (1) + (t− 1)2 g (t) , (48)

where g (t) = (t−1)
3!

f ′′′ (1) + (t−1)2

4!
f ′′′′ (1) + ... and we can see that g (t) → 0 as t → 1,

f (1) = 0 because f (t) is normalized, therefore from (48) we get

f (t) ≈ (t− 1) f ′ (1) +
(t− 1)2

2!
f ′′ (1) . (49)

Now Put t = pi+qi

2qi
in (49), multiply with qi and then sum over all i = 1, 2, 3..., n, we

get the desire result (47).

Remark 5.2. Particularly if we take f (t) = (t−1)2

t
, (t− 1) log t,− log t, and t log t in

(47), we get ∆ (P, Q) ≈ 1
2
χ2 (P,Q) , JR (P,Q) ≈ 1

2
χ2 (P, Q) , F (Q,P ) ≈ 1

8
χ2 (P, Q), and

G (Q,P ) ≈ 1
8
χ2 (P,Q) respectively, where ∆ (P, Q) , JR (P, Q) , χ2 (P,Q) , F (Q,P ), and

G (Q,P ) are given by (6), (4), (7), (3), and (5) respectively.

Figure 1 shows the behavior of F (P, Q) , G (P,Q) , ∆ (P, Q) , JR (P, Q) , χ2 (P, Q),
and V (P, Q). We have considered pi = (a, 1− a) , qi = (1− a, a), where a ∈ (0, 1). It
is clear from figure that the V (P, Q) has a steeper slope than all others, χ2 (P, Q) has
a steeper slope than remaining except V (P, Q) and so on.
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6 Conclusion and discussion

In this work, we presented new information inequalities on functions that have deriva-
tives are of bounded variation for for Sf (P, Q). Further, bounds of various well known
divergences have been obtained in terms of the Variational distance in an interval (α, β),
0 < α ≤ 1 ≤ β < ∞ with α 6= β as an application of new inequalities. These bounds
have been verified numerically by taking two discrete distributions: Binomial and Pois-
son. An approximation on Sf (P, Q) has been done, which relates Sf (P, Q) to χ2 (P, Q)
approximately.
We found in our previous article [8] that square root of some particular divergences of
Csiszar’s class is a metric space but not each because of violation of triangle inequality,
so we strongly believe that divergence measures can be extended to other significant
problems of functional analysis and its applications, such investigations are actually in
progress because this is also an area worth being investigated. Such types of divergences
are also very useful to find the utility of an event, i.e., an event is how much useful
compare to other event.
We hope that this work will motivate the reader to consider the extensions of diver-
gence measures in information theory, other problems of functional analysis and fuzzy
mathematics.

References

[1] M.B. Bassat, f- Entropies, probability of error and feature selection, Inform. Con-
trol, vol. 39, 1978, pp: 227-242.

[2] H.C. Chen, Statistical pattern recognition, Hoyderc Book Co., Rocelle Park, New
York, 1973.

[3] C.K. Chow and C.N. Lin, Approximating discrete probability distributions with
dependence trees, IEEE Trans. Inform. Theory, vol. 14, 1968, no 3, pp: 462-467.

[4] D. Dacunha- Castelle, Ecole d’Ete de Probabilites de, Saint-Flour VII-1977, Berlin,
Heidelberg, New York: Springer, 1978.

[5] S.S. Dragomir, On the Ostrowski’s integral inequality for mappings of bounded
variation and applications, RGMIA Res. Rep. Coll. 2 (1999) No.1, 73?80.

[6] S.S. Dragomir, V. Gluscevic, and C.E.M. Pearce, Approximation for the Csiszar
f-divergence via midpoint inequalities, in inequality theory and applications - Y.J.
Cho, J.K. Kim, and S.S. Dragomir (Eds.), Nova Science Publishers, Inc., Hunting-
ton, New York, Vol. 1, 2001, pp. 139-154.

[7] D.V. Gokhale and S. Kullback, Information in contingency Tables, New York,
Marcel Dekker, 1978.

[8] K.C. Jain and P. Chhabra, Series of new information divergences, properties and
corresponding series of metric spaces, International Journal of Innovative Research
in Science, Engineering and Technology, vol. 3- no.5 (2014), pp: 12124- 12132.



Journal of New Results in Science 11 (2016) 30-40 40

[9] K.C. Jain and R.N. Saraswat, Some new information inequalities and its applica-
tions in information theory, International Journal of Mathematics Research, vol.
4, Number 3 (2012), pp. 295-307.

[10] L. Jones and C. Byrne, General entropy criteria for inverse problems with applica-
tions to data compression, pattern classification and cluster analysis, IEEE Trans.
Inform. Theory, vol. 36, 1990, pp: 23-30.

[11] T. Kailath, The divergence and Bhattacharyya distance measures in signal selec-
tion, IEEE Trans. Comm. Technology, vol. COM-15, 1967, pp: 52-60.

[12] T.T. Kadota and L.A. Shepp, On the best finite set of linear observables for dis-
criminating two Gaussian signals, IEEE Trans. Inform. Theory, vol. 13, 1967, pp:
288-294.

[13] D. Kazakos and T. Cotsidas, A decision theory approach to the approximation of
discrete probability densities, IEEE Trans. Perform. Anal. Machine Intell., vol. 1,
1980, pp: 61-67.

[14] A.N. Kolmogorov, On the approximation of distributions of sums of independent
summands by infinitely divisible distributions, Sankhya, 25, 159-174, 1963.

[15] F. Nielsen and S. Boltz, The Burbea-Rao and Bhattacharyya centroids, Apr. 2010,
arxiv.

[16] K. Pearson, On the Criterion that a given system of deviations from the probable in
the case of correlated system of variables is such that it can be reasonable supposed
to have arisen from random sampling, Phil. Mag., 50(1900), 157-172.

[17] E.C. Pielou, Ecological diversity, New York, Wiley, 1975.

[18] R. Santos-Rodriguez, D. Garcia-Garcia, and J. Cid-Sueiro, Cost-sensitive classifi-
cation based on Bregman divergences for medical diagnosis, In M. A. Wani, editor,
Proceedings of the 8th International Conference on Machine Learning and Appli-
cations (ICMLA’09), Miami Beach, Fl., USA, December 13-15, 2009, pp: 551- 556,
2009.

[19] R. Sibson, Information radius, Z. Wahrs. Undverw. Geb., (14) (1969),149-160.

[20] I.J. Taneja, New developments in generalized information measures, Chapter in:
Advances in Imaging and Electron Physics, Ed. P.W. Hawkes, 91(1995), 37-135.

[21] B. Taskar, S. Lacoste-Julien, and M.I. Jordan, Structured prediction, dual extra
gradient and Bregman projections, Journal of Machine Learning Research, 7, pp:
1627- 1653, July 2006.

[22] H. Theil, Economics and information theory, Amsterdam, North-Holland, 1967.

[23] H. Theil, Statistical decomposition analysis, Amsterdam, North-Holland, 1972.

[24] B. Vemuri, M. Liu, S. Amari, and F. Nielsen, Total Bregman divergence and its
applications to DTI analysis, IEEE Transactions on Medical Imaging, 2010.


