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Abstract

In this article, we study the piezoelectric beams with thermal and magnetic effects in the
presence of a nonlinear damping term acting on the mechanical equation. First, we prove
that the system is well-posed in the sense of semigroup theory. And by constructing a
suitable Liapunov functional, we show a general decay result of the solution for the system
from which the polynomial and exponential decay are only special cases. Furthermore,
our result does not depend on any relationship between system parameters.
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1. Introduction

In recent years, we have seen a large number of published works on piezoelectric materi-
als [12,24]. Piezoelectric materials such as quartz, Rochelle salt, and barium titanate have
an important property of converting mechanical energy to electromagnetic energy with the
effect of mechanical stress. This phenomenon is known by the direct piezoelectric effect
that was discovered by the brothers Pierre and Jacques Curie in 1880. Reciprocally, the
same materials have the ability to convert electromagnetic energy to mechanical energy
and this phenomena is well called the reverse piezoelectric effect that was discovered by
Gabriel Lippmann [27] in 1881. There are many applications of piezoelectric materials
in real life like in: civil engineering, industrial, automotive, aeronautical and space struc-
tures. Also these materials have been widely used as sensors and actuators in the area
of structures and intelligent systems [2,3]. Furthermore, these smart materials can be
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used in many fields, especially when dealing with piezoelectric motors, sonars and injec-
tion mechanisms. The activity of these materials is related to the fact that they exhibit
microscopic polarization due to the presence of a dipole moment caused by the absence
of central symmetry. In addition, during the transformation of mechanical energy into
electric one, it also turns a small portion of it into magnetic energy [18]. This last energy
has a relatively small effect on the general dynamics, and there exist models that neglect
magnetic effects such as piezoelectric beams. However, this magnetic contribution may
limit the system performance. For example, the magnetic effect can cause oscillations
in the output, which leads to system instability in closed loop [21,29]. Other problems
related to piezoelectric systems can be found in the following references [5, 6,17, 26, 28].
On the other hand, in the references [13,14,30,31] a great deal of attention has been given
to the study of differential variational-hemivariational inequalities.

Morris et al. [18] using a variational approach to introduce the following coupled model
of piezoelectric beams with magnetic effects

{ PV — Qg + YBPzz = 0in (0, L) x (0,00),

. 1.1
Pt — BPze + PYBUxm =0in (07 L) X (O, OO) ) ( )

where the positive parameters p, «, v, u, 5, L represent, respectively, the mass density
per unit volume, elastic stiffness, piezoelectric coefficient, magnetic permeability, water
resistance coefficient of the beam and the length of the beam. In addition, the relationship
is considered

a =]+ ’}/ZB with o > 0. (1.2)

The system (1.1) is subjected to the following initial and boundary conditions

v (O7t) :p(O,t) = QUg (L7t) - 'Y/sz (L7t) = 07
/Bpa: (Lat) - 7/87)9[: (Lat) = _Vigt)v (1'3)
v(x,0) = v (), v (x,0) =v1 (), p(z,0) =po (z), pt(z,0) =p; (z),

where h is the thickness of the beam and V (t) is the voltage applied at the electrode.
Here the functions v and p are used to denote the transverse displacement of the beam
and the total load of the electric displacement along the transverse direction at each point
x respectively. Ramos et al. [23] studied the following piezoelectric beams system with
magnetic effects

{ PVt — QUzy + ’Yﬁpzx + 57)15 =0in (O7L) X (OaT> 3 (1 4)

UDtt — 5}7:535 + 75Uxx =0in <O7 L) X (07T) )
and the system (1.4) is equipped by the following initial and boundary conditions

v(0,t) = vy (L,t) —vBp, (L, t) =0, 0 <t <T,
{p(O,t):px(L,t)—'yvx(L,t):O, OStST,
v(z,0) =vo (), vt (x,0) =v1(x), p(x,0)=po(x), pt(2,0) =p1(z), 0<z <L,

they investigated the exponential decay of the total energy and some numerical aspects
related to the dissipative piezoelectric beams system with magnetic effects. And also, they
proved that the dissipation produced by damping v, acting in the mechanical equation, is
strong enough to stabilize exponentially the system solution (1.4) for whatever the physical
parameters of the model. In addition, they presented results of numerical simulations
using the explicit finite difference method. Ramos et al. [22] studied the one-dimensional
piezoelectric beams system with magnetic effects given by

{ PV — Qg + YBPze = 0in (0, L) x (0,7T),
UPtt — ﬁpx:p + 'Yﬁvxz =0 in (0, L) X (Oa T) s
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with the following initial and boundary conditions

v (0,1) = avy (L,t) = vBps (L, 1) + &2 =0, 0 <t < T,
p(0,) = Bps (L, t) — vBuy (L, t) + &P —0 0 <t < T,
U(l‘,O):Uo($), ’Ut(JT,O) = (.%'), p($,0) :p0($), pt(x70):p1 (l’), 0<z<L,

where £1,& > 0, and they showed that the system is exponentially stable regardless of
any condition on the coefficients of the system, and exponential stability is equivalent to
exact observability at the boundary. In [25], Soufyane et al. considered the following
piezoelectric beams with magnetic effects, nonlinear damping and nonlinear delay terms

{ PV — AUy + VBPzx + 181 (Ut) + a2g2 (Ut (957 t— 7')) =0,
pptt — BPaz + VBVzz = 0,

with the following initial and boundary conditions

U(x,O):UO(Z'),Ut(w,O):’Ul(w),p(m,o):po(x), pt(x70):p1(x)7
{ v(0,t) = v, (1,t) = p(0,t) = py (1,t) =0,
v (et —71)=go(z,t —7), x€(0,1), 0 <t <T.

Under appropriate assumptions on the weight of the delay, the authors established an
energy decay rate by using a perturbed energy method and some properties of convex
functions. Freitas et al. [8] studied the following piezoelectric beams system with thermal
and magnetic effects, and with friction damping

PUtt — QUgxy + ’Yﬁpm + 5012 + g1 (pr) = h’l in (07 L) X (07T 9
Hptt — ﬁpaxv + /Y/Bvxz + Avpt + g2 (U,p) = h2 in (07 L) X (0) T) ’ (15)
09,5 — m@m + (51),59& =0 in (O,L) X (O,T) s

with the following initial and boundary conditions

v (Oat) = AUy (Lvt) — VB (Lvt) =0,t>0,
p(ovt):pw(Lvt)_’}/U:p(Lat):()? t>0,

6(0,t) =6 (L,t) =0, t >0, (1.6)
v($?0):UO($)7Ut(1:aO):Ul(x)a p($a0):p0($), 0<z <L,
pt(2,0) =p1 (z), 0(2,0) =0y (2), 0 <z <L,

where the physical constants p, a, 8, v, 0, k, p and ¢ are positive constants, g; and gs
are nonlinear source terms, h; and hs are external forces. Moreover, we consider the
relationship

a = ai + 23 with aq > 0,
A:D(A) c L*(0,L) — L% (0, L) is the one-dimensional Laplacian operator defined by

A = ~0y, with domain D (A) = {v € H(0,L) N H! (0,L) : vy (L) = 0},

where H! (0,L) := {u € H'(0,L) : u(0) = 0} and A" : D (A?) C L?(0,L) — L?(0,L) is
the fractional power associated with the operator A of order v € (0,1/2). The authors
used the variational approach for model of vibrations on piezoelectric beams with frac-
tional damping depending on v € (0,1/2). Also, they showed that the dynamical system
generated by the problem (1.5)—(1.6) has a smooth global attractor with a finite fractal
dimension by the theory of quasi-stability [4], the authors obtained the existence of a
generalized exponential attractor in a scale of fractional spaces, and they established the
stability of global attractors on the perturbation of the fractional exponent. Freitas et al.
[7] studied the following nonlinear piezoelectric beams system with a delay term

{ PO — QUgg + VBDzz + g1 (v, p) + V¢ = ha, (1.7)
WPt — BPra + VBVzz + g2 (v,p) + p1ps + pope (x,t — 7) = ha, '
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subject to the following initial and boundary conditions

{ v(0,t) = v, (L, t) =p(0,t) = py (L,t) =0, t >0,
v(:r:,()):vo(:z:),vt(x,O):vl(ﬂz),p(m,O):po(a}), pt(IE,O):pl(l‘), :L‘E(O, L),

where (z,t) € (0, L) x (0,T), the functions ¢; (v, p) and g2 (v, p) represent nonlinear source
terms, h; and ho are external forces, whereas p; and v; denote magnetic current and
damping in displacement, respectively. They discussed its long time behavior through the
related dynamical system. The authors also showed that the system is asymptotically
smooth. In addition, they established a stabilizability inequality to get the quasi-stability
of the system and therefore obtain the finite fractal dimension of the global attractor and
exponential attractors.

In this article, motivated and inspired by the above papers, we consider the following
system

Hptt — /Bpa:x + fYﬁvxx =0in (07 L) X (07 OO) ’ (18)
0y — KBzz + 0vey = 0 in (0, L) x (0, 00) .

This system is subjected to the following initial and boundary conditions

{ ’U(wvo):UO(x)vvt(an):UI(x)a p(x,O):pO(x), S (O>L)v

{ POt — QUgy + f}//Bpxx + 501‘ + X (t) g (vt) =0in (07 L) X (07 OO) )

pt (,0) =p1 (), 0(x,0)=0y(x), z € (0,L),
v (0,t) = v, (L,t) =p(0,t) = pg (L, t) =0(0,t) =0 (L, t) =0, t € (0,00),

where p, a, 8, 7, 0, K, 4 and ¢ are positive constants, the functions p, v and 6 represent,
respectively, the total load of the electric displacement along the transverse direction at
each point x, the longitudinal displacement of the center line, and temperature. The term
X (t) g (v;) is the nonlinear damping term where the functions y, g are specified later, vg, v1,
Po, p1, Oo are the initial data. Other systems with nonlinear terms [1,11,16]. However,
it remains with great importance in the asymptotic behavior study of the solution for
different types of systems that can be found in the following papers [9, 10, 19, 32-34].
Throughout this article, we will suppose that (1.2) is satisfied and y and g satisfy the
following assumptions:

(Al) x: Ry — Ry is a differentiable non-increasing function.

(A2) g: R — R is a non-decreasing C°-function, such that there exist positive constants
c1, ¢2, € and a strictly increasing function ® € C1([0, +oc)) with ®(0) = 0, and ®
is linear or strictly convex C2-function on (0, ] such that

52+ g%(s) < @71 (sg(s)) for all |s| <e,
c1ls] < |g(s)] < eals| for all |s| > e,
which means that sg(s) > 0 for all s # 0.
(A3) The function g satisfies the following condition
|9(u2) = g(ur)| < ko (jual” + [ua|”) [ur — ug|, w1, uz €R, (1.9)
where kg > 0, p > 0.

Outline of the article. To show our goals, this article takes the following route. In Section
2, by using semigroup techniques, we study the existence and uniqueness of solutions for
the system (1.8). Next, in Section 3, we give some technical lemmas, which will be used
in the proof of our stability results. In Section 4, we present the proofs of our stability
results. Furthermore, throughout this work we use ¢ to denote a generic positive constant.

2. The well-posedness of the problem

In this section, by using the semigroup theory [15,20], we prove that the system (1.8)
is well-posed. So, if U = (v,u,p,q, 0)T with v = v, and ¢ = p¢, then, we can write the
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system (1.8) as

au _ _
7w — AU =G(U), t >0, . (2.1)
U (z,0) =Uo (z) = (vo,v1,p0,p1,00)" ,
where the linear operator A : D(A) C H — H is defined by
u
ay _aB, 3§
pvxm P Dz pem
AU = q )
B, _aB
Mp:ca: 1L Vzx
%91‘1‘ - %Ux
and the nonlinear operator G : HH — H is defined by
0
~ X4 (u)
G(U) = 0
0
0
We consider the following spaces
a'o,L) = {geH"(0,L):g(0) =0},
H?*(0,L) = H?*(0,L)nH(0,L),
and H is the energy space given by
H = H"(0,L) x L*>(0,L) x H'(0,L) x L? (0,L) x L? (0, L),
equipped with the inner product
~ L L L _ L
<[U, [U> = p/ uﬂdw—i—u/ chdac+c/ Hde—i—oq/ VpUpdr
H 0 0 0 0
L
+ ﬂ/ﬂ (77)50 - px) (’Yﬁx - ﬁx) da. (2'2)

The domain D (A) of A is given by
D) ={UeH:ve A (0,L), ue A (0,L), pe H*(0,1),
ge H'(0,L), 0 € H?(0,L) N Hy (0,L), v, (L) = py (L) =0}

Clearly, D (A) is dense in H.
Next, we prove the existence results. So, we show that the operator A is maximal
dissipative.

Theorem 2.1. Let Uy € H and assume that (A1)-(A3) hold. Then, there exists a unique
solution U € C (R4, H) of the problem (2.1). Moreover, if Uy € D (A) then

UecC@R,y,DA)NCHR,,H).

Proof. First, we show that the operator A is maximal dissipative. For any U € D (A)
and by using the inner product, we have

u

v
%Uxm - %pmx - %91 u
(AU, U)g = g A op ),
%pa}x - %Umx q
0

K )
Eaarar - Eux
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we obtain .
(AU, Uy = —& / 62dx < 0. (2.3)
0

So, the operator A is dissipative. Now, we show that R (I — A) = H. For this, it is sufficient
to prove that for S = (s1, s9, s3, S4, 35)T € H, there exists U = (v, u, p, q, 9)T € D (A) such
that
(I-A)U=5. (2.4)

That is,

v—u=s € H(0,L),

PU — QVgy + VBPrz + 00, = psa € L? (07 L) >

p—q=s3€ H (0,L), (2.5)

nqg — ﬁp:ca: + fY/Berx = sy € L2 (07 L) )

el — KbOyy + duy = css € L? (0, L).

Inserting u = v — s1 in (2.5)2, (2.5)5 and ¢ = p — s3 in (2.5)4, we get

PV — QUgy + VBPzz + 080, = h € L? (07 L) )
Up — Bpzz + VBVzx = J € L? (0, L) s (26)
el — KbOpp + 0v, = Q € L2(0,L),

where
h=p(s1+s2), J=p(ss+s4), Q= css+ Is1z.
For solve (2.6), we introduce the variational formulation as follows

B ((v,p,0),(v1,p1,01)) = L(v1,p1,61), V(v1,p1,01) € W, (2.7)

where W = H' (0, L) x H" (0, L) x H} (0, L), the bilinear form B : W x W — R is defined
by

B ((U,p, 0) ’ (vlapb 61))

L L
= p/ vurdr + 041/ Vg V1dT
0 0
L L
+ u/o pprdr + 6/0 (Yvz = pz) (Y012 — P12) dT

L L L
+ 5/ (Ozv1 + v,01) dx + c/ 001dx + n/ 0.61.dx,
0 0 0

and the linear form L. : W — R is given by

L L L
L (v1,p1,61) :/ hvldx—i—/ Jpld:c+/ Q01 dx.

0 0 0

Now, for W = H' (0, L) x H* (0, L) x H{ (0, L) equipped with the norm
(v, 2, )15 = loll3 + lwzll3 + 1113 + lvoe — palls + 1013 + 1162113 -
Then, we have
B ((v,p,0),(v,p,0)) = pllvll5 + ar [ozl5 + ullpl3 + B vve — pells + 1615 + £ (16215
So, for some M > 0, we get
B ((v,p,0), (v, 0)) = M |(v,p,0)Il3

Then, the operator B is coercive.
Now, by using the Cauchy-Schwartz inequality, we have

B ((v,p,0), (v1,p1,01))] < n (v, p, Oy [|(ve, p1, 01) [y -
Similarly
IL (v, p1,01)] < 1[(v1, p1,01) |y -
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Then, by using the Lax-Milgram theorem, we prove the existence of a unique
(v,p,0) € H* (0,L) x H' (0, L) x Hy (0,L),

satisfying
B ((v7p79) s (Ulapla 01)) =L (Uhpla 91) ) V(Uhpla 91) ew.
By substituting v into (2.5); and p into (2.5)3, we obtain

(u,q) € H*(0,L) x H'(0,L).
Furthermore, if we take (v1,60;) = (0,0) € H* (0, L) x H{ (0,L) in (2.7), then we obtain

L L L L ~
H/O ppldx+5/0 pxpudx—%@’/() VgpPrzdx :/o Jpidz, Vpy € H' (0,L).  (2.8)

By multiplying (2.6); and (2.6)2 by 78 and « respectively, and by adding the obtained
results, we get

oo, o 0 gl 2
= — — 9 Tho 2y e L“(0,L
Poe =50 F Ban” Pra o Pan (©.L).
Consequently, we Obtaln
pe H?(0,L).

In the same way, if we take (p1,61) = (0,0) € H' (0, L) x H} (0, L) in (2.7), we get

L L L L L _
,0/ vvldaﬁ—i—a/ vxledw—’yﬁ/ valxdaz—ké/ O,v1dx :/ hvidz, Yu; € H! (0,L).
0 0 0 0 0

(2.9)
Multiplying (2.6)2 by v and adding with (2.6);, we obtain
vm——erf +10 ——h— 7 L JeL?0,L).
o (05} (05} aq
Consequently, we obtain
ve H?(0,L).

Similarly, if we take (vi,p1) = (0,0) € H' (0,L) x H' (0, L) in (2.7), then we have

L L L L
c/ 991dw+li/ exemd:cw/ Vb da :/ Q01de, V0, € HL(0,L).  (2.10)
0 0 0 0

By exploiting (2.6)3, we obtain

1
0= S0+ 20, Loc12(0,1).
K K K

Consequently, we obtain
0 c H*(0,L)N HJ (0,L).
Thus, by integrating (2.8) and (2.9) by parts and exploiting (2.6)1, (2.6)2, then we obtain

2.
{ (Bpz (L) — vBvz (L)) p1 (L) — (Bpz (0) — vBvz (0)) p1 (0) =0,
(awy (L) = vBpz (L ))v1 (L) — (awz (0) — vBpx (0)) v1 (0) = 0.

Furthermore, if we take p; = 4* and vy = 7, then we get

Bps (L) = 7*Bv (L) =0,
{ wa(L) - vgpx (L) =0. (2.11)

By performing some calculations on the above expression (2.11), we get
(a — 726> vy (L) =0,
and as (o —+?B3) = ay, then we find
a1v5 (L) = 0.
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Since a1 > 0, then we obtain

vy (L) = 0. (2.12)
By substituting the value of (2.12) into (2.11), then we get
pz (L) = 0.

Therefore,
vz (L) = ps (L) = 0.
Then, there exists a unique U € D (A), such that (2.4) is satisfied. Hence, the operator A
is maximal dissipative.
Next, we show that the operator G defined in (2.1) is locally Lipschitz in H. Let
U= (v,u,p,q,0)" € Hand Uy = (v1,u1,p1,q1,601)" € H, then we have

IG (U) = G (Un)llg < nllg(u) — g(ur)ll e -
By exploiting (1.9), Holder inequality, we can obtain
lgw) = glen)llz2 < ko (lully + ur[15,) llu = wrll 2 < 1 e = ]

which gives us
1G(U) =G (U)llg <n2[|U—-Uillg-
So, G is locally Lipschitz operator in H.

Therefore, by using the Hille-Yosida theorem, we obtain the well-posedness result. [J
3. Technical lemmas

In this section, by using the multiplier technique, we prove and state our stability results
for the solution of the system (1.8).

Lemma 3.1. If (v,p,0) is a solution of (1.8), then the energy functional defined by

1 L
E(t) =5 /0 (007 + ppf + a1v? + B(yve — pa)? + 0% da, (3.1)
satisfies
L L
e'(t) = —m/ 02dz — x (t)/ veg (vg) dax < 0, (3.2)
0 0

Proof. Multiplying the first equation in (1.8) by v, the second one by p; and the third
one by 6, respectively. Then, integrating over (0, L), applying integration by parts and
the boundary conditions, and adding the obtained results, we get (3.2). g
Lemma 3.2. If (v,p,0) is a solution of (1.8), then the functional

L L
Fi(t) = p/ vupdx + v,u/ vpedzx, t >0,
0 0

satisfies

a: L L L
Fi () < —Zl/ vidx + {p + W} / vidr + 7#81/ pidx
0 de1] Jo 0

2. L 2 L
+ 56/ 02dx + X (O)C/ g° (vy) d. (3.3)
a1 Jo 200 Jo

Proof. By differentiating F1(t), using (1.8)1, (1.8)2 and integrating by parts together with
the boundary conditions, we obtain

L L L L L
Fi(t) = —a1/0 vzdm—i—p/o vtzd:c—i—’y,u/o vtptdm—é/o vadm—x(t)/o vg (vy) dz. (3.4)
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By using the Young and Poincaré inequalities, we get

L L
w/ uprdz < wa/ ?+ —/ vida,
0 0 deq
L L 2 L
@) [ vgydr <% [Ttae+ SO [ 2y,
0 0

20&1
L
—5/ Orvdz < 0;11/ 2d —|— / 92d:c
0

Substituting (3.5), (3.6) and (3.7), in (3.4), we get (3.3) 3
Lemma 3.3. If (v,p,0) is a solution of (1.8), then the functional

L
Fa(t) = /0 (pve + yupe) (Yo — p) da, t > 0,
satisfies

/ Y L 2 L 2 ar [F 2
Fo(t) < —— pidr + oqeg/ (Y — pg)“dx + — vydz
2 Jo 0 4e3 Jo
L

L s /L
+ 5656/ (yvg — p;,;)2 dr + — / chdx + cx(0)€4/ (yvg — pgg)2 dx
0 4es Jo 0

(Vi — p)?

Py +
2vp

—i-X(())/OLg2(vt)d:L‘+

464

Loy
/ vy dx.
0

1623

(3.8)

Proof. By differentiating F»(t), using (1.8)1, (1.8)2 and integrating by parts together with

the boundary conditions, we get

L L L
?’z(t)z—wfo p?dw—al/o Vg (YVz — pe) dx — 0 ; b (yv —p) dx
L

L L
— x(¥) /0 (v —p) g (vy)dx + p'y/o vidx + (72u — p) /0 propde.

By applying the Young and Poincaré inequalities, we get
L

L L
—al/ Vg (Y0 — pg) dx < ozlsg/ (yug — ) dz + 4—/ 2dx
0 0
L L
) [ = p g de < ex O [ e - pae+ 5O [0 @)
and
L L
—5/ 0z (yv —p)dx < 5550/ (Vg — po)? dz + —/ 02dzx.
0 0

By using the Young inequality again, we obtain

L L 2., 2 /L
(72u — p) / prvdr < w/ prde + (V,MP)/ vide.
0 2 Jo 2y 0

By substituting (3.10)—(3.13) in (3.9), we get (3.8).
Lemma 3.4. If (v,p,0) is a solution of (1.8), then the functional

L L
Fs (t) = p/ vugdx + u/ ppedz, t >0,
0 0

satisfies

Fi(t) < B/ (Yvg — D) dx—i—p/ d:v—|—5057/ 2dm+4€ / 02dx
7

L
d
—I-u/ :U—I—x 666/0 ~d 486 / g vt

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Proof. By differentiating F3(t), using (1.8)1, (1.8)2 and integrating by parts together with
the boundary conditions, we obtain

L L L
Fi(t) = —B/ (Yog — pa)? dz — oy / v2dz + ,0/ vidx
0 0 0
L L L
—5/ Oxvd:c+u/ p;%da;—x(t)/ g (ve) vdz. (3.15)
0 0 0

By using the Young and Poincaré, inequalities, we obtain

L Lo x(0) [ 4
—X (t)/ g (ve) vdz < x (0) CEG/ vxd:c—i-—/ g° (vt) de, (3.16)
0 0 deg Jo
and
L L s L
—5/ O vdr < 5057/ vidm—k—/ 02dz. (3.17)
0 0 de7 Jo
Substituting (3.16), (3.17) in (3.15), we get (3.14). 0

Now, we define the Liapunov functional £(t) by
3
L(t) = NE(t) + Y _N:iFi (¢), (3.18)
i=1

where N, N1, Ny, N3 are positive constants.

Lemma 3.5. If (v,p,0) be a solution of (1.8), then there are two positive constants T
and 1o such that the Liapunov functional (3.18) satisfies

TE(t) < L(t) < mE (L), V>0, (3.19)
and
L(t) < —BE(t) + C/OL (v} + g% (v)) dz, vt > 0. (3.20)

Proof. From (3.18), we have

L L
1£() = NE (O] < pNy [ ool da -+ 3y [ ol de
L
+ Nz/o |[(pve + vppy)| [(yv — p)| dz
L L
+ pNg/O |vve| d + uNg/O |ppe| dez.
By using the Young, Poincaré and Cauchy-Schwartz inequalities, we obtain
|L(t) = NE (t)| < cE (),

which yields
N=—c)Et) <L) < (N+c)E().
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By choosing N (depending on Ny, Ny and N3 ) sufficiently large we get (3.19). Now, By
differentiating £ (), using (3.2), (3.3), (3.8), and (3.14), we obtain

N N; L
,C/(t) < — |: 11 _ L‘él — N3X (0) CeEg — 5C€7N3:| / Ugdx
4 483 0

N L
_ { 2;“ — Nyyuer — ,uN3] /0 p?da}

L
— [BN3 — Ny (ane3 + ¢x(0)eq + de50)] /0 (yvg — px)2 dx

L
/ 02dx
0

2. 2
+ [Nx (0)e2 + Ny (p—l—w>+3\f2 (Wp)+p7> + N3p

— | &N

B N1(52C . Ng(s _ (5N3
(03] 455 467

Loy
/ vydz
0

dey 2y
[Ny (0)  Nyx2(0 Nox(0)  Nix (0)] [L
N X()Jr 1X()C+ QX()+ 3x (0) / o (vy) da.
| des 201 dey deg 0

: 1 1 1 1
Bysettmgel:N—l,agzN,53:54:55:N—2,56:57:N—3

N N2 L
L'(t) < — zal—iftl—x(())c—dc}/ v2dx
0
N L
- [ 22w — N3 — w] /0 pidz

L
— [BNs — (a1 + ex(0) + 6¢)] /0 (Y05 — pa)? da

r 2 2 2 L
B HN_Nl(Sc_N25_5N3]/ P
(6751 4 4 0

Niyp (71— p)? L
+ X(0)+N1<p+ >+N2 ~—————+py| +Nsp / vidz
4 2y 0

L [PPx0) N, N3x(0) N§X(0)1 /OL 92 (v) da.

4 201 4 4

Now, we select our parameters appropriately as follows.
First, we choose N3 large enough so that

01 = BNz — (a1 + cx(0) + dc) > 0.
Then we choose Ns large enough so that

N
5y = 227M

— pN3 —yp > 0.
Next, we select N so large that

_ NlOél N%Oél

5
3 4 4

—x(0)c—de>0.
Finally, we choose N large enough so that

Nid%c  N36  ON3

51 = kN —
4= a1 4 1

> 0.
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So, we end up with

L L L
L'(t) < -6 / (yvg — pgﬂ)2 dx — (52/ p?dw — (53/ ’U?cdl‘
0 0 0

L L
- (54/ 02dx + c/ (vf + ¢ (vt)) dzx.
0 0
Use the Poincaré inequality to substitute — fOL 02dx by — fOL 0%dx, we get
L L L
L'(t) < —51/ (Yvz — pa)? da — 62/ prde — (53/ vida
0 0 0
L L
— 054/ 0%dx + C/ (Ut2 + 92 (Ut)> dx
0 0
L
< —min (41, d2, I3, c54)/ [1)323 + 02 4 (ywe — pa) + 92} dx
0
L
+ c/ (07 + 9% (w)) da. (3.21)
0
On the other hand,
L
et) < [ [024pF + (oo — po)? + o} + 6% do
0

which implies that

L ) L

—/ [vg +p? + (Y — p2)° + 92} dr < —&(t) +/ vidz. (3.22)

0 0

The combination of (3.21) and (3.22) gives (3.20). O

4. Stability results
In this section, we state and prove our stability result.

Theorem 4.1. Suppose (A1)-(A2) hold. Then, there exist positive constants p1, f2, i3,
and gg such that the solution of (1.8) satisfies

t
E(t) < m®y! (m/ X (s)ds +u3) , >0, (4.1)
0
where )
1
<1>t:/ ds and ®q(t) =t® (eot), Veg > 0.
1 (t) . By (3) o (£) (eot) , Veo
Proof. Multiplying (3.20) by x (), we have

L
X () £'(t) < —Brx (1) &(t) + ex (£) /O (v + 6% () de. (4.2)

Now, we distinguish two cases.
Case 1. @ is linear on [0, ]. By exploiting (3.2) and the hypothesis (A2) and note that
c is a generic positive constant, then we obtain
L

X L) < =B (0 +ex(t) [ (g (w) do
= “Bix (t) &(t) — c€/(t) — cx /OL 62dz
< —Bix (B &) — cE'(2),

which implies
(x (1) £() + c€(1)) — X' () £(t) < —Bix (t) E(1). (4.3)
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Since x’ (t) < 0, then (4.3) is equivalent to
Ko (t) < =Bix (t) E(1),

where

Ko(t) := x (t) L(t) + cE(t) ~ E(t). (4.4)
So, for some positive constant A1, we obtain

Ko(t) + Ax (8) Ko(t) <0, VE>0. (4.5)

The combination of (4.5) and (4.4), gives

-1 ft x(s)ds __ -1 t
E(t) < E(0)e 0 =E&(0)®;" (M1 [ x(s)ds). (4.6)
0
Case 2. ® is nonlinear on [0,¢]. In this case, we first choose 0 < £; < e such that
sg(s) <min{e, ()}, V]s| <ej. (4.7)

By using (A2) along with fact that the function g is continuous and |g(s)| > 0, for s # 0,
it follows that

52 +g%(s) < @71 (sg(s)). V|s| < e,
(4.8)
cils| < lg(s)l < eals|, Vis| > e1.

To estimate the last integral in (4.2), we introduce the following partition of (0, L)
L={x€(0,L): || <e1}, b={x € (0,L): |vy]| >e1}.
Now, we define I(t) by
I(t) = /11 veg(vy)de,

using Jensen inequality (note that ®~! is concave), we have

L (I(t)) > ¢ A O (vpg(vy)) dar. (4.9)

Direct computations using (4.8) and (4.9) yields
/ (”t +9°( )
/ v? + g%( d:c+x()/ (vf—i—gQ(Ut))dm
1P
/ (veg(vy)) dx + ex (t )/I vg(vy)dz

2

L
< ex (OO (W) ~ ce'(t) — on [ B2da
0
<ex () @7 (I(t) - c€'(1). (4.10)
So, by substituting (4.10) into ( 2) and using (4.4) and (A1), we have
Ko(t) < —Bux (8) E(t) + ex () @71 (I(t)), VE > 0. (4.11)

Now, for g9 < € and &y > 0, using (4.11) and the fact that & (¢) <0, ®' (¢t) > 0, " (¢t) > 0
n (0,¢], we find that the functional K, defined by

8W)xum+%am

5 (1) = B (505(0)

satisfies, for some a,as > 0,

Oélle (t) § g(t) § Oéngl (t) y (4.12)
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and

K (t) = &g i/((g; ol (eog((é))> Ko (t) + @' (egg(t)) Ko (t) + 60’ (t)
E(t)

< =B (020 (st ) +ex (O (s ) 7 (70 + ot (1)

Let ®* be the convex conjugate of ® defined by
% (5) = 5 () ' (s) = @ [ (@) ! (s)] if s € (0,9 (e)],
satisfying the following general Young inequality
AB < ®*(A)+®(B) if A€ (0,9 (¢)], Be(0,¢].
Taking A = &’ ( g‘(—t))> and B = &1 (I (t)), using (4.7), we get
E(t)

< ) (I (1)) < ex () @ <<1>' (s e(o>>) Fex () I(8).

By using (3.2) and the fact that ®* (s) < s (®')"" (s), we have

€)Y
ex (O (g ) o7 (1 (1)
Et) & (. E1) / L
< cegx (t) 8(0)(1) (808(0)> —c&'(t) — cm/o 02dx
< cegx (t) (;(((t])) P’ (50 gé;;) —c&'(t).

Substituting (4.14) into (4.13), we obtain

(1) < i (00 (2050 )

0)
+ ceox (b) é (08(8)> t) + 50€'(t)
~ (BE(0) ~ czu) (1) gt ( cor) + = e

We now choose ¢y and dg small enough such that
k= p1E(0) —ceg >0 and d —c >0,
using that &'(t) <0, we get
4 () < ~bx (0 gior @ (svggy ) = o020 (557 ).
where ®q(t) = t®'(got). Note that
Dy (t) = @' (eot) + et " (eot).

(4.13)

(4.14)

(4.15)

So, using the strict convexity of ® on (0,¢], we find that ®o(t) > 0, ®((t) > 0 on (0, 1].
With K(t) := X it §s obvious that K(t) < 8((0)) < 1. Now, using (4.12) and (4.15), we

£(0)
have

K(t) ~ E(t),
and, for some g > 0,
g{’( ) < —pax () Po(XK(2)).
Inequality (4.17) implies that & [®1(K(t))] > pax (t), where

= ds
t Po(s)

(4.16)

(4.17)
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So, by integrating over [0, t], we get, for some uz > 0,

x(0) < 0" (1 [ % () s+ ). (4.18)

Here, we used the fact that ®; is strictly decreasing on (0,1]. Therefore, by using (4.16)
and (4.18), we get (4.1). O
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