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Abstract – This study explains the auto-adjustable fractional order the 

proportional–integral–derivative (PID) controller design methodology by using 

the technique of fractional model reference adaptive control (fractional MRAC). 

This method purposes a fractional order model reference adaptive PID 

(fractional MRAPI
λ
D

μ
) control structure by applying the MIT rule to an adaptive 

control system which is including fractional order PID controller. This structure 

uses fractional order derivative, integral operators and fractional order reference 

model. Through this method, fractional order PID controller will be faster and 

more robustness.Respectively using integer PID and fractional order PID, the 

coefficients of them are determined with Zeigler-Nichols technique, simulation 

applications of the fractional MRAPI
λ
D

μ
 control and the model reference 

adaptive PID (MRAPID) control performed. By means of the results obtained 

from simulation applications, fractional MRAPI
λ
D

μ
 control is compared to 

integer MRAPID control in terms of performance, speed and robustness. 
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1. Introduction 
 

The theory of fractional calculus has been first introduced by Leibnitz and L’Hospital in 

the late 1600s. Then discussions and research done by other scientists focused on this 

subject have increased attention more and many studies have been done in this field. These 

scientific studies benefits have shown the importance and of fractional calculus in 

mathematics, system modeling and control engineering. 

The idea of using fractional calculus in feedback control systems goes in the years 1940. 

The last decade, the use of fractional calculus in the modeling of physical systems and in 
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application areas such as controlling of some systems is increasing more and more [1-5]. 

Up to now, in the studies related to control system using fractional calculus, fractional 

order PID controllers have appeared more. One of the reason is that the performance of 

fractional PID controller is better than the classical PID and being the basis for some other 

controllers is the other reason. One of the most important problems is determination of 

suitable KP, KD, KI, λ and μ for controllable system and different methods have been used 

for this purpose [6-15]. 

 

Environmental effects cause disturbing effects and changes of the system parameters. So, 

the traditional controllers can not give to the desired performance; therefore, a special class 

of control system is needed to compensate the unforeseen changes on the system caused by 

the input signal and system parameters [16, 17]. In such cases, the adaptive controller is 

one of the best alternatives.  

 

The well known MIT rule for model reference adaptive control (MRAC) which is one of 

the main approaches for adaptive controller was developed by Whitaker and colleagues at 

1960s, [18]. In recent years, there are many studies in the literature about to MRAC and it 

has become a subject taught in textbooks [19-25]. In these studies, researchers were 

focused on different issues, these are; control of power and energy systems, control of the 

quadrotor unmanned aerial vehicle (UAV or drone), control of the motor, etc. The main 

issue, which is common to all these studies, is the non-linearity situation (and change of the 

parameters).   

 

The rule of MIT, constitute the most important structure of the MRAC, means the 

controller parameters are dynamically adjusted by using derivative information. Previously, 

researchers have studied for dynamically adjustment of coefficients integer order PI or PID 

by using classical integer order MRAC design [26-29]. In addition, there exist other studies 

related to tuning fractional order PID coefficients using high gain output feedback and 

artificial neural networks [30, 31] and fractional order MRAC design [32-34]. 

 

In this study, different from the other studies, dynamically adjustment of the fractional 

order PID coefficients using the structure of fractional order MRAC is investigated. The 

most important reason for the use of fractional order reference model is to fact that 

fractional order systems have a much better performance than the others, in designs 

mentioned above. The use of fractional order reference model in adaptive methods causes 

especially increase in the velocity of output response. 

 

The most important contribution of this study is to offer a fractional MRAPI
λ
D

μ
 control 

approach by using derivative and integration of the fractional order error on the feedback 

path obtained by applying the rule of MIT to the transfer  function of the system involving 

fractional order PID controller. By this approach, it may be possible to obtain a more robust 

and fast feedback control system involving fractional order PID with coefficients 

determined by the Ziegler-Nichols method. The results obtained from fractional 

MRAPI
λ
D

μ
 control are compared with the results obtained by MRAPID control. 

The remaining of the paper is organized as follows. Section 2 introduction to fractional 

calculus. Section 3 fractional PID (PI
λ
D

μ
) and tuning methods. Section 4 MRAC, Section 5 

fractional MRAPI
λ
D

μ
, Section 6 examples and simulations of fractional MRAPI

λ
D

μ
 and 

comparing the simulation results with MRAPID control. Section 7 comments and 

conclusions. 
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2. Fractional Order Calculus 

 
In the process of development of fractional order algebraic operations, a lot of theoretical 

studies which form the basis of the subject have been done. In this is theoretical studies the 

Riemann-Liouville and Grunwald-Letnikov definitions of fractional order derivative 

equations are the most used [35, 36]. 

 

For an  order Riemann-Liouville fractional derivative of continuous function f (t) is given 

by, 
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where, the first value refers to a and generally taken as a = 0 and, m is an integer. 

Derivative degree  is between 0 and 1 (0< <1). a and t shows the upper and lower limits 

of integrals.     

 

The  order fractional derivative definition of Grunwald-Letnikov is; 

 









 














h

at

j

j

h
ta jhtf

jhdt

tfd
tfD

0
0

)()1(
1

lim
)(

)(







                             (2) 

 

where, h is the step size, α is a fractional number, a is the initial value. The [.] symbol used 

in upper border of the total symbol shows the process of rounding to integer of (t-a)/h. 
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where, Г (.) is the Euler Gamma function.  

 

 

3. Fractional Order PID (PI
λ
D

μ
) 

 
 

 

 

 

 

 

 

 

Figure 1: The expression of a closed loop PI
λ
D

μ
 controller system. 

 

The expression of fractional PI
λ
D

μ
 controller used in feedback system shown in Figure 1 is 

given in Equation (4) and the transfer function in s-domain is given in Equation (5). KP, KI, 

and KD are coefficients and λ, μ are derivative and integral order respectively. 
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Because of PI
λ
D

μ
 controller contains fractional integrator with the degree of λ and 

fractional derivative with the degree of μ it has a more flexible structure with respect to 

integer order PID controller. In this case, it is possible to control the system more sensitive 

and faster. But with respect to integer order PID controller,  due to the PI
λ
D

μ
 controller has 

more parameters (KP, KI, KD, λ and μ) to be adjusted for best controlling, parameter 

calculation requires more processing and more time. According to the control system to 

find the most appropriate KP, KI, KD, λ and μ, different techniques have been developed. 

The first of these techniques is the S- shaped unit step response (S-Shaped Response Based 

Tuning Rules). In this method, correspond to the unit step input, output response is taken. 

In this output response, the appeared delay time L and the characteristic time-constant T is 

determined graphically. According to the L and T,  KP, KI, KD, λ and μ parameters are easily 

calculated from the table [12,13,37]. The second technique used to adjust the PI
λ
D

μ
 

controller parameters based on the adjustment coefficient in the feedback system including 

plant. This coefficient is adjusted until the system is made oscillation and the situation of 

the oscillation frequency does not change over time. Then, taking advantage of this 

coefficient and the oscillation frequency KP, KI, KD, λ and μ parameters are calculated from 

the table [12,13]. 

 

4. Model Reference Adaptive Control 

 
MRAC is one of the most popular approaches of adaptive control, because of its simplicity 

and its high level of performance [38-40]. In MRAC the desired performance is specified 

by the choice of a reference model and adjustment of parameters is achieved by taking of 

error between the output of the plant and the model reference output into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Block diagram of an adaptive control. 

 

In this paper the MIT rule is used to design a Model Reference Adaptive PI
λ
D

μ
. For this 

purpose, using the MIT rule, we determined the reference model, using an adjustment 
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mechanism and the controller structure shown in Figure 2 is formed. In this figure yp, and 

ym is plant output, model output respectively. Tracking error between the plant output and 

the reference model output as, 

 

mp yye 
                 (6) 

 

Then a cost function of θ, J(θ)  can be formed as: 
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In this equation, J is a function of θ and θ is the parameter that will be adapted inside the 

controller. Cost function, J(θ), determine how the parameters are updated. To find out how 

to update the parameter θ, an equation needs to be formed for change of θ. If the aim is to 

minimize the cost related to the error, it is reasonable to move in the direction of the the 

negative gradient of J. The change in J is proportional to the change in θ. Therefore the 

derivative of θ is equal to the negative change in J. 
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The relationship between the change in θ and the cost function is known as MIT rule. In 

above equation the partial derivative of error with respect to θ, determines how the 

parameter θ will be updated. If a controller contains several different parameters that 

require updating, the sensitivity derivative would need to be calculated for each of these 

parameters. 

 

The output transfer function of the closed-loop system in Figure 2 may be written as, 
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e(t) is the error between the outputs and J is the cost function. For the above transfer 

function ),()( 1

p
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p

i bafte   and ),(2
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p

i bafJ   are functions of p
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p

jb . To tune the 

parameters of the controller )(sGc , p

ia  and 
p

jb  must be tuned with adaptive control. From 

the equation of MIT rule, (6), (7) and (8), the parameters p

ia  and 
p

jb  can be derived as: 
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From Equation (9), using fixed coefficients of the system transfer function a model transfer 

function can be found as in Equation (12). 
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5. Fractional MRAPI
λ
D

μ 
Control 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Block diagram of model reference adaptive PI
λ
D

μ
. 

 

To design a Fractional MRAPI
λ
D

μ
 control in Figure 3, let us the controller be: 
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The closed-loop plant output is: 
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Because of )(sGc , the output )(sYp  is a fractional function. 

If we generalize these equations for the parameters of PI
λ
D

μ
, the following equations are 

obtained.   

For KP, KI and KD, using the equations (10) and (11) and using the chain rule of 

differentiation, 
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From equations of error and cost functions (6), (7), 
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Putting in place the results of Equation (20) at equations (17), (18) and (19), 

 

P

p

P
K

y
e

s
K







                        (21) 

 

I

p

I
K

y
e

s
K







                        (22) 

 

D

p

D
K

y
e

s
K







                         (23) 

 

From Equation (16), taken the derivatives according to  KP, KI  and KD, 
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If the results of equations (24), (25), and (26) are put into places in equations (21), (22), 

and (23) respectively,  
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Using the equations (27), (28), and (29), the designed block diagram of the control system 

is given in Figure 4. 

 
 

 

Figure 4: The control system block diagram of fractional MRACPI
λ
D

μ
 control. 

 

6. Examples and Simulations and Comparisons 

 
In this section the rules from Section 4 are applied to two different plants. The fractional 

MRACPI
λ
D

μ
 and MRAPID control were applied to a second-order and third-order plant, 

and the results were compared. The used fractional MRAPI
λ
D

μ
 control block diagram in 

MATLAB SIMULINK is seen in Figure 4. For fractional derivative blocks which are used 

in SIMULINK diagram the CRONE approximation is used [41]. 

 

Example 1.  

 

The transfer function of the plant was taken as in Equation (30)  By applying the S-shaped 

response based tuning rules to this plant the PID and PI
λ
D

μ
 transfer function equations (31), 

(32) were determined, respectively [12,13]. 
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Using equations of (16), (30) and (32), for MRAPI
λ
D

μ
C the model transfer function 

determined as follows. 

 

 

 

        (33) 

 

 

Using Oustaloup's filter and high-order approximation, the Equation (33) can be reduced 

into integer order transfer function such as the following equation [42]. 
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For PI
λ
D

μ
 controller at Equation (32) and system transfer function at Equation (30), unit 

step response plotted in Figure 5, and  K taken as 1.   

 

 

 

   

   

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The unit step response of control system for PI
λ
D

μ
 controller. 

 

 

For classic MRAPID control from equations (27), (28), and (29) after taking λ=μ=1, using 

the equations (30) and (31) the block diagram in Figure 4 was created in MATLAB 

Simulink and by applying a unit step input the system response was taken (Figure 6). To 
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get the best and fastest answer from the system for MRAPID control, the parameters were 

selected as  = 2000,  = 15 and  = 1000 respectively. Similarly, for fractional MRAPI
λ
D

μ
 

control according to the values of equations (30) and (32) , using the equations (27), (28), 

and (29),  the block diagram at Figure 4 was created in MATLAB Simulink and for 

fractional MRAPI
λ
D

μ
 control the unit step response output was taken (Figure 6). To get the 

best performance the parameters were selected as  = 100,  = 500 and  = 600. In both 

cases, the plant transfer function gain was taken as K = 1.  
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y
p

 

 

MRAPIDC
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Figure 6: For fractional MRAPI

λ
D

μ
 and MRAPID control the unit step responses. 

 

For comparing the robustness of fractional MRAPI
λ
D

μ
 and MRAPID control, the gain of 

the plant was taken as K = 4, 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32. For both controllers the output 

responses of the unit step input are shown in Figure 7 and Figure 8. 
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Figure 7: For different K values, unit step responses of the MRAPID control. 
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Figure 8: For different K values, unit step responses of the fractional MRAPI

λ
D

μ
 control. 

 

Example 2. 

 

The transfer function of the plant was taken as in Equation (35). By applying "critical gain-

based tuning rules" to this plant the transfer function of PID and PI
λ
D

μ
 (36, 37) were 

determined [12, 13]. 
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As in Example 1, the same procedures were carried out for this example respectively. 

Figure 9 shows the unit step response of PI
λ
D

μ
 controller for the plant gain K = 1. 
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Figure 9: For PI

λ
D

μ
 controller, the unit step response of control system. 

 

By taking the parameters as =10, =200 ve  =-1 for MRAPID control and  =10,  =390 

ve  =10 for fractional MRAPI
λ
D

μ
 control, in order to compare the outputs of both control 

systems Figure 10 was drawn. Here the system gain was taken as K = 1.  
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Figure 10: For fractional MRAPI

λ
D

μ
 and MRAPID control the unit step responses. 

 

To compare the stability of both control systems, by taking K as K = 4, 2, 1, 1/2, 1/4, 1/8, 

1/16, 1/32 respectively, for unit step input the curves shown in Figure 11 were obtained for 

MRAPID control and the curves shown in Figure 12 was obtained for fractional 

MRAPI
λ
D

μ
 control as output responses. 
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Figure 11: For different K values, unit step responses of the MRAPID control. 
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Figure 12: For different K values, unit step responses of the fractional MRAPI

λ
D

μ
 control. 

 

 

7. Comments and Conclusions 

 
The idea of this paper is to enhance a controller from the combination of the PI

λ
D

μ
 

controller and the fractional MRAC. The coefficients of PID or PI
λ
D

μ
 controller were set 

on-line by using the MIT rule. We try to design and testing the performance and robustness 

of fractional MRAPI
λ
D

μ
 and MRAPID control. The performance of fractional MRAPI

λ
D

μ
 

and MRAPID control were tested with two different plants and models.  

 

To see the performance of fractional MRAPI
λ
D

μ
 control, the responses of it were compared 

with the responses of MRAPID control for the same plants. As seen in the above 

simulation results, unit step responses of systems were obtained for both control methods, 

but the response of fractional MRAPI
λ
D

μ
 control is faster than MRAPID control. PI

λ
D

μ
 

controller parameters determined by the method of Zeigler-Nichols were used in fractional 
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MRAPI
λ
D

μ
 control and with this new method the designed controller brought to a faster 

and more robust position. Although the results obtained from the fractional MRAPI
λ
D

μ
 

control were the desired results, in future studies the degree of integrator λ and degree of 

differentiation μ will be adjusted in the same way by using the MIT rule and by using 

fractional order plant, the analysis of the results can be done in terms of performance. 

 

References 
 

 

[1] I. Petras, B. M Vinagre, Practical application of digital fractional-order controller to 

temperature control, Acta Montanistica Slovaca. 7(2), pp. 131-137, 2002. 

[2] A. J. Caldero´n, B. M. Vinagre, V. Feliu, Fractional order control strategies for 

power electronic buck converters, Signal Processing 86, pp. 2803–2819, 2006. 

[3] V. Feliu-Batlle, R. R Pe´rez, L.S Rodrı´guez, Fractional robust control of main 

irrigation canals with variable dynamic parameters, Control Engineering Practice, 

Volume 15, Issue 6, pp. 673-686, 2007. 

[4] W. Li, Y. H. Fellow, Vibration suppression using single neuron-based PI fuzzy 

controller and fractional-order disturbance observe”, IEEE Transactions on Industrial 

Electronics, Vol. 54, No.1, pp. 117-126, February 2007. 

[5] R. S. Barbosa, J. A. T. Machado, I. S. Jesus, On the fractional PID control of a 

Laboratory servo system, Proceedings of the 17th World Congress The International 

Federation of Automatic Control Seoul, Korea, July 6-11, pp. 15273-15278, 2008. 

[6] I. Podlubny, Fractional order systems and controllers, IEEE Transactions on 

Automatic Control, Vol. 44, No. 1, pp. 208-214, January 1999. 

[7] I. Petras, B. N. Vinagre, L. Dorcak, V. Feliu, Fractional digital control of a heat 

solid: experimental results, In Proc. International Carpathian Control Conference 

ICCC’2002 Malenovice, Czech Republic, pp. 27-30, May 2002. 

[8] R. S. Barbosa, J. A. T. Machado, , I. M. Ferreira, A Fractional calculus perspective of 

PID tuning, In Proc. DETC’03, ASME 2003 Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference Chicago, 

Illinois USA, 2003. 

[9] R. S. Barbosa, J. A. T. Machado, I. M. Ferreira, Tuning of PID based on bode’s ideal 

transfer function, Nonlinear Dynamics 38, pp. 305–321, 2004. 

[10] C. A. Monje, A. J. Calderon, B. M.Vinagre, Y. Q. Chen, V. Feliu, “On fractional 

PID controller some tuning rules for robustness to plant uncertainties”, Nonlinear 

Dynamics, 38, pp. 369–381, 2004. 

[11] C. Zhao, D. Xue, Y. Q Chen, A fractional order PID tuning algorithm for a class of 

fractional order plants, Mechatronics and Automation, 2005 IEEE International 

Conference Vol. 1, pp. 216 – 221, 2005.  

[12] D. Vale´rio, J. S. Costa, Tuning of fractional PID controllers with Ziegler–Nichols 

type rules”, Signal Processing, 86, pp. 2771–2784, 2006. 

[13] D. Vale´rio, J. S. Costa, Tuning-rules for fractional PID controllers, Second IFAC 

Workshop on Fractional Differentiation and its Applications, Fractional Differentiation 

and its Applications, Volume 2, Part 1, 2006.  

[14] J. Cervera, A. Baños, C. A. Monje, B. M. Vinagre, Tuning of fractional PID 

controllers by using QFT, IEEE Industrial Electronics, IECON 2006 - 32nd Annual 

Conference on, pp. 5402 – 5407, 6-10 Nov. 2006. 

[15] S. E. Hamamci, An Algorithm for stabilization of fractional-order time delay 

systems using fractional-order PID controllers, IEEE Transactions on Automatic 

Control, Vol. 52, No. 10, pp. 1964-1969, October 2007. 

 
   115  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Chunna%20Zhao.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Dingyu%20Xue.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.YangQuan%20Chen.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10831
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10831
http://www.ifac-papersonline.net/Fractional_Differentiation_and_its_Applications/Second_IFAC_Workshop_on_Fractional_Differentiation_and_its_Applications__2006/index.html
http://www.ifac-papersonline.net/Fractional_Differentiation_and_its_Applications/Second_IFAC_Workshop_on_Fractional_Differentiation_and_its_Applications__2006/index.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4152824
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4152824


Journal of New Results in Science 11 (2016) 102-117                                                                                    15 
 

[16] V. V. Chalam, Adaptive control systems techniques and applications, Marcel 

Dekker Inc., 1987. 

[17] K. J. Astrom, B. Wittenmark, Adaptive control, Addison-Wesley Publishing 

Company, 1989. 

[18] P. V. Osburn, H. P. Whitaker, A. Kezer, Comparative studies of model reference 

adaptive control systems, Institute of Aeronautical Sciences, Paper No. 61–39, 1961. 

[19] J. Xie, J. Zhao, Model reference adaptive control for switched LPV systems and its 

application, IET Control Theory & Applications, Vol. 10, Issue 17, pp. 2204 – 2212, 

2016, DOI: 10.1049/iet-cta.2015.1332 

[20] N. A. Bakshi, R. Ramachandran, Indirect model reference adaptive control of 

quadrotor UAVs using neural networks, Intelligent Systems and Control (ISCO), 2016 

10th International Conference on, 7-8 Jan. 2016, DOI: 10.1109/ISCO.2016.7727123 

[21] C. Hu, Z. Qi, Q. Ma, Factional order model reference adaptive control based on 

Lyapunov stability theory, Control Conference (CCC), 2016 35th Chinese, 27-29 July 

2016, DOI: 10.1109/ChiCC.2016.7555021  

[22] N. Aguila-Camacho, M. A. Duarte-mermoud, Improving the control energy in 

model reference adaptive controllers using fractional adaptive laws, IEEE/CAA 

Journal of Automatica Sinica, Vol. 3, Issue 3, pp. 332 – 337, 2016, DOI: 

10.1109/JAS.2016.7508809 

[23] R. Kumar, S. Das, A. K. Chattopadhyay, Comparative assessment of two different 

model reference adaptive system schemes for speed-sensorless control of induction 

motor drives, IET Electric Power Applications, Vol. 10, Issue 2, pp. 141 – 154, 2016, 

DOI: 10.1049/iet-epa.2015.0121 

[24] H. Wu, M. Deng, Robust adaptive control scheme for uncertain non-linear model 

reference adaptive control systems with time-varying delays, IET Control Theory & 

Applications, Vol. 9, Issue 8, pp. 1181 – 1189, 2015 

[25] R. Khanna, Q. Zhang, W. E. Stanchina, Maximum Power Point Tracking Using 

Model Reference Adaptive Control, IEEE Transactions on power electronics, Vol. 29, 

No. 3, 2014 

[26] R. Ghanadan, Adaptive PID control of nonlinear systems, University of Maryland, 

Master of Secience Thesis, 1990. 

[27] E. Poulin, A. Pomerleau, A. Desbiens, D. Hodouin, Development and evaulation of 

an auto-tuning and adaptive PID controller, Automatica, Vol. 32, No.1, pp. 71-82, 

1996. 

[28] M. Jun, M. G. Safonov, Automatic PID tuning: An application of unfalsified 

control, Proceedings of the  IEEE International Symposium on Computer Aided 

Control System Design, pp. 328 – 333, 1999. 

[29] P. Boonsrimuang, A. Numsomran, S. Kangwanrat, Design of PI controller using 

MRAC techniques for couple-tanks process, World Academy of Science, Engineering 

and Technology, 59, pp. 67-72, 2009. 

[30] S. Ladaci, An adaptive fractional PI
λ
D

μ
 controller, Proceedings of TMCE 2006, 

Ljubljana, Slovenia, pp. 1533-1539, 2006. 

[31] W. Li, Design and Implement of Neural Network Based Fractional-Order 

Controller, Robotic Welding, Intelligence and Automation, Lecture Notes in Control 

and Information Sciences, Volume 362, pp. 471-479, 2007. 

[32] B. M. Vinagre, I. Petras, I. Podlubny, Y. Q. Chen, Using fractional order 

adjustment rules and fractional order reference models in model reference adaptive 

control, Nonlinear Dynamics, 29, pp. 269–279, 2002. 

[33] S. Ladaci, A. Charef, On fractional adaptive control, Nonlinear Dynamics, 43, pp. 

365–378, 2006. 

 
   116 

http://www.springerlink.com/content/?Author=Wen+Li
http://www.springerlink.com/content/978-3-540-73373-7/
http://www.springerlink.com/content/0170-8643/
http://www.springerlink.com/content/0170-8643/


Journal of New Results in Science 11 (2016) 102-117                                                                                    16 
 

[34] J. Ma, Y. Yao, D. Liu, Fractional order model reference adaptive control for a 

hydraulic driven flight motion simulator, 41st Southeastern Symposium on System 

Theory, University of Tennessee Space Institute, Tullahoma, TN, USA, March 15-17, 

pp. 340-343, 2009. 

[35] R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional order systems modeling 

and control applications, World Scientific Series on Nonlinear Science, Series A — 

Vol. 72. 

[36] S. Das, Functional fractional calculus for system identification and controls, 

Springer-Verlag, Berlin, Heildelberg, 2008. 

[37] R. Caponetto, L. Fortuna, D. Porto, Parameter tuning of a non integer order PID 

controller, in Proceedings of the Fifteenth International Symposium on Mathematical 

Theory of Networks and Systems, Notre Dame, Indiana, 2002. 

[38] Y. D. Landau, Adaptive control: The model reference approach, Marcel Dekker, 

New York, 1979.  

[39] K. S. Narendra, Y. H. Lin, Design of stable modern reference adaptive controllers, 

in Applications of Adaptive Control, Academic Press, 1980. 

[40] S. Sastry , M. Bodson, Adaptive control, stability, convergence and robustness, 

Prentice-Hall, Inc., 1989. 

[41] A. Oustaloup, La commande CRONE (in French), Herm`es. Paris, 1991. 

[42] D. Xue, Y.Q. Chen, Sub-Optimum H2 rational approximations to fractional order 

linear systems, Procedings ASME 2005 International Design Engineering Technical 

Conferences & Computers and Information in Engineering Conference, pp. 24-28, 

September 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   117  


