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Abstract: In this paper, eight novel 1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4-[4-

(dimethylamino)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (2) were 
obtained by the reactions of 3-alkyl(aryl)-4-[4-(dimethylamino)-benzylidenamino]-4,5-

dihydro-1H-1,2,4-triazol-5-ones (1) with formaldehyde and morpholine. The novel 
synthesized compounds were identified by FT-IR, 1H NMR, and 13C NMR spectral data. 

Besides, the newly synthesized compounds were analyzed for their in vitro potential 
antioxidant capacities in three different assays. All of the compounds demonstrated 

significant activity for metal chelating effect. 
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INTRODUCTION 

 

Mannich bases have applications the field medicinal chemistry, the product synthetic 

polymers, the petroleum industry, as products used in water treatment, cosmetics, the 

dyes industry, etc. (1). Moreover, Mannich bases have some biological activities such as 

anticancer (2,3), antibacterial (4,5), antimycobacterial (6), anti-HIV (7), anti-

inflammatory (8,9), analgesic (10,11), antifungal (12,13), antitumor (14,15), antiviral 

(16), antidepressant (17), antiulcer (18), anticonvulsant (19), antimalaria (20), and 

antioxidant activities (21). 

 

Antioxidants are extensively studied for their capacity to protect organisms and cells 

from damage that is induced by the oxidative stress. A great deal of research has been 

devoted to the study of different types of natural and synthetic antioxidant. A large 

number of heterocyclic compounds, containing the 1,2,4-triazole ring, are associated with 

diverse biological properties such as antioxidant, anti-inflammatory, antimicrobial, and 

antiviral activity. External chemicals and internal metabolic processes in human body or 

in food system might produce highly reactive free radicals, especially oxygen-derived 

radicals, which are capable of oxidizing biomolecules by resulting in cell death and tissue 

damage. Oxidative damages play a significantly pathological role in human diseases. 

Cancer, emphysema, cirrhosis, atherosclerosis, and arthritis have all been correlated with 

oxidative damage. Also, excessive generation of reactive oxygen species (ROS) induced 

by various stimuli and which exceeds the antioxidant ability of the organism leads to 

variety of pathophysiological processes like inflammation, diabetes, genotoxicity and 

cancer (22). 

 

Triazoles are heterocyclic compounds that contain three nitrogen atoms. 1,2,4-Triazole 

and 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives are reported to possess a broad 

spectrum of biological activities such as analgesic, antibacterial, antioxidant, and 

antiparasitic properties (23–26). Considering about the development of new hetero 

moieties by combining potential biological active scaffolds, an attempt was made here to 

obtain 1,2,4-triazoles bearing morpholine ring and to evaluate their antioxidant activity. 

 

In this regard, eight new 1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4-[4-

(dimethylamino)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (2) were 

synthesized and investigated by using different antioxidant methodologies like reducing 



Gürsoy-Kol et al., JOTCSA. 2016; 3(3): 105-120.  RESEARCH ARTICLE 

107 
 

power, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity, and iron 

binding effect. 

 

MATERIALS AND METHODS 

 

Chemicals and Apparatus 

Chemical reagents used in this paper were bought from Merck AG, Aldrich, and Fluka. 

Melting points were recorded in open glass capillaries using an Electrothermal melting 

point apparatus and were not corrected. The infrared spectra were recorded on an Alpha-

P Bruker FT-IR Spectrometer. 1H and 13C NMR spectra were determined in deuteriated 

dimethyl sulfoxide with TMS as internal standard using a Bruker Ultrashield spectrometer 

at 400 MHz and 100 MHz, respectively. 

 

Synthesis of Compounds 2: General Procedure 

3-Alkyl(Aryl)-4-[4-(dimethylamino)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-

ones (1) were obtained according to the literature (27). To the solution of this compound 

(1) (5 mmol) in absolute ethanol was added formaldehyde (% 37, 10 mmol) and 

morpholine (6 mmol). The reaction mixture was refluxed for 4 hours. The mixture was 

left at room temperature overnight. After cooling the mixture in the refrigerator, the solid 

formed was obtained by filtration, washed with cold ethanol, and recrystallized from 

ethanol. 

 

Physical data of the new compounds are presented in Table 1. IR, 1H-NMR and 13C-NMR 

spectral data are given in Tables 2, 3, and 4, respectively. 

 

ANTIOXIDANT ACTIVITY 

 

Chemicals 

Butylated hydroxytoluene (BHT), iron(II) chloride, DPPH., α-tocopherol, 3-butylated 

hydroxyanisole (BHA), (2-pyridyl)-5,6-bis(phenylsulfonic acid)-1,2,4-triazine (ferrozine), 

and trichloroacetic acid (TCA) were obtained from E. Merck or Sigma. 
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Reducing power 

The reducing power of the compounds 2a-h was determined using the method of Oyaizu 

(28). Different concentrations of the samples (50-250 µg/mL) in DMSO (1 mL) were 

mixed with phosphate buffer (2.5 mL, 0.2 M, pH = 6.6) and potassium ferricyanide (2.5 

mL, 1%). The mixture was incubated at 50 °C for 20 min. after which a portion (2.5 mL) 

of trichloroacetic acid (10%) was added to the mixture, which was then centrifuged for 

10 min at 1000 x g. The upper layer of solution (2.5 mL) was mixed with distilled water 

(2.5 mL) and FeCl3 (0.5 mL, 0.1%), and then the absorbance at 700 nm was measured 

in a spectrophometer. Higher absorbance of the reaction mixture indicated greater 

reducing power. 

 

Free radical scavenging activity 

Free radical scavenging effect of the compounds 2a-h was estimated by DPPH., by the 

method of Blois (29). Briefly, 0.1 mM solution of DPPH. in ethanol was prepared, and this 

solution (1 mL) was added to sample solutions in DMSO (3 mL) at different 

concentrations (50-250 µg/mL). The mixture was shaken vigorously and allowed to stand 

at room temperature for 30 min. Then the absorbance was measured at 517 nm in a 

spectrophometer. Lower absorbance of the reaction mixture indicated higher free radical 

scavenging activity. The DPPH. concentration (mM) in the reaction medium was 

calculated from the following calibration curve and determined by linear regression (R: 

0.997): 

Absorbance = 0.0003 x DPPH.  – 0.0174 

The capability to scavenge the DPPH radical was calculated using the following equation: 

DPPH. scavenging effect (%) = (A0 – A1/A0) x 100 

where A0 is the absorbance of the control reaction and A1 is the absorbance in the 

presence of the samples or standards. 
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Table 1. Physical data of the compounds 2a-h. 

 
Compound No 

 
R 

Yield 
(%) 

m.p. (°C) 
(Crystallized from) 

2a CH3 67 
135 

(Ethanol) 

2b CH2CH3 66 
108 

(Ethanol) 

2c CH2C6H5 64 
148 

(Ethanol) 

2d CH2C6H4.CH3 (p-) 70 
152 

(Ethanol) 

2e CH2C6H4.OCH3 (p-) 95 
194 

(Ethanol) 

2f CH2C6H4.Cl (p-) 66 
148 

(Ethanol) 

2g CH2C6H4.Cl (m-) 66 
184 

(Ethanol) 

2h C6H5 75 
155 

(Ethanol) 
 

Table 2. FTIR data of the compounds 2 (cm-1) 

Compound No νC=O νC=N ν1,4-disubstituted 

benzenoid ring 

νmonosubstituted 

benzenoid ring 

2a 1682 1596 857 - 

2b 1702 1610, 1589 814 - 
2c 1692 1592 816 775 and 693 

2d 1702 1590 813 - 

2e 1705 1608, 1587 816 - 

2f 1707 1609, 1584 811 - 
2g 1701 1588 811 - 
2h 1696 1613, 1586 814 777 and 692 

 
Metal chelating activity 

The chelating of ferrous ions by the compounds 2a-h and references was measured 

according to the method of Dinis et al. (30). Briefly, the synthesized compounds (30–60 

μg/mL) were added to a 2 mM solution of FeCl2·4H2O (0.05 mL). The reaction was 

initiated by the addition of 5 mM ferrozine (0.2 mL), and then the mixture was shaken 

vigorously and left to stand at room temperature for 10 min. After the mixture had 

reached equilibrium, the absorbance of the solution was measured at 562 nm in a 

spectrophotometer. All tests and analyses were run in triplicate and averaged. The 

percentage of inhibition of ferrozine–Fe2+ complex formation was given by the formula: 

% inhibition = (A0 − A1 / A0) × 100, where A0 is the absorbance of the control, and A1 is 

the absorbance in the presence of the samples or standards. The control did not contain 

compound or standard. 
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RESULTS and DISCUSSION 

In the current paper, eight new 1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4-[4-

(dimethylamino)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (2a-h) were 

synthesized. The starting compounds 1a-h were prepared as explained in the literature 

(27). Compounds 2a-h were obtained by the reactions of 3-alkyl(aryl)-4-[4-

(dimethylamino)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (1) with 

formaldehyde and morpholine (Scheme 1). The novel 3-alkyl(aryl)-4-(3-benzoxy-4-

methoxy-benzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (2a-h) were 

characterized with FT-IR, 1H NMR and 13C NMR and spectral data. 

 

Scheme 1 Synthetic pathway of compounds 2. 
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Table 3. 1H-NMR data of the compounds 2 (DMSO-d6, δ/ppm) 

Comp.No CH3 CH2NCH2 CH2 2CH3 CH2OCH2 OCH3 CH2Ph NCH2 Aromatic H N=CH 

2a 2.27 (s) 
2.56-2.59 

(m) 
- 2.99 (s) 

3.54-3.57 

(m) 
- - 4,51 (s) 

6.77 (d,2H,J=8.8 Hz); 

7.64 (d,2H,J=8.8 Hz 
 

9.41 (s) 

2b 
1.21 (t, 

J=7.60Hz) 
2.56-2.58 

(m) 

2.68 (q, 

J=7.60Hz) 

 

2.99 (s) 
3.55-3.57 

(m) 
- - 4.52 (s) 

6.78 (d,2H,J=8.8 Hz); 

7.63 (d,2H,J=8.8 Hz 
 

9.40 (s) 

2c - 
2.57-2.59 

(m) 

 

- 

 

3.00 (s) 
3.56-3.57 

(m) 
- 4.05 (s) 4.55 (s) 

6.76 (d,2H,J=8.8Hz); 

7.22-7.24 (m,1H);     
7.31-732 (m,4H);       

7.60 (d,2H,J=8.8 Hz) 

 

9.37 (s) 

2d 2.24 (s) 
2.57-2.58 

(m) 

 
- 

 
3.00 (s) 

3.56-3.57 

(m) 
- 3.99 (s) 4.55(s) 

6.77 (d,2H,J=8.8 Hz); 
7.11 (d,2H,J=7.6 Hz); 
7.20 (d,2H,J=8.8 Hz); 

7.61 (d,2H,J=8.8 Hz) 

 

9.36 (s) 

2e - 
2.54-2.57 

(m) 

 
- 

 
3.00 (s) 

3.56 (m) 3.65 (s) 3.97 (s) 4.54 (s) 

6.77 (d,2H,J=8.8 Hz); 
6.87 (d,2H,J=8.4 Hz); 

7.23 (d,2H,J=8.4 Hz); 
7.61 (d,2H,J=8.8 Hz) 

 

9.37 (s) 

2f - 
2.56-2.58 

(m) 

 

- 

 

3.00 (s) 3.55-3.57 

(m) 
- 4.06 (s) 4.54 (s) 

6.77 (d,2H,J=8.4 Hz); 

7.33-7.39 (m,4H); 7.6 

(d,2H,J=9.2 Hz) 

 

9.38 (s) 

2g - 2.57 (m) 

 

- 

3.00 (s) 

3.56 (m) - 4.08 (s) 4.55 (s) 

6.76 (d,2H,J=8.4 Hz); 

7.29-7.37 (m,3H); 

7.42 (s,1H); 7.60 

(d,2H,J=8.0 Hz) 

9.38 (s) 
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Table 4. 13C-NMR data of the compounds 2 (DMSO-d6, δ/ppm) 

Comp.No  

Triazole C5 

 

N=CH 

 

Triazole C3 

 

Aromatic C 

 

Aliphatic C 

2a 
 

152.49 
 

150.50 
 

142.92 
 

156.02; 132.23(2C); 120.13; 
111.06(2C) 

 

66.04(CH2OCH2); 65.85(NCH2N); 50.00(CH2NCH2); 
38.95(2CH3); 11.03(CH3)  

 

2b 
152.50 

 
150.63 

 
146.70 

 

156.03; 129.29(2C); 120.16; 
111.65(2C) 

 

66.04(CH2OCH2); 65.88(NCH2N); 50.01(CH2NCH2); 
38.94(2CH3); 18.50(CH2CH3); 10.06(CH2CH3) 

 

2c 
152.50 

 
150.51 

 
144.81 

 

155.66; 135.79; 129.32 (2C); 128.70 
(2C); 128.45 (2C); 126.72; 120.10; 

111.65 (2C)  
 

66.04(CH2OCH2); 65.97(NCH2N); 50.02(CH2NCH2); 
38.95(2CH3); 30.99(CH2Ph) 

 

2d 
152.49 

 
150.51 

 
144.97 

 

155.62; 135.79; 132.66; 129.31 (2C); 
129.01 (2C); 128.59 (2C); 120.13; 

111.66 (2C) 
 

66.04(CH2OCH2); 65.95(NCH2N); 50.02(CH2NCH2); 
38.96(2CH3); 30.58(CH2Ph); 20.37(PhCH3) 

 

2e 
152.49 

 
150.51 

 
145.12 

 

158.09; 155.62; 129.77 (2C); 129.33 
(2C); 127.54; 120.13; 113.89 (2C); 

111.63 (2C) 
 

66.03(CH2OCH2); 65.95(NCH2N); 55.01(OCH3); 
50.02(CH2NCH2); 38.94(2CH3); 30.13(CH2Ph)  

 

2f 
152.51 

 
150.50 

 
144.49 

 

155.74; 134.76; 131.43; 130.65 (2C); 
129.35 (2C); 128.39 (2C); 120.04; 

111.66 (2C) 
 

66.04(CH2OCH2 + NCH2N); 50.00(CH2NCH2); 38.95(2CH3); 
30.34(CH2Ph) 

 

2g 152.53 150.49 144.31 
155.75; 138.21; 132.96; 130.28; 

129.36 (2C); 128.85; 127.51; 126.77; 
120.04; 111.64 (2C) 

66.04(CH2OCH2 + NCH2N); 50.02(CH2NCH2); 38.96(2CH3); 
30.58(CH2Ph) 
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Antioxidant activity 

The antioxidant capacities of ten newly synthesized compounds 2a-h were determined. 

Different processes have been used to identify the antioxidant capacities. The processes 

used in the paper are clarified below: 

 

Reducing power 

The reducing power of the compounds 2 was determined. The reducing capacity of a 

compound may serve as a significant indicator of its potential antioxidant activity. The 

presence of reductants such as antioxidant substances in the samples causes the 

reduction of the Fe3+ / ferricyanide complex to the ferrous form. Therefore, the Fe2+ can 

be monitored by measuring the formation of Perl’s Prussian blue at 700 nm (31). The 

antioxidant activity of putative antioxidant has been attributed to various mechanisms 

such as prevention chain initiation, binding of transition metal ion catalyst, decomposition 

of peroxides, prevention of continued hydrogen abstraction, reductive capacity and 

radical scavenging (32). In the paper, all of the concentrations of the compounds showed 

lower absorbance than reference antioxidants as seen in Figure 1. Hereby, any reductive 

activities were not observed. 

 

Figure 1. Total reductive potential of different concentrations of compound 2a-h, BHT, 
BHA and α-tocopherol. 
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DPPH radical scavenging activity 

Free radical scavenging effect of the compounds 2 was estimated by DPPH radical model. 

The effect of antioxidants on DPPH radical scavenging was thought to be due to their 

hydrogen donating ability (33). DPPH is a stable free radical and accepts an electron or 

hydrogen radical to become a stable diamagnetic molecule (34). The reduction capability 

of DPPH radicals was determined by decrease in its absorbance at 517 nm induced by 

antioxidants. In the study, antiradical capacities of the compounds 2a-h and reference 

antioxidants for instance α-tocopherol, BHA and BHT were detected by using DPPH. 

method. Scavenging effect values of compounds 2 with BHT, BHA and α-tocopherol at 

different concentrations are given in Figure 2. All of the compounds tested with this 

method exhibited very low DPPH free radical scavenging activity in a concentration-

dependent manner. In other words the newly synthesized compounds did not show any 

ability like a radical scavenger. 

 

 
Iron binding capacity 

The chelating of ferrous ions by the compounds 2 and references was measured. 

Ferrozine can quantitatively form complexes with Fe2+. In the presence of chelating 

agents, the complex formation is disrupted with the result that the red color of the 

complex is decreased. Measurement of color reduction therefore allows estimation of the 

chelating activity of the coexisting chelator (35). The transition metals ions play an 

important role as catalysts of oxidative process, leading to formation of hydroxyl radicals 

and hydroperoxide decomposition reaction via Fenton chemistry (36). The production of 
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these radicals may lead to lipid peroxidation, protein modification, and DNA damage. 

Chelating agents are effective as secondary antioxidants because they potentially inhibit 

the metal-dependent processes thereby stabilizing the oxidized form of the metal ion 

(37). Iron binding activities of the compounds 2, α-tocopherol and EDTA are shown in 

Figure 3. In the current paper, high iron binding capacity of synthesized compounds 

would be beneficial in retarding metal-chelating oxidation. The data acquired from Figure 

3 discloses that the metal chelating effects of the compounds 2 were significant and 

concentration-dependent. The metal chelating effect of the compounds and references 

decreased in order of EDTA > 2g ≈ 2b > 2a ≈ 2h > 2c ≈ 2d > 2f ≈ 2e > α-tocopherol, 

which were 85.4, 84.5, 84.0, 82.5, 82.0, 60.3 (%), at the highest concentration, 

respectively. 

 

Figure 3. Iron binding effect of diverse amount of the compounds 2a-h, and reference 
antioxidants. 

 

CONCLUSION 

 

New 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives were obtained and evaluated for 

their in-vitro antioxidant capacity. All of the compounds demonstrate a marked ability for 

metal chelating activity. The data reported with regard to the observed metal chelating 

activities of the studied compounds could prevent redox cycling. The results may also 

give several advices for the improvement of new triazole-based therapeutic target. 
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Türkçe Öz ve Anahtar Kelimeler 

Yeni 1-(Morfolin-4-il-Metil)-3-Alkil(Aril)-4-[4-(Dimetilamino)-
Benzilidenamino]4,5-dihidro-1H-1,2,4-Triazol-5-On’ların Sentezi, 

Karakterizasyonu ve Antioksidan Aktiviteleri 

 

Özlem Gürsoy-Kol*, Haydar Yüksek, Sevda Manap, Feyzi S. Tokalı 

 

Öz: Bu yayında sekiz adet yeni 1-(morfolin-4-il-metil)-3-alkil(aril)-4-[4-(dimetilamino)-
benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on’lar (2), 3-alkil(aril)-4-[4-
(dimetilamino)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on’ların (1) formaldehit 
ve morfolin ile tepkimesinden elde edildi. Yeni sentezlenen bileşikler IR, 1H HMR ve 13C 
NMR spektral verileri ile tanımlandı. Bunun yanında, yeni bileşikler üç farklı ölçüm türüyle 
in vitro potansiyel antioksidan kapasiteleri açısından analiz edildi. Bütün bileşiklerin metal 
kelatlama etkisi olarak belirgin aktiviteye sahip olduğu görüldü.  

Anahtar kelimeler: 4,5-Dihidro-1H-1,2,4-triazol-5-on, Sentez, Mannich bazı, 
Antioksidan kapasitesi. 
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