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INTRODUCTION 

 

Drugs are often modeled as various polygonal shapes, paths, graphs, etc. [1]. Each vertex in 

the polygonal path represents an atom of the molecule, and covalent bonds between atoms 

are represented by edges between the corresponding vertices. As the geometry of proteins 

play an important role in determining the function of the protein [2], molecular descriptors of 

chemical compounds can be correlated to their biological activity. Presently a large number 

of molecular descriptors have been reported as important for the study of molecular drug 

design, lead optimization, and for deriving regression models [3]. At present, cancer is one 

of the leading disease-related cause of death of the human population in the world, and it is 

predicted to continue to become the leading cause of death within the coming years [4]. The 

use of chemical compounds to inhibit cancer cell growth, is a mainstay in the treatment of 

malignancies. A major advantage of chemotherapy is its ability to treat metastatic cancers, 

whereas surgery and radiation therapies are limited to treating cancers that are confined to 

specific areas. Chemotherapy has aroused many researchers’ interests and a great deal of 

current efforts has been focusing on the design and development of different anticancer drugs. 

The large and extensive library of discovered compounds with high activities have been 

compiled by drug databanks and institutes such as National Cancer Institute, but the most 

compelling problem other than the complications involved in developing a new drug has been 

the factor time and capital cost. 

 

Quantitative Structure-Activity Relationship (QSAR) analysis is one of the most effective 

approaches for optimizing leading compounds and designing new drugs. QSAR can be 

employed in predicting the bioactivity such as toxicity, mutagenicity, and carcinogenicity 

based on structural parameters of compounds and appropriate mathematical models. With 

the rapid development of computer science and theoretical quantum chemical study, it can 

speedily and precisely obtain the quantum chemical parameters of compounds by 

computation. Moreover, these parameters, which have definite physical meaning, along with 

the introduction of the QSAR model can increase the chances of predicting the activities of 

the object compound and so quantum chemical theory is extensively applied in establishing 

QSAR models. The aim of this research is to find a new model which predicts the toxicity of 

chemicals with potent activities able to destroy K562 leukemic cell line using Genetic 

Algorithm-Multiple Linear Regression (GA-MLR) technique [5-8]. 
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MATERIALS AND METHODS 

 

Data sources 

In this study, a data set of one hundred and twelve (112) anticancer compounds collected 

from the National Cancer Institute (NCI) database. These chemical structures were aligned 

with their respective bioactive component values on a 2D table after they were optimized at 

the density functional theory (DFT) level using Becke's three-parameter Lee-Yang-Parr hybrid 

functional (B3LYP) in combination with the 6-31G* basis set [9, 10]. The optimized structures 

were employed in the generation of quantum chemical and molecular descriptors. These were 

then divided into training and test sets by Kennard Stone algorithm [11]. The QSAR models 

were generated using the Genetic Function Approximation (GFA). The GFA technique is a 

conglomeration of Genetic Algorithm, Friedman’s multivariate adaptive regression splines 

(MARS) algorithm and Holland’s genetic algorithm to evolve population of equations that best 

fit the training set data [12, 13]. A distinctive feature of GFA is that it produces a population 

of models, instead of generating a single model, so do most other statistical methods. The 

established models were then subjected to internal and external validation and Y-

randomization tests in order to institute their predictability and reliability [14].  

 

Geometric optimization 

Chemical structures of the compounds were drawn using the ChemDraw software 

(CambridgeSoft, 2010), while the molecular geometries were optimized using Spartan 14 

software (Spartan 14v114) [15] at the density functional theory (DFT) level using Becke's 

three-parameter Lee-Yang-Parr hybrid functional (B3LYP) in combination with the 6-31G* 

basis set. The Spartan 14 software also resulted in the generation of a set of quantum 

chemical descriptors. 

 

Descriptors calculation 

The low energy conformers were then submitted for further generation of an additional set of 

molecular descriptors using the software "PaDel-Descriptor version 2.20" [16]. Different 

physicochemical descriptors were calculated for each molecule presented in Table 1. These 

descriptors included electronic, spatial, structural, and topological chemical descriptors. These 

were combined to the set of quantum chemical descriptors obtained from the low energy 

conformer of the structures generated by Spartan 14 Wavefunction software. 
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Data Pre-Treatment / Feature Selection 

It is observed that constant value and highly correlated descriptors may cause difficulties in 

forming QSAR models, hence the predictability and generalization of the model fails under 

these conditions. In order to overcome this problem, the pre-processing for the generated 

molecular descriptors was done by removing descriptors having constant value and pairs of 

variables with correlation coefficient greater than 0.7 using " Data Pre-Treatment GUI 1.2" 

tool that uses V-WSP algorithm [17], [18].  

 

Dataset Division 

The dataset of eighty-five (85) molecular structures was split into training and test set by 

Kennard Stone algorithm technique using the software "Dataset Division GUI 1.2" [19]. 

This is an application tool used to perform rational selection of training and test set from the 

data set.  

 

QSAR Model Development and Validation 

The QSAR model were developed from the training set compounds where the independent 

variables (quantum chemical and molecular descriptors) and the dependent (response) 

variable (pGI50 and pLC50) were subjected to multivariate analysis by Genetic Function 

Approximation (GFA) technique using the material studio software. GFA measures the 

fitness of a model during the evolution process by calculating the Friedman lack-of-fit (LOF). 

In Materials Studio, LOF is calculated using the expression: 

𝐿𝑂𝐹 =
𝑆𝑆𝐸

(1 −
𝐶 + 𝑑𝑝

𝑚 )
2 

Where SSE is the sum of squares of errors, C is the number of terms in the model, other 

than the constant term, and is a user-defined smoothing parameter, dp is the total number 

of descriptors contained in all model terms (again ignoring the constant term) and m is the 

number of samples in the training set [20]. 

 

Internal Model Validation  

The developed models were validated internally by leave- one- out (LOO) cross- validation 

technique. In this technique, one compound is eliminated from the data set at random in 

each cycle and the model is built using the rest of the compounds. The model formed is 
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used for predicting the activity of the eliminated compound. The process is repeated until 

all the compounds are eliminated once. The cross-validated squared correlation coefficient, 

R2
cv (Q2) was calculated using the expression:  

𝑄2 = 1 −
∑(𝑌𝑂𝑏𝑠 − 𝑌𝑃𝑟𝑒𝑑)2

∑(𝑌𝑂𝑏𝑠 − �̅�)2
 

Where YOBS represents the observed activity of the training set compounds, Ypred is the 

predicted activity of the training set compounds and �̅� corresponds to the mean observed 

activity of the training set compounds. 

 

External Model Validation 

External validation was employed in order to determine the predictive capacity of the 

developed model as judged by its application for the prediction of test set activity values and 

calculation of predictive R2(R2pred) value as given by the expression: 

𝑅𝑝𝑟𝑒𝑑
2 = 1 −

∑(𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡) − 𝑌(𝑇𝑒𝑠𝑡))
2

∑(𝑌(𝑇𝑒𝑠𝑡) − �̅�(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2 

 

Where 𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡) and 𝑌(𝑇𝑒𝑠𝑡) indicate predicted and observed activity values respectively, of the 

test compounds. �̅�(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) indicates the mean activity value of the training set. R2
pred is the 

predicted correlation coefficient calculated from the predicted activity of all the test set 

compounds. It has been found that R2
pred may not be sufficient to be indicated the external 

predictability of a model since its value is controlled by ∑(𝑌(𝑇𝑒𝑠𝑡) − �̅�(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2
.  

 

RESULT AND DISCUSSION 

 

Geometry Optimization and Descriptors Calculation 

The observed activities for the various data sets were transformed to obtain a more uniformly 

distributed data as shown in Table 2. After minimization of the various compounds in the data 

set 32 descriptors were generated using the Spartan 14 software. These were combined to 

the 1875 descriptors generated using the paDEL software to give a total of 1907 descriptors.  
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Table 1: Experimental and Predicted toxicities (pLC50) on different leukemia cell lines obtained with linear models based on GA-

MLR technique. 

Serial Number (ID) NSC K562 (Experimental pLC50) K562 (Predicted pLC50) 

1 606172 4.0 4.199 

2 606173 4.0 4.013 

3 643833 4.9 4.361 

4 27640 2.6 2.815 

5 95678 3.0 3.140 

6 264880 2.6 2.592 

7 127716 3.4 b 1.639 

8 102816 2.7 3.065 

9 107392 2.8 3.046 

10 249910 4.0 4.203 

11 629971 4.0 3.508 

12 163501 3.0 b 3.125 

13 406042 4.0 b 3.538 

14 71851 2.3 2.951 

15 132483 4.0 3.844 

16 184692 4.0 4.427 

17 134033 4.0 b 4.062 

18 308847 3.6 3.457 

19 623017 4.0 4.053 

20 355644 4.1 3.946 

21 303812 4.0 4.160 

22 63878 3.3 2.635 

23 167780 3.9 b 3.270 

24 182986 3.7 3.906 

25 139105 3.0 3.047 

26 409962 3.4 3.105 
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27 71261 2.9 2.795 

28 337766 4.3 b 4.167 

29 368390 3.3 b 2.706 

30 750 3.6 b 2.740 

31 94600 4.0 4.209 

32 295500 4.0 4.172 

33 606985 4.0 3.846 

34 295501 4.0 3.708 

35 606499 4.0 b 4.168 

36 606497 4.0 b 4.118 

37 610459 4.0 b 4.043 

38 610456 4.0 b 3.781 

39 610457 4.0 b 4.957 

40 610458 5.0 b 4.357 

41 176323 4.0 4.082 

42 95382 4.0 3.630 

43 107124 4.1 4.025 

44 100880 3.6 3.579 

45 374028 4.0 4.179 

46 618939 5.0 4.991 

47 79037 3.3 3.279 

48 3088 3.1 3.511 

49 178248 2.9 3.009 

50 338947 2.3 b 2.751 

51 757 3.2 3.430 

52 33410 4.9 b 3.677 

53 357704 4.6 4.499 

54 145668 3.0 b 2.707 

55 348948 2.6 b 3.337 

56 82151 4.2 4.247 
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57 267469 3.9 4.396 

58 132313 3.8 3.221 

59 126771 3.6 3.437 

60 376128 *8.0 8.000 

61 123127 4.7 4.417 

62 73754 2.6 2.663 

63 148958 3.0 3.259 

64 364830 4.0 4.226 

65 1895 2.0 b 2.187 

66 329680 2.6 2.585 

67 142982 4.2 4.107 

68 32065 2.6 2.458 

69 118994 2.6 2.423 

70 153353 3.3 b 2.246 

71 330500 4 b 4.145 

72 249992 3.8 3.790 

73 153858 4.0 3.668 

74 8806 3.6 3.173 

75 269148 4.1 4.322 

76 740 3.6 3.412 

77 174121 7.0 6.731 

78 95441 3.6 3.432 

79 26980 4.6 3.807 

80 301739 4.9 4.877 

81 353451 2.9 3.464 

82 354646 5.0 4.962 

83 224131 2.0 1.988 

84 268242 *4.3 4.712 

85 762 3.4 3.321 

86 349174 3.6 4.015 
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87 95466 2.9 2.629 

88 344007 3.0 3.180 

89 135758 3.0 3.014 

90 25154 3.3 3.742 

91 56410 3.1 3.747 

92 143095 2.3 2.567 

93 366140 4.4 4.008 

94 51143 2.0 2.180 

95 332598 4.0 3.489 

96 164011 4.1 3.988 

97 172112 3.6 3.637 

98 125973 4.6 3.895 

99 296934 2.6 b 3.727 

100 363812 *3.6 3.546 

101 361792 4.0 3.649 

102 752 3.6 3.868 

103 6396 3.0 2.951 

104 9706 4.0 3.845 

105 352122 3.7 3.739 

106 83265 3.9 3.499 

107 34462 3.3 3.577 

108 49842 5.6 5.458 

109 67574 3.2 3.932 

110 122819 4.6 4.313 

111 141540 3.0 3.585 

112 102627 2.0 2.132 

Where superscript letters (b) represent test sets for the leukemia cell line, and * 

identifies compounds found outside the applicability domain (outliers) of the model, 
while NSC - represents the NCI's internal identification number of the database entry, 
and is derived from (part of) the acronym of the Cancer Chemotherapy National Service 
Center (CCNSC).
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Feature Selection and Data Division 

The created descriptor outcomes were exposed to data pre-treatment where descriptors with 

constant value and pairs of variables with correlation coefficient greater than 0.7 were 

removed using the software “Data Pre-Treatment GUI 1.2”. This was done to be devoid of 

the model of intercorrelated descriptors. Data pre-treatment resulted in 681 descriptors from 

1907 descriptors, thus removing 1226 invariable and highly correlated descriptors. Data 

division using “Dataset Division GUI 1.2" tool resulted in 90 molecular compounds (covering 

about 80% of the entire compounds) in the training set and 22 compounds (covering about 

20% of the entire compounds) in the test set. 

 

Model Development and Validation 

About two hundred and fifty models were generated from the training set by Genetic Function 

Approximation using the Material Studio Software and the best model based on internal 

validatory statistical parameters was selected for their toxicity (LC50). The developed model 

and the description of the molecular descriptors were shown in the equation pLC50 below with 

the model statistics. The predicted values for the training set by the QSAR model was 

generated by the Material Studio Software, while the predicted test set values was calculated 

using MSExcel 2013 [21] as reported in Table 2. The results for the model validation of the 

developed models are given as follows.  

 

𝑝LC50  =    6.602 (𝐒𝐞𝐜𝐨𝐧𝐝𝐚𝐫𝐲 𝐛𝐮𝐭𝐲𝐥 ) −  1.513 (𝐄 − 𝐋𝐔𝐌𝐎) −  0.892 (𝐀𝐋𝐨𝐠𝐩𝟐)

+  1.560 (𝐆𝐀𝐓𝐒𝟓𝐩) −  2.566 (𝐦𝐢𝐧𝐇𝐁𝐢𝐧𝐭𝟕) +  0.795 (𝐦𝐚𝐱𝐇𝐁𝐢𝐧𝐭𝟕)

−  0.539 (𝐦𝐚𝐱𝐇𝐁𝐢𝐧𝐭𝟖) +  1.503 (𝐄𝐓𝐀𝐄𝐭𝐚𝐏𝐋
) + 1.159 (𝐧𝐅𝟏𝟎𝐑𝐢𝐧𝐠)

+  4.269 (𝐖𝐏𝐒𝐀 − 𝟑) −  3.795 (𝐑𝐃𝐅𝟏𝟒𝟎𝐮) +  1.274 (𝐑𝐃𝐅𝟏𝟒𝟓𝐦) +  3.079 

 

𝑁𝑡𝑟𝑎𝑖𝑛  = 90, 𝑅𝑡𝑟𝑎𝑖𝑛
2  = 0.888,  𝑎𝑑𝑗𝑅𝑡𝑟𝑎𝑖𝑛

2 = 0.871,  𝐹𝑡𝑟𝑎𝑖𝑛 = 50.976, 𝑄𝐶𝑉
2 =  0.845, 

𝑁𝑡𝑒𝑠𝑡  =  22, Outliers = 03 

 

The high calculated Q2
LOO value (0.845) for pLC50 proposes a good internal validation. A second 

validation method was also developed on the basis of an external validation method, here the 

test set constituting 20% of the data set were subjected to the developed model and the 
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result were found promising, since its value 0.532 which was higher than the standard value 

0.50 for the toxicity model.  
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Figure 1: The predicted toxicity values (pLC50) against the experimental values for the 

training and test sets of the compounds on K562 leukemia cell line. 

 

These values indicate the robustness and stability of the constructed models, as can be seen 

that the model did not show any proportional and systematic errors, because the propagation 

of the residuals on both sides of zero is random. The built model was used to predict the test 

set data, and the prediction results are given in Table 1. The predicted values for pLC50 for 

the compounds in the training and test sets using pLC50 equation were plotted against the 

experimental pLC50 values in Figure 1, the calculated values for the pLC50 is in good agreement 

with those of the experimental values. Also, the plot of the standardized residual and 

leverages values for pLC50 is shown in Figure 2.  
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Figure 2: The Williams plot, the plot of the standardized residuals versus the 
Toxicity (pLC50) leverage value for K-562 dataset. 

 

The Williams plot in Figure 2 shows that the only three compounds were found outside the 

applicability domain of the molecule, these compounds with ID numbers 60, 84 and 100 were 

part of the training set. The plot indicates that these compounds structurally different, that is 

these compounds found outside the threshold value h*, have very few of the chemical 

descriptors which could be related to those in the model when compared to other compounds 

within the complete data set. 
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Table 2: External Validation Result for K-562 cell line. 

Model biasness test Systematic Error Result Absent 

  R^2Test(100% data) 0.5316 

  R0^2Test(100% data) 0.4473 

Classical Metrics Q2F1(100% data) 0.4268 

(for 100% data) Q2F2(100% data) 0.4255 

  Scaled Avg.Rm^2(100% data) 0.4003 

  
 

Scaled DeltaRm^2(100% data) 0.0755 

  CCC(100% data) 0.7137 

  RMSEP(100% data) 0.5769 

Error-based metrics SD(100% data) 0.3636 

(for 100% data) SE(100% data) 0.0813 

  MAE(100% data) 0.4552 

 

The external validation of the model in Table 2, showing that the mean absolute error (MAE) 

value is 0.455. Since the value is less than unity, deductions could be made that the 

predictions are close to the experimental outcomes and thereby supporting the value of the 

regression coefficient of the predicted test set (0.532), other classical statistical metrics such 

as Q2
F1 and Q2

F2 presented in Table 2, supports the result already stated in the discussion.  

 

Interpretation of descriptors 

Secondary butyl is a 2D molecular descriptor used in the model, it’s defined as the number of 

secondary butyl group found in potent anticancer compounds. The mean effect reported in 

Table 3 indicates that the increase presence of this property diminishes the toxicity property 

of these molecules. Chemical descriptors like E LUMO and ALogp2 defined as energy of lowest 

occupied molecular orbital and square of AlogP respectively were also used in modelling the 

pLC50 property of these compounds gave a negative contribution to the model (-1.123 and -

0.340). 

 

GATs5p is 2D autocorrelation defined as Geary autocorrelation - lag 5 / weighted by 

polarizabilities, the descriptor was first stated by Todeschini and Consonni [22], in the book 

titled Molecular descriptors for chemoinformatics. It is an autocorrelation type descriptor 

depending on the polarizing ability of the active sites of a chemical drug compound. The 

descriptor was found to contribute positively to the model which is owned to the value of its 
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mean effect. The mean effect of GATs5p indicates that its presence decreases toxicity in 

anticancer drugs. 

 

minHBint7, maxHBint7 and maxHBint8 are 2D Atom type electrotopological state molecular 

descriptors defined as Minimum E-State descriptors of strength for potential Hydrogen Bonds 

of path length 7, Maximum E-State descriptors of strength for potential Hydrogen Bonds of 

path length 7 and Maximum E-State descriptors of strength for potential Hydrogen Bonds of 

path length 8, respectively. Their mean effect was calculated and reported respectively as -

1.637, 0.351 and -0.226. The mean effects of minHbint7 and maxHbint8 were negative 

indicating their direct involvement with the toxicity of the modeled compounds. The value of 

minHBint7 was most significant of all the three E-state type descriptors related to specific 

hydrogen bonds in a certain path length. 

 

ETA_EtaP_L is a 2D Extended topochemical atom type descriptor defined as Local index 

Eta_local relative to molecular size, hence this topochemical descriptor is depend on the 

molecular size of the molecules. The mean effect given as 1.054 indicates that an increase in 

the molecular size of this type descriptor will decrease the toxicity of anticancer compounds. 

 

nF10Ring, WPSA-3 and RDF140u which are the final descriptors in the model give the 

contributions 0.454, 1.657 and -0.705 respectively. They defined as the number of 10-

membered fused rings, PPSA-3 multiplied by the total molecular surface area/1000 and the 

radial distribution function -140/unweighted respectively. WPSA-3 was found to give the 

highest contribution in the model, its value correlates with that of ETA_EtaP_L significantly, 

this similarity can be seen from their meanings which is a subject of the molecular size of this 

active compounds, thereby completing agreeing with the fact that large size molecules have 

less tendency of being toxic when used as anticancer drugs. 
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Table 3: Specification of entered descriptors in genetic algorithm multiple regression model of K-562. 

Descriptors Definition ME 

Secondary butyl  Number of secondary butyl group 0.119 

E LUMO Energy of lowest occupied molecular orbital -1.123 

ALogp2 Square of ALogP -0.340 

GATS5p Geary autocorrelation - lag 5 / weighted by polarizabilities 1.227 

minHBint7 Minimum E-State descriptors of strength for potential Hydrogen Bonds of path length 7 -1.637 

maxHBint7 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 7 0.351 

maxHBint8 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 8 -0.226 

ETA_EtaP_L Local index Eta_local relative to molecular size 1.054 

nF10Ring Number of 10-membered fused rings 0.454 

WPSA-3 PPSA-3 * total molecular surface area / 1000 1.657 

RDF145m Radial distribution function - 145 / weighted by relative mass 0.554 

RDF140u Radial distribution function - 140 / unweighted -0.705 
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CONCLUSION 

 

The pLC50 for the leukemia cell line K562 was positively modelled for a sequence of anticancer 

drugs collected from NCI library, using highly interconnected descriptors computed using 

paDEL software, the statistical parameters of the model satisfy the criteria proposed by 

Tropsha, Roy and Grammatica for validating QSAR models. A few descriptors such as WPSA-

3, minHBint7, GATS5p, E LUMO and ETA_EtaP_L with mean effects of 1.657, -1.637, 1.227, 

-1.123 and 1.054 respectively, were found to be significantly responsible for the toxicity of 

the compounds used in the data set. 
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Türkçe Öz ve Anahtar Kelimeler 

Genetik Algoritma-Çoklu Lineer Regresyon Kullanarak K562 Kanser 

Hücre Dizisine Karşı Bazı Aktif Bileşiklerin Zehirlilik Modellemesi 
 

David Ebuka Arthur, Adamu Uzairu, Paul Mamza, Abechi Eyeji Stephen, Gideon Shallangwa 

 

Öz: Bu araştırmada antikanser bileşiklerinin K562 hücre dizisi üzerindeki zehirliliğinin 

modellemesi araştırılacaktır, veri serisini oluşturan 112 bileşik, modelin sırasıyla geliştirilmesi 

ve doğrulanması için eğitim ve test setleri olarak ayrılmıştır. İç ve dış doğrulama parametresi 

olan R2, eğitim ve test serisi için 0,845 ve 0,5316 olarak tespit edilmiştir, bu da modelin 

sağlamlığını ve bileşiklerin zehirliliğini tahmin etme yeteneğini belirlemek için kullanılmıştır. 

Modelin ortalama etkisinin %50 kadarından WPSA-3 ve minHBint7 moleküler tarifçi 

sorumludur. 

 

Anahtar kelimeler: QSAR; modelleme; dış doğrulama; moleküler tarifiçiler; genetik 

algoritma. 
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