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Abstract
In this work, two problems related with the Low Lagrangian formulation of the Vlasov-
Poisson equations are solved. The first problem is related to the space on which the Low
Lagrangian is defined. It is shown that the Low Lagrangian is defined on the tangent
bundle of the densities of configuration space. The second problem is related to the
assumptions which are called Low constraints. It is shown that Low constraints amount
to the fact that the Low Lagrangian is invariant under a group action.
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1. Poisson-Vlasov equations
The evolution of collisionles plasma is modeled by the Poisson-Vlasov equations in [13],

which is in Russian, and [14] in English. In 1958, Low gave an action principle for self
consistent Poisson-Vlasov equations of a collisionless plasma. This Lagrangian, which is
called the Low Lagrangian, is defined on the group of canonical diffeomorphisms of particle
phase space. However, usually one expects a Lagrangian to be defined on the tangent
bundle of some manifold rather than the manifold itself. This discrepancy suggests that
Low Lagrangian description of plasma dynamics requires further explanation.

The Poisson-Vlasov equations are,
∇2

qφf (q) + e
∫
f(q,p)d3p = 0

∂f
∂t + p

m∇qf − e∇qφf .∇pf = 0
(1.1)

Here f(q,p) is the density of plasma and φf (q) is the electrostatic potential [14]. Let
Q ⊂ R3 be the configuration space of plasma particles, and let T ∗Q be the phase space.
Particle motion is a curve on the canonical diffeomorphisms of T ∗Q. Equivalently, each
configuration of plasma is in Diffcan(T ∗Q), where Diffcan(T ∗Q) is the group of diffeo-
morphisms which preserve the canonical symplectic structure on T ∗Q. For general infor-
mation we refer to [1–7] and [9–12] for earlier works. The characteristic curve of the Vlasov
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equation is defined by
dq
dt = p

m

dp
dt = −e∇qφf

df(z)
dt = 0

(1.2)

where z =(q,p) are the Eulerian coordinates. The first two equations are Newton’s equa-
tions

mq̈ + e∇qφf = 0 (1.3)
and the last equation

df(z)
dt

= 0 (1.4)
implies that the plasma density remains unchanged in time, i.e.

f(z) = f0 (Z) (1.5)
Now, integrating the plasma density with compact support (1.5) over T ∗Q along the
characteristic curve gives the Low constraint∫

ϕt(T ∗Q)
f(z) d6z−

∫
T ∗Q

f0(Z) d6Z = 0 (1.6)

expressing the conservation of density in the Eulerian coordinates. The plasma density
and the electrostatic potential are related by the Poisson equation

∇2
qφf (q) + e

∫
f(q,p)d3p =0 (1.7)

with p = mq̇ being the conjugate momenta, and another constraint introduced by Low
where ϕt ∈ Diffcan(T ∗Q) is an arbitrary motion of particles.

2. Low Lagrangian formulation
A Lagrangian formulation of this problem is given by Low [8]. Let f0(Z) be the plasma

density at a reference configuration Z ∈ T ∗Q and φf (q) be the electrostatic potential in
the Eulerian coordinates z = (q,p). Then, the Low Lagrangian density in time is given
by

LLow[q, ·q,φf ] =
∫

T ∗Q
f0(Z)[12m|

·
ξ (Z) |2 − eφf (ξ (Z) , t)]d6Z + 1

2

∫
Q
|∇qφf (q)|2d3q (2.1)

which is the single particle Lagrangian where m is the particle mass and e is the particle
charge, and q = ξ (Z).

Low variational principal is a generalization of the Hamilton’s principle of classical
mechanics of particles through the use of Lagrangian displacement variable ξ to describe
a continuum [4].

The solution space of particle trajectories is obtained by solving the Low variational
principle and the densities are solutions of the Vlasov equation. Given a trajectory one
solves linear equations for the potential φf and then an integro-differential equation for the
density f which is also linear for known potential. Conversely, given a density one solves
the Poisson equation for φf and Newton’s equations for the trajectories. Both procedures
involve linear partial differential equations and hence there appear arbitrary functions in
the general solution. The electrostatic constraint given by the Poisson equation seems
to eliminate this arbitrariness in constructing solutions from different representations of
dynamics thereby ensuring the consistency. Thus, we are led to consider the Poisson
equation as a constraint ensuring the consistency between motions of plasma particles and
evolution of the plasma density [15].

The variation of Low Lagrangian gives
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δLLow[q, ·q,φf ] = −
∫
f0(Z)( ..q + e∇qφf ) · δqd6Z︸ ︷︷ ︸

Newton′s Eq.

+ e

[∫
f(z)δφfd

6z −
∫
f0(Z)δφfd

6Z

]
︸ ︷︷ ︸

Low.Constraint

−
∫ (
∇2

qφf +
∫
ef(z)d3p

)
δφfd

3q︸ ︷︷ ︸
P oisson Eq.

+
∫
f0(Z) d

dt
( .
qδq)d6Z︸ ︷︷ ︸ +

non−effective term

∫
∇q · (∇qφfδφ)d3q︸ ︷︷ ︸
Divergence T erm

(2.2)

The variation of the Low Lagrangian with respect to the fields q and φf gives
δLLow

δq = − ( ..q + e∇qφf )

δLLow
δφf

= −
∫ (
∇2

qφf +
∫
ef(z)d3p

)
d3q︸ ︷︷ ︸

P oisson Eq.

+ e

[∫
f(z)d6z −

∫
f0(Z)d6Z

]
︸ ︷︷ ︸

V lasov Eq.

(2.3)

The variation with respect to q gives Newton’s equations while the variation with respect
to φf gives Poisson-Vlasov equations. Therefore in order to obtain the Poisson equation
from the Low Lagrangian one has to assume the Vlasov equation, or vice versa.

Although the computation is quite obvious and straightforward, there are two problems
in the Low Lagrangian formulation:

(1) First of all, one expects a Lagrangian to be defined as a function on the tangent
bundle of a manifold, and the variation is computed with respect to the coordinates
of the base manifold. In the case of the Low Lagrangian, coordinates of our base
manifold should be q and φf , and [q,φf ,

·q] should be the coordinates of its tangent
bundle, which is not. So we have a problem with the space on which LLow is
defined.

(2) The variation of the LLow with respect to φf leads to the Poisson equation under
the assumption of the Low constraint which is nothing but the global conservation
of density over T ∗Q, while the Vlasov equation states the local conservation of
density. Hence, in order to obtain the Low constraint one should assume the
Vlasov equation which one expects to get as a result of the variation process.

Now, it seems that these two major problems are somehow related to each other. We
first try to solve the first problem, and then by using some properties of this solution, we
try to explain the second.

3. The first problem: The space on which the Low Lagrangian is defined
First we try to define the base manifold with coordinates q and φf . Since φf is a function

on Q, it could be identified with a zero-form on Q

φf ∈ F (Q) ≈ Λ0T ∗Q (3.1)

With the help of the Hodge star map the space of densities D can be defined to be

D = Q× Λ0T ∗Q ≈ Q× Λ3T ∗Q

(q, ρ)
(
q, ρd3q

) (3.2)
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Then we have the inclusion
D

(q,ρ)
↪→ T ∗Q

(q,dρ)
(3.3)

and the maps

T ∗Q
(qi,pi)

→ Q× ∧6T ∗Q(
q, π∗

Q(p)∧∗π∗
Q(p)

) → D(
q,

∫
T ∗

q Q
π∗

Q(p)∧∗π∗
Q(p)

) (3.4)

or explicitly,

T ∗Q → Den(T ∗Q) → D

(
qi, pi

)
7−→

(
q, f(q, p)d3p ∧ d3q

)
7−→

(
q,

(∫
T ∗

q Q f(q, p)d3p
)
d3q

) (3.5)

where Den(T ∗Q) is the space of densities, i.e. the set of multiples of volume form on T ∗Q.
Since D is a subbundle of T ∗Q

TD ↪→ T (T ∗Q) ≈ T ∗ (TQ)

(q, ρ, q̇, ρ̇) (q, dρ, q̇, dρ̇) (q, q̇, dρ, dρ̇)
(3.6)

the metric defined on the fibers of T ∗Q given by

‖(q, p, q̇, ṗ)‖2 =
∫

T ∗Q
f (Q,P ) ‖q̇‖2 d3Qd3P +

∫
T ∗Q

π∗
Q (p) ∧∗ π∗

Q (p) (3.7)

Theorem 3.1. The Low Lagrangian, LLow, is a function on TD, i.e. it is given by

LLow : TD → R

4. The second problem: The assumption of Low constraint
In this subsection starting from the definition of the usual action of Diff (Q) on Q, we

are going to define natural actions of Diff (Q) on T ∗Q, F (Q) and finally on D.

4.1. The action of Diff (Q) on Q

Define maps Ψg for the actions of Diff(Q) on Q as to satisfy

Ψ : Q −→ Q

q 7→ Ψ(q)

Let Ψt be a curve in Diff(Q) with generator

X (q) = d

dt
|t=0 Ψt (q) , X ∈ X(Q)

The flow Ψt on Q is the maximal integral curve

q(t) = Ψt(q0)

Differentiating this at t = 0 we find the fundamental vector field

XQ(q) = d

dt
|t=0 Ψt(q) = (Ψq)∗ ◦X (q0)

XQ = Ψ∗
q ◦X ◦Ψ−t

on Q for the action of Diff(Q)
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4.2. The action of Diff (Q) on T ∗Q

These are defined by the cotangent lifts of Ψ

Φ : T ∗Q −→ T ∗Q, Φ(q, p) =
(
Ψ(q),

(
Ψ−1

)∗
p
)

The fundamental vector fields on T ∗Q generating these actions are

XT ∗Q(q, p) = d

dt
|t=0 Φt((q, p)) =

(
Φ(q,p)

)
∗
◦X

where
(q(t), p(t)) = Φt(Q0, P0)

is the curve on T ∗Q induced by the flow Ψt of X.

X(q) = Xi(q)∂qi

The coordinate expression for the generator is the complete lift to the cotangent bundle
of the vector field X, which we simply denote as the cotangent lift:

XT ∗Q(q, p) = Xi(q)∂qi − pj
∂Xj

∂qi
∂pi

of the generator on Q.

4.3. The action of F (Q) on T ∗Q

The action of F (Q) on T ∗Q is defined as the fiber translation given by t : F (Q)×T ∗Q→
T ∗Q given by tρ(q, p) = (q, p− dρ(q)). The generator is computed to be

Y = d

ds
tρt(q, p) |t=0= d

ds
(q, p−∇ρs) |s=0

= − ∂ρ

∂q1

∂

∂p1
− ∂ρ

∂q2

∂

∂p2
− ...− ∂ρ

∂qn

∂

∂pn

= − ∂ρ
∂qi

∂

∂pi

4.4. The action of Diff(Q) on F (Q)
We have now actions of an infinite dimensional group on an infinite dimensional space.

This is defined by the push-forward of functions by the action ΨR,L
g(t) on Q, namely, for

ρ ∈ F (Q), we let
σg(ρ) = ρ ◦Ψg−1 = (Ψg−1)∗(ρ).

To verify that this defines an action, we will show that

σg1g2 = σg2 ◦ σg1 (4.1)

We compute

σg2 ◦ σg1(ρ) = σg2 ◦ (ρ ◦Ψg−1
1

) = ρ ◦Ψg−1
1
◦Ψg−1

2

= ρ ◦Ψg−1
2 g−1

1
= ρ ◦Ψ(g1g2)−1 = σg1g2

The generators of these actions are the vector fields
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XF (Q)(ρ(q)) = d

dt
σg(t)(ρ(q))

∣∣∣
t=0

= d

dt
(ρ ◦Ψg−1)(q))

∣∣∣
t=0

= TΨq(g−1(t))ρ ◦ Tg−1(t)Ψq ◦
dg−1(t)
dt

∣∣∣∣∣
t=0

= −Tqρ ◦ TidΨq ◦X = −Tqρ ◦XQ(q) (4.2)
on F (Q). To see that, XF (Q) is really the Lie derivative of XQ, let gt = g(t) be a curve on
Diff(Q), then the corresponding curve on F (Q) is σgt(ρ) and the tangent vector to this
curve is

d

dt
σgt(ρ) = d

dt

(
Ψg−1

t

)∗
ρ = −

(
Ψg−1

t

)∗
XQ(ρ). (4.3)

Evaluating at t = 0, this gives
d

dt
σgt(ρ)

∣∣∣∣
t=0

= −XQ(ρ) = −dρ(XQ) = −LXQ
(ρ)

which is the vector −Tqρ ◦XQ(q) generating the action of Diff(Q) on F (Q).

4.5. The action of Diff (Q) on D

This density formulation reveals the following action of Diff (Q) on D. For Ψ ∈
Diff (Q)

T ∗Q −→ D
(Q0, P0) 7−→

(
Q0, ρ (Q0) d3Q0

)
Ψ∗ ↓ ↓ Ψ∗

T ∗Q −→ D
(q, p) 7−→

(
q, ρ(q)d3q

) (4.4)

5. The group S and its Lie algebra
5.1. The group S

The action of Diff (Q) on D reveals that

Ψ∗
(
ρ(Q0)d3Q0

)
= ρ(Ψ (Q0))d3ψ (Q0) = ρ (Ψ(Q0)) JΨ (Q0) d3Q0 (5.1)

where JΨ (Q0) is the Jacobian of the diffeomorphism Ψ at Q0.Therefore, one can define
the action of Ψ ∈ Diff(Q) on the densities ρ by

Ψ · ρ = JΨ(ρ ◦Ψ) (5.2)
Since our diffeomorphisms comes from the flow Ψt, it is possible to distinguish backward

and forward flows, identifying forward flows with orientation preserving diffeomorphisms
Diff+ (Q) , we can assume that JΨ is always positive, i.e.

JΨ = eσ (5.3)
for some σ ∈ F (Q) . Now, we can define the action of S = (Diff (Q) , ◦)s (F (Q) ,+) on
densities by

(Ψ, σ) · ρ = eσ(ρ ◦Ψ) (5.4)
The semidirect product structure of the group S comes from the fact that the second
component σ = ln (JΨ) depends on the first component ψ.

One could visualise the group S by

Q Ψ−−−−→ Q σ−−−→ R
Q0 q = Ψ (Q0) σ(Ψ (Q0)) (5.5)

and the group product by
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Q Ψ1−−−−→ Q Ψ2−−−−→ Q

σ1 ↘ ↙ σ2
R

(5.6)

or componentwise

(Ψ1, σ1)(Ψ2, σ2) = (Ψ2 ◦Ψ1, σ2 + σ1 ◦Ψ−1
2 ) (5.7)

5.2. The Lie algebra s

The Lie algebra of S, denoted by s, can be defiend as follows. Choose a curve (Ψt, σt) ∈ S
passing through identity of S which is (idQ0 , 0) . We may define left and right actions of
S on this curve as

(Ψt, σt) (Θ, θ) = (Θ ◦Ψt, θ + σt ◦Θ−1) (5.8)

is the right action and

(Θ, θ) (Ψt, σt) = (Ψt ◦Θ, σt + θ ◦Ψ−1
t ) (5.9)

is the left action. Differentiating with respect to t at t = 0 gives the right and left actions
of S on s are

d

dt
(Ψt, σt) (Θ, θ) |t=0=

(
(Θ)∗

·
Ψ0,

·
σ0 ◦Θ−1

)
(5.10)

and

d

dt
(Θ, θ) (Ψt, σt) |t=0=

( ·
Ψ0 ◦Θ, ·

σ0 −
·

Ψ0 (θ)
)

(5.11)

respectively. Therefore the right and left actions of S on s are( ·
Ψ0,

·
σ0

)
(Θ, θ) =

(
(Θ)∗

·
Ψ0,

·
σ0 ◦Θ−1

)
(5.12)

and

(Θ, θ)
( ·

Ψ0,
·
σ0

)
=

( ·
Ψ0 ◦Θ, ·

σ0 −
·

Ψ0 (θ)
)

(5.13)

The Adjoint action is given by

(Θ, θ)
( ·

Ψ0,
·
σ0

)
(Θ, θ)−1 = ((Θ−1)∗

·
Ψ0 ◦Θ, ·

σ0 ◦Θ−1 −
·

Ψ0(θ ◦Θ−1)) (5.14)

The semidirect product structure of S allows us to write right and left decompositions as

(Ψ, σ) = (Ψ, 0)(idq, σ) = (idQ0 , σ ◦Ψ)(Ψ, 0) (5.15)

we will identify the additive subgroups (idq, ρ) and (idQ0 , ρ ◦ ψ) with (F (Q) ,+) . In this
notation we identify s with the right invariant vector fields on S and use the left action of
S on s.
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6. The action of the group S on T ∗Q and T (T ∗Q)
6.1. Action of S on T ∗Q

Now, the action of S on T ∗Q is defined by the diagram

T ∗Q Ψ∗
←− T ∗Q

↓ ↓ ↖dσ

Q Ψ−→ Q σ−→ R
(6.1)

or componentwise

(Ψ, σ) (Q0, P0) =
(
Ψ(Q0), (Ψ∗)−1P0 − dσ

)
= (q, p− dσ) (6.2)

Proposition 6.1. The action of S on T ∗Q preserves the symplectic structure ω = dqi∧dpi

on T ∗Q.

Proof. Let X denote the infinitesimal generator of the action of S on T ∗Q,then,

X = Xi∂qi −
(
pj∂qiXj + ∂qiσ

)
∂pi

by taking the Lie derivative of the symplectic two-form along X

LX(dpi ∧ dqi) = d
(
−Xidpi − pj∂qiXjdqi − ∂qiσdqi

)
= d

(
−d

(
Xipi + σ

))
= 0 (6.3)

Since S preserves the symplectic structure it also preserves the symplectic volume and
therefore �

LX (dV ) = 0 (6.4)

6.2. Action of S on T (T ∗Q)
Analogously, we can define the action of S on TT ∗Q by the tangent lift of (6.2)

TT ∗Q ( Ψ∗)−1
∗−−−−−→

TT ∗Q

↖d
·
σ

T ∗Q ( Ψ∗)−1
−−−−−→

T ∗Q T

↓ ↓ ↖dσ

Q Ψ−−−−→ Q σ−−−→ R

(6.5)

or componentwise

(Ψ, σ)(Q0, P0, Q̇0, Ṗ0) =
(
Ψ(Q0), (Ψ∗)−1P0 − dσ,Ψ∗(Q̇0), (Ψ∗)−1

∗ Ṗ0 − d
·
σ

)
(6.6)

where

σt = σ(Ψ(Qt)) (6.7)

and

d
·
σ = (dσ)∗

(
Q̇0

)
(6.8)
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6.3. The infinitesimal generator of the action of the group S on T ∗Q

Let Ψt be the flow of the equation (1.2) .Then we have

(Ψt, σ)(Q0, P0) = (Ψt(Q0), (Ψ∗
t )−1P0 − dσ(Ψt(Q0)) (6.9)

In accordance with (6.7) we define

σt(Q0) = σ(Ψ(Qt)) = σ(Ψt(Q0)) (6.10)

Then (6.9) becomes

(Ψt, σ)(Q0, P0) =
(
Ψt(Q0), (Ψ∗

t )−1P0 − dσt(Q0)
)

(6.11)

Differentiating (6.9) w.r.t. t at 0 leads to

d

dt
(Ψt, σt)(Q0, P0) |t=0= (

·
Ψ0(Q0), (

·
Ψ

∗

0)−1P0 − (d ·
σ0)(Q0)) (6.12)

Therefore the action of S on T ∗Q by the tangent lift is

(Ψt, σt,
·

Ψt,
·
σt)(Q0, P0) = (Ψt(Q0), (Ψ∗

t )−1P0 − dσt(Q0),
·

Ψt(Q0), (
·

Ψ
∗

t )−1P0 − d
·
σt(Q0))

(6.13)
and the infinitesimal generator determines an element of Lie algebra s given by the section
of T (T ∗Q)

(Q0, P0, Q̇0, Ṗ0) = (idQ0 , 0,
·

Ψ0,
·
σ0)(Q0, P0) = (Q0, P0,

·
Ψ0(Q0), (

·
Ψ

∗

0)−1P0 − d
·
σ0(Q0))

(6.14)
The action of S on T (T ∗Q) is given by

(Ψ, σ)(Q0, P0, Q̇0, Ṗ0)
=

(
Ψ(Q0), (Ψ∗)−1P0 − dσ,Ψ∗(Q̇0), (Ψ∗)−1Ṗ0 − d

·
σ

)
= (q, p− dσ(q), q̇, ṗ− d ·

σ)
(6.15)

is consistent with the left action of S on s

(Ψ, σ)(id, 0,
·

Ψ0,
·
σ0) = (ψ, σ,

·
Ψ0 ◦Ψ, ·

σ0 −
·

Ψ0(σ)) (6.16)

The action of S on D and TD could be obtained by restriction of the action on T ∗Q to
D.

7. The invariance of Low Lagrangian under the group S

Now, to define the action of S on the Low Lagrangian LLow, we will use the semidirect
product structure of S. In order to prove the invariance under the action of (Ψ, σ) we will
first investigate the invariance under (id, σ) , then under (Ψ, 0) .

L̃ = (id, σ) · L (q, q̇, φf (q)) = L
((
id, 0, (id)∗ ,

·
σ

)
· (q, q̇, φf (q))

)
= L

((
q, q̇, φf (q)− ·

σ
))

=
∫

T ∗Q f(z)(1
2m ||q̇||

2 − eφf (q) + e
·
σ)d6z + 1

2
∫

Q

∣∣∣∇q(φf (q)− ·
σ(q))

∣∣∣2 d3q

(7.1)
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Now, we are going to check the invariance of the Low Lagrangian under the action of S.
Therefore we take the variation with respect to ·

σ rather than σ.Then we have,
δL̃
δρ̇ = e

∫
T ∗Q f(z)d6z + 1

2
δ
δρ̇

∫
Q(−2∇qφf (q) · ∇q

·
σ)d3q + 1

2
δ
δρ̇

∫
Q∇q

·
σ · ∇q

·
σd3q

= e
∫

T ∗Q f(z)d6z +
∫

Q∇2
qφf (q)d3q −

∫
Q
∇q ·

(
(∇qφf (q)−∇q

·
σ)

)
d3q︸ ︷︷ ︸

Divergence T erm

−
∫

Q

d

dt

(
∇2

qσ
)
d3q︸ ︷︷ ︸

Ineffective T erm

= e
∫

T ∗Q f(z)d6z +
∫

Q∇2
qφf (q)d3q

(7.2)
Therefore

δL̃

δ
·
σ

= 0 =⇒ ∇2
qφf (q) = −e

∫
T ∗Q

f(z)d3p (7.3)

which implies that the invariance of Low Lagrangian under the action of F (Q) part
amounts to the Poisson equation.

For the invariance under the action of the Diff (Q) part, we use the semidirect product
structure and the invariance under the action of F (Q) part (i.e. the Poisson equation)
and choose

·
σ = φf (7.4)

Under this assumption Low Lagrangian reduces to

LLow (q, q̇) = 1
2

∫
T ∗Q

f(z)m ||q̇||2 d6z (7.5)

Theorem 7.1. The Vlasov equation is obtained by the variation of L with respect to Ψ̇.

The action of (Ψ, 0) on reduced form of Low Lagrangian is

L̂ = (Ψ, 0) · LLow

(
Q0, Q̇o

)
= LLow

((
Ψ, 0,

·
Ψ, 0

)
·
(
Q0, Q̇o

))
= LLow (q, q̇, 0) = 1

2
∫

T ∗Q f(z)m ||q̇||2 d6z
(7.6)

Since Ψ is generated by the flow Ψt which is Ψ0 = idQo and Ψt0 = Ψ, the Lie derivative
of the Lagrangian L̂ along the direction of the flow, X is equal to the variation of the
Lagrangian w.r.t.

·
Ψ.

δL̂

δ
·

Ψ
= 1

2

∫
T ∗Q

(LXf(z))m ||q̇||2 d6z + 1
2

∫
T ∗Q

f(z)m
(
LX ||q̇||2

)
d6z (7.7)

The assumption of F (Q) invariance amounts to the zero electrostatic potential case,
which means that there is only kinetic energy term, 1

2m ||q̇||
2 , in the particle Lagrangian

and particle Hamiltonian, and hence they are the same. Since the particle Hamiltonian is
invariant under the flow we have,

LX ||q̇||2 = 0 (7.8)
(7.7) amounts to ∫

T ∗Q
LXf(z)m ||q̇||2 d6z = 0 (7.9)

Now, since
1
2m ||q̇||

2 > 0 (7.10)
we get

LXf(z) = df (z)
dt

= 0 (7.11)

which is the Vlasov equation.
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8. Conclusion
In this work, two problems related with the Low Lagrangian formulation of the Vlasov-

Poisson equations are solved. The first problem is related to the space on which the Low
Lagrangian is defined. Usually, a Lagrangian is expected to be defined on the tangent
bundle of a manifold. However, in the Low Lagrangian case, the space on which this
Lagrangian is defined is not so clear. Taking the variation process into consideration, it
is shown that Low Lagrangian is defined on the tangent space of the space of densities
of the configuration space. Then it is shown that Low Lagrangian can be written as the
square of the norm of a tangent vector in this space. The second problem is related to
the assumptions which are called Low constraints. To clarify these assumptions further,
the group S is introduced by using the action of the diffeomorphism group on the tangent
bundle of the space of densities. After computing the infinitesimal generator of the action
of S on this space, it is shown that Low constraints amount to the invariance of the Low
Lagrangian under this action. Therefore, these two seemingly unrelated problems related
to the Low Lagrangian is solved in a unifying approach which formulates the Lagrangian on
the tangent space of the space of densities and explains Low constraints as the invariance
of the Lagrangian under the action of the group S on the tangent bundle of the same
space.

Obviously, once one get the invariance of the Lagrangian under a certain group, the
next question will be to investigate the reduction of the Lagrangian. For further work, we
are planning to study this reduction and its relation with some other physical phenomena.
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