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Abstract

In this paper, we consider two classes of first order neutral nonlinear differential equations and we give some new sufficient conditions for
the existence of positive periodic solutions of these equations by using the Krasnoselskii’s fixed point theorem. An illustrative example is
provided to support the theory developed in this study.
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1. Introduction

In the present work, we provide new sufficient conditions for the existence of positive ω-periodic solutions of the following first-order
neutral differential equations [

r(t)
[

x(t)−
m

∑
i=1

ci(t)x(t− τi(t))
]]′

=−q(t)x(t)+
n

∑
j=1

f j(t,x(t−σ j(t))) (1.1)

and [
r(t)
[

x(t)−
m

∑
i=1

ci(t)
∫ 0

−∞

P(ξ )x(t +hi(ξ ))dξ

]]′
=−q(t)x(t)+

n

∑
j=1

b j(t)
∫ 0

−∞

P(ξ ) f j(t,x(t +g j(ξ )))dξ , (1.2)

where ci,τi,b j,σ j ∈ C(R,R) are ω-periodic functions (i = 1,2, . . . ,m; j = 1,2, . . . ,n.), r ∈ C1(R,R) with r(t) > 0, q ∈ C(R,R) with
q(t)> 0, r,q are ω-periodic functions, f j ∈C(R×R,R), f j is ω-periodic in t. In addition, hi,g j ∈C(R,R) (i = 1,2, . . . ,m; j = 1,2, . . . ,n.),
P ∈C(R, [0,∞)) with

∫ 0
−∞

P(ξ )dξ = 1.
In recent years, there has been a rapid growth of interest in the existence of positive periodic solutions of first-order neutral differential
equations which appear in the control models, blood cell production models and population models. We also refer the reader to the papers
[5, 7, 8] for applications of nonlinear neutral differential equations in mathematical, theoretical, and chemical physics. Existence of positive
periodic solutions of the following neutral differential equations

d
dt

[x(t)− cx(t− τ(t))] =−a(t)x(t)+ f (t,x(t− τ(t))) (1.3)

and

d
dt

[
x(t)− c

∫ 0

−∞

Q(r)x(t + r)dr
]
=−a(t)x(t)+b(t)

∫ 0

−∞

Q(r) f (t,x(t + r))dr, (1.4)

where 0 6 c < 1 and −1 < c < 0, and

[g(t)(x(t)+ c(t)x(t− τ(t)))]′ =−a(t)x(t)+ f (t,x(t− τ(t))), (1.5)

and [
g(t)(x(t)+ c(t)

∫ 0

−∞

Q(r)x(t +h(r))dr)
]′

=−a(t)x(t)+b(t)
∫ 0

−∞

Q(r) f (t,x(t +h(r)))dr, (1.6)
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where −c1 6 c(t)6 c2 for c1,c2 > 0 with c1 + c2 < 1, were investigated in [11] and [10], respectively. As we see from the above, equations
(1.3) and (1.5) are special forms of equation (1.1), and equations (1.4) and (1.6) are special forms of equation (1.2). Consequently, the results
presented in this paper generalize the main results in [11] and [10]. We refer to [2, 3, 4, 6, 9, 12, 13] and references therein for recent studies
of positive periodic solutions of neutral differential equations.
The following fixed point theorem will be used in proofs.

Lemma 1.1. (Krasnoselskii’s Fixed Point Theorem [1] p.8). Let X be a Banach space, let Ω be a bounded closed and convex subset of X
and, let T,S be maps of Ω into X such that T x+Sy ∈Ω for every pair x,y ∈Ω. If T is a contractive and S is completely continuous, then the
equation

T x+Sx = x

has a solution in Ω.

2. Main Results

Let Φ = {x(t) : x(t) ∈C(R,R), x(t +ω) = x(t), t ∈ R} with the sup norm ‖x‖= sup
t∈[0,ω]

|x(t)|. It is clear that Φ is a Banach space. Let

r0 = min
t∈[0,ω]

r(t) and r1 = max
t∈[0,ω]

r(t).

Theorem 2.1. Assume that ci(t)> 0, i = 1,2, . . . ,m, ∑
m
i=1 ci(t)6 c < 1 and there exist positive constants M1 and M2 with 0 < M1 < M2

such that

r1M1 6 r(t)
[

∑
n
j=1 f j(t,x j)

q(t)
−

m

∑
i=1

ci(t)yi

]
6 r0(1− c)M2, (2.1)

∀t ∈ [0,ω] and ∀x j,yi ∈ [M1,M2], ( j = 1,2, . . .n; i = 1,2, . . .m). Then (1.1) has at least one positive ω-periodic solution x(t) ∈ [M1,M2].

Proof. We note that finding an ω-periodic solution of (1.1) is equivalent to finding an ω-periodic solution of the integral equation

x(t) =
m

∑
i=1

ci(t)x(t− τi(t))+
1

r(t)

∫ t+ω

t
G(t,s)

[
n

∑
j=1

f j(s,x(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)x(s− τi(s))

]
ds,

where

G(t,s) =
exp(

∫ s
t

q(u)
r(u) du)

exp(
∫

ω

0
q(u)
r(u) du)−1

.

Let Ω = {x ∈ Φ : M1 6 x(t) 6 M2, t ∈ [0,ω]}. It can be seen that Ω is a bounded, closed and convex subset of Φ. Define two operators
T,S : Ω→Φ as follows

(T x)(t) =
m

∑
i=1

ci(t)x(t− τi(t)) (2.2)

and

(Sx)(t) =
1

r(t)

∫ t+ω

t
G(t,s)

[
n

∑
j=1

f j(s,x(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)x(s− τi(s))

]
ds. (2.3)

For any x ∈Ω and t ∈ R, it follows from (2.2) and (2.3) that

(T x)(t +ω) =
m

∑
i=1

ci(t +ω)x(t +ω− τi(t +ω)) =
m

∑
i=1

ci(t)x(t− τi(t)) = (T x)(t)

and

(Sx)(t +ω) =
1

r(t +ω)

∫ t+2ω

t+ω

G(t +ω,s)
[ n

∑
j=1

f j(s,x(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)x(s− τi(s))
]

ds

=
1

r(t +ω)

∫ t+ω

t
G(t +ω,v+ω)

[ n

∑
j=1

f j(v+ω,x(v+ω−σ j(v+ω)))−q(v+ω)
m

∑
i=1

ci(v+ω)x(v+ω− τi(v+ω))

]
dv

=
1

r(t)

∫ t+ω

t
G(t,v)

[ n

∑
j=1

f j(v,x(v−σ j(v)))−q(v)
m

∑
i=1

ci(v)x(v− τi(v))
]

dv

= (Sx)(t)
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which implies that T (Ω)⊂Φ and S(Ω)⊂Φ. Now, we show that T x+Sy ∈Ω for all x,y ∈Ω and t ∈ R. By using (2.1), (2.2) and (2.3), we
have

(T x)(t)+(Sy)(t) =
m

∑
i=1

ci(t)x(t− τi(t))+
1

r(t)

∫ t+ω

t
G(t,s)

[ n

∑
j=1

f j(s,y(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)y(s− τi(s))
]

ds

6
m

∑
i=1

ci(t)M2 +
1
r0

∫ t+ω

t
G(t,s)q(s)

[
∑

n
j=1 f j(s,y(s−σ j(s)))

q(s)
−

m

∑
i=1

ci(s)y(s− τi(s))
]

ds

6 cM2 +(1− c)M2

∫ t+ω

t
G(t,s)

q(s)
r(s)

ds = M2

and

(T x)(t)+(Sy)(t) =
m

∑
i=1

ci(t)x(t− τi(t))+
1

r(t)

∫ t+ω

t
G(t,s)

[ n

∑
j=1

f j(s,y(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)y(s− τi(s))
]

ds

>
1
r1

∫ t+ω

t
G(t,s)q(s)

[
∑

n
j=1 f j(s,y(s−σ j(s)))

q(s)
−

m

∑
i=1

ci(s)y(s− τi(s))
]

ds

> M1

∫ t+ω

t
G(t,s)

q(s)
r(s)

ds = M1.

Thus, T x+Sy ∈Ω, for all x,y ∈Ω.
Next, we show that T is a contraction mapping. For x,y ∈Ω, we have

|(T x)(t)− (Ty)(t))| =

∣∣∣∣ m

∑
i=1

ci(t)x(t− τi(t))−
m

∑
i=1

ci(t)y(t− τi(t))
∣∣∣∣

=

∣∣∣∣ m

∑
i=1

ci(t)
[

x(t− τi(t))− y(t− τi(t))
]∣∣∣∣

6
m

∑
i=1

ci(t)
∣∣∣∣x(t− τi(t))− y(t− τi(t))

∣∣∣∣.
By taking the sup norm of both sides, we see that

‖T x−Ty‖6 c‖x− y‖.

Since c < 1, T is a contraction mapping.
Finally, we show that S is completely continuous. First, we shall show that S is continuous. Let {xk} ∈ Ω be a convergent sequence of
functions such that xk(t)→ x(t) as k→ ∞. Since Ω is closed, x ∈Ω. For t ∈ [0,ω], we have

|(Sxk)(t)− (Sx)(t)| =

∣∣∣∣∣ 1
r(t)

∫ t+ω

t
G(t,s)

[
n

∑
j=1

f j(s,xk(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)xk(s− τi(s))

]
ds

− 1
r(t)

∫ t+ω

t
G(t,s)

[
n

∑
j=1

f j(s,x(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)x(s− τi(s))

]
ds

∣∣∣∣∣
6

1
r0

∫ t+ω

t
G(t,s)

n

∑
j=1

∣∣ f j(s,xk(s−σ j(s)))− f j(s,x(s−σ j(s)))
∣∣ds

+
1
r0

∫ t+ω

t
G(t,s)q(s)

m

∑
i=1

[
ci(s) |xk(s− τi(s))− x(s− τi(s))|

]
ds.

Since | f j(t,xk(t−σ j(t)))− f j(t,x(t−σ j(t)))| → 0, j = 1,2, . . .n, and |xk(t− τi(t))− x(t− τi(t))| → 0, i = 1,2, . . .m, as k→ ∞, it follows
from the Lebesgue dominated convergence theorem that

lim
k→∞
‖(Sxk)− (Sx)‖= 0

and therefore S is continuous. Second, we prove that SΩ is relatively compact. It suffices to show that the family of functions {Sx : x ∈Ω} is
uniformly bounded and equicontinuous on [0,ω]. From (2.3), we see that

|(Sx)(t)| =

∣∣∣∣∣ 1
r(t)

∫ t+ω

t
G(t,s)

[ n

∑
j=1

f j(s,x(s−σ j(s)))−q(s)
m

∑
i=1

ci(s)x(s− τi(s))
]

ds

∣∣∣∣∣
6

1
r0

∫ t+ω

t
G(t,s)q(s)

[
∑

n
j=1 f j(s,x(s−σ j(s)))

q(s)
−

m

∑
i=1

ci(s)x(s− τi(s))
]

ds

6 (1− c)M2

∫ t+ω

t
G(t,s)

q(s)
r(s)

ds = (1− c)M2

and it follows that

‖Sx‖6 (1− c)M2.
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On the other hand, using (2.3), we obtain

|(Sx)′(t)| =

∣∣∣∣∣−q(t)x(t)+∑
n
j=1 f j(t,x(t−σ j(t)))− r′(t)(Sx)(t)

r(t)

∣∣∣∣∣
6

1
r0

[
|q(t)||x(t)|+ |

n

∑
j=1

f j(t,x(t−σ j(t)))|+ |r′(t)||(Sx)(t)|

]

6
M2

r0

[
2‖q‖+(1− c)‖r′‖

]
,

which shows that {Sx : x ∈Ω} is uniformly bounded and equicontinuous on [0,ω]. Therefore SΩ is relatively compact. By Lemma 1.1, there
is an x ∈Ω such that T x+Sx = x. Hence, x(t) is a positive ω-periodic solution of (1.1). This completes the proof.

Theorem 2.2. Assume that ci(t) 6 0, i = 1,2, . . . ,m, −1 < c 6 ∑
m
i=1 ci(t), −r1c < r0 and there exist positive constants M1 and M2 with

0 < M1 < M2 such that

r1(M1− cM2)6 r(t)
[

∑
n
j=1 f j(t,x j)

q(t)
−

m

∑
i=1

ci(t)yi

]
6 r0M2,

∀t ∈ [0,ω] and ∀x j,yi ∈ [M1,M2], ( j = 1,2, . . .n; i = 1,2, . . .m). Then (1.1) has at least one positive ω-periodic solution x(t) ∈ [M1,M2].

Theorem 2.3. Assume that ci(t)> 0, i = 1,2, . . . ,m, ∑
m
i=1 ci(t)6 c < 1 and there exist positive constants M1 and M2 with 0 < M1 < M2

such that

r1M1 6 r(t)
[

∑
n
j=1 b j(t) f j(t,x j)

q(t)
−

m

∑
i=1

ci(t)yi

]
6 r0(1− c)M2,

∀t ∈ [0,ω] and ∀x j,yi ∈ [M1,M2], ( j = 1,2, . . .n; i = 1,2, . . .m). Then (1.2) has at least one positive ω-periodic solution x(t) ∈ [M1,M2].

Proof. As in the proof of Theorem 2.1, it is clear that finding an ω-periodic solution of (1.2) is equivalent to finding an ω-periodic solution
of the integral equation

x(t) =
m

∑
i=1

ci(t)
∫ 0

−∞

P(ξ )x(t +hi(ξ ))dξ

+
1

r(t)

∫ t+ω

t
G(t,s)

[
n

∑
j=1

b j(s)
∫ 0

−∞

P(ξ ) f j(s,x(s+g j(ξ )))dξ −q(s)
m

∑
i=1

ci(s)
∫ 0

−∞

P(ξ )x(s+hi(ξ ))dξ

]
ds.

We define Ω as in the proof of Theorem 2.1 and T , S and G(t,s) as in the following, respectively,

(T x)(t) =
m

∑
i=1

ci(t)
∫ 0

−∞

P(ξ )x(t +hi(ξ ))dξ

and

(Sx)(t) =
1

r(t)

∫ t+ω

t
G(t,s)

[
n

∑
j=1

b j(s)
∫ 0

−∞

P(ξ ) f j(s,x(s+g j(ξ )))dξ −q(s)
m

∑
i=1

ci(s)
∫ 0

−∞

P(ξ )x(s+hi(ξ ))dξ

]
ds,

where

G(t,s) =
exp(

∫ s
t

q(u)
r(u) du)

exp(
∫

ω

0
q(u)
r(u) du)−1

.

The remaining part of the proof follows the same lines as in the proof of Theorem 2.1.

Theorem 2.4. Assume that ci(t) 6 0, i = 1,2, . . . ,m, −1 < c 6 ∑
m
i=1 ci(t), −r1c < r0 and there exist positive constants M1 and M2 with

0 < M1 < M2 such that

r1(M1− cM2)6 r(t)
[

∑
n
j=1 b j(t) f j(t,x j)

q(t)
−

m

∑
i=1

ci(t)yi

]
6 r0M2,

∀t ∈ [0,ω] and ∀x j,yi ∈ [M1,M2], ( j = 1,2, . . .n; i = 1,2, . . .m). Then (1.2) has at least one positive ω-periodic solution x(t) ∈ [M1,M2].

Example 2.5. Consider the first-order neutral differential equation[(
1+

cos t
10

)[
x(t)− ecos t

100
x(t− esin t)− esin t

100
x(t + ecos t)

]]′
=

−
(

1+
sin t
10

)
x(t)+20+ esin t + sin(x(t− esin t))+10+ ecos t − cos(x(t + ecos t)). (2.4)

Note that (2.4) is of the form (1.1) with m = n = 2, ω = 2π , r(t) = 1+ cos t
10 , c1(t) = ecos t

100 , c2(t) = esin t

100 , q(t) = 1+ sin t
10 ,

f1(t,x) = 20+ esin t + sin(x), f2(t,x) = 10+ ecos t − cos(x), τ1(t) = σ1(t) = esin t , τ2(t) = σ2(t) = −ecos t . It is easy to verify that the
conditions of Theorem 2.1 are satisfied with M1 = 15 and M2 = 60. Thus (2.4) has at least one positive 2π-periodic solution.
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