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Abstract— The study of the structures of proteins and the 

relationships of amino acids remains a challenging problem in 

biology. Although some bioinformatics-based studies provide 

partial solutions, some major problems remain. At the beginning 

of these problems are the logic of the sequence of amino acids and 

the diversity of proteins. Although these variations are biologically 

detectable, these experiments are costly and time-consuming. 

Considering that there are many unclassified sequences in the 

world, it is inevitable that a faster solution must be found. For this 

reason, we propose a deep learning model to classify transcription 

factor proteins of primates. Our model has a hybrid structure that 

uses Recurrent Neural Network (RNN) based Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) networks with 

Word2Vec preprocessing step. Our model has 97.96% test 

accuracy, 97.55% precision, 95.26% recall, 96.22% f1-score. Our 

model was also tested with 5-fold cross-validation and reached 

97.42% accuracy result. In the prepared model, LSTM was used 

in layers with fewer units, and GRU was used in layers with more 

units, and it was aimed to make the model a model that can be 

trained and run as quickly as possible. With the added dropout 

layers, the overfitting problem of the model is prevented. 

 
 

Index Terms—Protein classification, Hybrid deep learning, 

Word2Vec, LSTM, GRU 

I. INTRODUCTION 

HE HEREDITARY material of living things is 

Deoxyribonucleic Acid (DNA). DNA sequences consist of 

adenine (A), guanine (G), cytosine (C), and thymine (T) 

nucleotides and, with their various sequences, form the 

structures necessary for the creation and survival of living 

things with all their units [1], [2]. One of these structures is 

amino acids. There are over 300 amino acids in nature. 20 of 

these amino acids are mostly found in mammals and plants. 

These amino acids produced by DNA are arranged in different 

ways to form proteins. Proteins are involved in almost all vital 

tasks in living things, such as growth, measures under stress, 

and communication of cells. [3]. Many amino acid sequences 

have been discovered in light of scientific studies and advances 

in science. The discovered sequences belong to many different 

realms, species, and families. 
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Each unit that is different has many different structural features. 

These different features determine the types and groups of these 

amino acid sequences, namely proteins. 

 
Fig.1. Example of TF protein (bHLH) [4]. 

 

Transcription is the first step of gene expression from DNA 

to RNA transcript production in a gene. This process, together 

with the continuation steps, carries out the production of the 

protein. Transcription factors (TFs) are genomic regions that 

can bind to certain DNA sequences and fragments, directing 

gene expression in different ways in cells and, thus, organisms. 

TFs are proteins that manage the transfer of genetic information 

from DNA to mRNA. Each TF has a structure specific to the 

sequences [5]–[7]. Animal TF proteins are proteins that have 

essential roles in regulating many vital functions of cells, such 

as their development, communication, response under stress, 

and cell cycle. These proteins, like other proteins, have been 

identified and sequenced by biological experiments, and new 

sequences are being discovered every day [8]. Figure 1 shows 

a TF protein from basic helix-loop-helix TF family. 

 Conventional biological research methods can classify these 

many different proteins. However, these classification 

processes consist of both costly and relatively long-term 

experiments. In addition, the possibility of error by the 

experimenter is among the handicaps of these traditional 

methods [9]. This situation has pushed researchers to search for 

new analysis methods. In this field, especially in studies 

conducted jointly with computer scientists, these data were 

firstly the subject of statistical models [10]. Examples of these 

models are the studies prepared with the Hidden Markov Model 

(HMM) [11], which is widely used [12], and the Basic Local 

Alignment Search Tool (BLAST) [13] study. Acting on the 

principles of statistical science, these studies act and make 

predictions according to the probabilities of each amino acid in 

the positions in the protein sequence. In this way, the classes 

and structures of the arrays are determined. However, the 

models developed by these studies work better with annotated, 

i.e., additional labeled data such as sequence or the primat 
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name. For this reason, the success rate will be relatively low in 

plain sequences [14], [15]. 

There have also been studies in which artificial intelligence 

applications such as machine learning and deep learning, which 

are used in different fields and studies, are used in the 

classification of proteins in the field of bioinformatics. 

Examples of machine learning algorithms used for this purpose 

are Naive Bayes (NB) Classifier, Gradient Descent Algorithm 

(GD), K-Nearest Neighbor (KNN) algorithm, and Support 

Vector Machine (SVM). Recursive neural networks (RNN) and 

convolutional neural networks (CNN) based deep learning 

applications, which have been brought to the literature with the 

developments in computer science and the latest innovations in 

artificial intelligence, are also used for different kinds of 

classification problems in this field [16]. In addition to these 

studies, studies have been carried out on similar data with 

various deep learning models, together with the developments 

in the field [17]. 

II. RELATED WORKS 

Looking at the literature, different bioinformatic studies have 

been developed in addition to biological studies to analyze 

various protein sequences. These studies draw their strength 

from the intersection of biological studies and computer 

science. Although these may be statistically based, in recent 

studies, the emphasis has been on artificial neural networks, 

machine learning, and especially deep learning studies [18]. 

These studies have been included in the literature with different 

data sets and models. In a study dealing with gene ontology and 

protein function analysis, PSI-BLAST and position-specific 

scoring matrix (PSSM) were used, along with the alignment 

results of PSI-BLAST and position information of PSSM, 

protein functions, and annotations were determined in new 

genomes [19]. A KNN-based OET-KNN model was developed 

in a study that controls protein sequences to become enzymes 

and determines their sub-functional classes. This model, with 

its variations, has achieved success on a scale of 86%-98% [20]. 

In another study, which detects the enzymatic functions of 

proteins, the ECPred model was developed, and a combination 

of Pepstats-SVM, SPMap, and BLAST-KNN models 

contributed to the literature [21]. The SVM structure was used 

in yet another gene ontology-based model, and a new approach 

was brought to the field [22]. These studies are mid-term 

studies, and since some of them require some additional 

experimentally acquired information besides lean protein 

sequences, current models that only work with protein 

sequences and do not require any additional information were 

needed [15]. 

The model working with Keras embeddings, ProtVec vector 

representation, and SVM using the Swiss-Prot dataset from 

studies conducted with arrays only has a success rate of 93% 

[23]. Again with the same dataset, Keras embeddings achieved 

success on a scale of 81.2% to 91.24% with a vector 

representation tool like ProtVec, model variations prepared 

with LSTM and CNN [16]. Another study used in enzyme 

research, using a pre-trained model with the Swiss-Prot dataset, 

achieved 97% success with the support of CNN and LSTM 

networks [15]. In this study, the sequences were divided into 3-

character parts and processed just like the sentences and words 

of a text [23]. In another study of transport proteins, an accuracy 

rate of 85.8% was achieved with PSSMs, CNN, and GRU 

models [24]. In a study prepared with several different artificial 

neural network models such as KNN, Naive Bayes, and SVM, 

classification was made on the mouse protein dataset with 

Down syndrome [25]. In the study on urease activity in full-fat 

soybean production, a model was prepared with CNN-LSTM 

networks, and 96.57% and 90.29% successes were obtained 

according to the number of classes [26]. In a study prepared for 

protein homology detection, preprocessing with single-hot 

coding and model preparation with bidirectional LSTM were 

performed, and the model achieved 97% success [27]. In 

another study, the Pfam seed dataset was used, and code 

dictionary and LSTM were used. In accordance with the nature 

of the code dictionary structure, a number was assigned for each 

amino acid in the sequences, and analyzes were made on the 

digitized sequences [27], [28]. The 3-layer LSTM model used 

in a transfer learning-based study has brought 85% success 

[29]. In another protein classifier, the power of residual blocks 

of the CNN-based ResNet architecture was utilized, and a 

success rate of 93.7% was achieved [30]. The studies given 

above have demonstrated the importance of artificial 

intelligence in studies such as the classification of proteins, 

detection of binding sites, and detection of proteins from genes 

[31]–[33].

 

 
Fig. 2. HSF TF protein family motif structure [34]. 

 

III. MATERIALS AND METHODS 

Transcription factor proteins in primates, including humans and 

various monkey species, were obtained from fragmented and 

scattered data from the Animal Transcription Factor Database 

(AnimalTFDB), open to researchers. AnimalTFDB, with its 

current version, is a database containing TFs and their 
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cofactors, various annotations and binding domains, and 

subsections of these TFs in 183 animal genomes. Various 

analysis and alignment tools are also included in AnimalTFDB. 

It also includes additional information such as gene expression, 

post-translational modification and mutation information, and 

paralog and ortholog information [35]. 

A. Representation of Protein Sequences 

Various proteins are formed by the sequential arrangement 

of amino acids according to the structural information [36]. 

This difference in structural information creates the unique 

structures of different proteins and, thus, different 3D structures 

[3]. Although each protein formed is different, they form 

different protein families together with the proteins with which 

they are structurally common. This structural commonality is 

called motifs in sequences. Sequences with identical motifs are 

proteins of the same family [37]. Figure 2 shows an example of 

a motif belonging to the Heat Shock Factor (HSF) TF protein 

family. 

The letters representing amino acids in the motif in Figure 2 

represent the probability of having the amino acid at the letter's 

position—the larger the representation, the more likely that 

amino acids will be found at the location. In addition to this 

information, when the motif is examined, it is seen that there 

may be many different amino acids in each position of the 

motif. For this reason, it is almost impossible to know which 

family each protein belongs to by examining the sequence 

character representations by human manually. For this reason, 

biological experiments or various artificial intelligence 

applications are some of the solutions. Considering that 

biological experiments are also a long time and costly, artificial 

intelligence applications stand out as one of the most effective 

solutions. Figure 3 shows a raw sample sequence of Homo 

sapiens, downloaded from AnimalTFDB [35]. 

 

 
Fig. 3. A raw sample sequence of Homo sapiens from AnimalTFDB [35]. 

 

In the representation in Figure 2, the character ">" denotes 

the beginning of each new sequence. The first line contains the 

sequence Protein ID, Ensembl ID, gene symbol, and protein 

family information, respectively. From the second line to the 

next ">" character, there is the protein sequence. These files for 

each species are stored separately in AnimalTFDB in FASTA 

format. 

These files in FASTA format, downloaded separately for all 

primates from AnimalTFDB, are created with the prepared 

Python scripts and replication operations, with a single line 

containing only protein families and sequences in a single line, 

with each protein family - protein sequence pair represented on 

a single line, containing all primates. combined in a tab-

delimited text (.txt) file. As a result, a data set consisting of 72 

different TF protein families belonging to 24 primate species 

and containing 36242 sequences was created. Figure 4 shows a 

sample part of this dataset. 

 

 
Fig. 4. A sample part from the prepared data set. 

B. Data Preprocessing Techniques 

The structures in the form of "MDTSRPGAFVLSSAPLA...", 

which is the representation of proteins in letters in character 

representation, is a meaningful structure for researchers in 

biology and bioinformatics. However, computers can only 

evaluate these sequences as words or sentences, and it is not 

possible for them to derive a direct meaning. Just as 

preprocessing is done on images, such as reducing size, 

changing color values, and extracting images locally, various 

operations, such as trimming sentences and texts, clipping 

suffixes, and adjusting sentences to equal length, are performed 

in natural language processing studies. Classification of protein 

sequences, which is a sub-branch of natural language 

processing studies, also requires a similar set of preprocessing 

steps [37]. 

In this study, a series of preprocessing steps, such as adjusting 

the protein sequences to a fixed length, shortening the long 

sequences, extending the short sequences by filling from the 

end, and preparing the embeddings from the sequences, were 

applied to the prepared data set. 

Protein sequences differ from the data used in other natural 

language processing studies. Normally, sentences in texts 

consist of words, while protein sequences, each of which can be 

evaluated as a sentence, are in one piece. For this reason, 

previous studies have been done in the literature on the 

representation of each amino acid of the sequence with a 

number [28], [38]. However, suppose protein sequences are 

preprocessed at the amino acid level. In that case, achieving the 

highest desired success will be difficult since the relationships 

between these amino acids, that is, the relationship of each 

amino acid with the previous and next amino acid, cannot be 

revealed. 

The probability that amino acids or amino acid groups come 

before or after each other, that is, their proximity to their 

location, is essential for capturing motifs and successful protein 

classification, just as knowing the similarities of words in 

natural language processing studies [39]. For this reason, it is 

necessary to know the affinity between these words (k-mers) by 

separating the protein sequences, which are one piece, into 

small amino acid groups, that is, words (k-mers). In addition, a 

preprocessing process that will provide high success is carried 

out with vector assignments and sequence digitization to be 

made according to this proximity information. When looking at 

the literature, the lengths of these amino acid groups are usually 

chosen in the range of 3 to 6 characters [40], [41]. 
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After the sequences are divided into k-mers, it is necessary to 

analyze the closeness of these k-mers with each other. To avoid 

any k-mers combinations on all sequences and reveal different 

affinities, each sequence should be divided into k-mers 3 times 

by shifting one character from the first character 3 times. In this 

way, many k-mers are obtained, just as if 3 different sequences 

were processed [23]. In addition, the relationship between 

amino acids is confirmed 3 times. An example sequence-k-mer 

conversion is given in Figure 5. 

 

 
Fig. 5. An example sequence-k-mer conversion. 

 

If sequences are split into words with more characters (e.g., 

5-mer, etc.) instead of 3-mers, there will be fewer word 

combinations as well as splits in the vector representations of 

motifs as fewer words will remain in each motif. These 

divisions will cause the motifs to be partially lost and the 

model's success to decrease. 

In order to analyze the proximity of words in sequences 

divided into k-mers and digitize the sequences, vector 

assignments to these k-mers should be done with the Word2Vec 

model. Word2Vec is an unsupervised neural network model 

that represents words in vector space. According to the prepared 

vocabulary, the words in the sequences are given points 

according to their similarity, and their probability of coming 

before or after each other is determined. Word2Vec has two 

different architectures, Continuous Bag-of-Words (CBOW) 

and Continuous Skip-Gram; although both of these 

architectures do the same job, there is a fundamental difference 

between them. CBOW determines the word in the center 

according to the previous and next word as much as the 

specified window size. Skip-Gram, on the other hand, predicts 

the previous and following words by the window size according 

to the central word [42]. 

In the tests performed in this study, 6 was chosen for the 

CBOW architecture and window size for representation. The 

vector size in which each k-mer will be represented in the model 

has been determined as the default value of 300. Figure 6 shows 

the distribution of k-mer affinities in the vector space at window 

size 6 of the Word2Vec model. 

Just as the resolution of all images is determined as the same 

in deep learning models working with images, the same length 

of sequences in models working with protein sequences in text 

structure is a factor that increases success. However, choosing 

a shorter than required length while bringing the sequences to a 

fixed length may cause partial or complete loss of protein 

motifs and, thus, classification errors. The selection made 

longer than necessary will cause a waste of resources and time, 

as well as classification errors, since the processing will be done 

with strings filled with too many characters. For this reason, it 

is necessary to analyze the data set well and choose the right 

length. Figure 7 shows the distribution of sequences in the data 

set by length. 

 

 
Fig. 6. Proximity representation of the Word2Vec model with 6 window sizes. 
 

 
Fig. 7. Distribution of sequences in the data set according to their lengths. 

 

Another purpose of separating sequences into words is to get 

shorter sequences from longer sequences. Looking at Figure 5, 

it can be seen that the majority of sequences are 400 to 600 in 

length. In this case, choosing the length of the arrays within this 

range will give the best results. Considering that the sequences 

are converted to 3-mers and digitized with vectors, it can be 

seen that synchronizing the sequences in their new form with 

200 characters in length means equalizing the raw sequences in 

600 characters. Sequences divided into K-mers are shortened to 

200 words, long sequences are shortened from the end, and 

short sequences are extended to 200 words by adding the 

required number of 0s at the end. 

The digitized and equal-length sequences are now ready to be 

given to the input embedding layer of the prepared deep 

learning model. In addition, the proximity information 

generated by training the Word2Vec model is also given to the 

"weights" parameter of the embedding layer so that the model 

starts training with these closeness values instead of random 

weights, which is aimed to perform a more successful training 

in a shorter time. 
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C. Long Short-Term Memory and Gated Recurrent Unit 

LSTM is a new generation network developed against the 

problem that RNN forgets long-term information and 

dependencies [43]. As a solution to the continuous increase in 

gradients in RNN, a forget gate was added to each unit of the 

network, so that the network can decide which information to 

forget and which to keep [43], [44]. This structure uses tanh and 

sigmoid activation functions [45]. Similarly, GRU is a network 

designed to keep long and short-term dependencies in its 

memory. Although the internal structure of the units is very 

similar to the LSTM units, LSTM has input, output, and forget 

gates, while GRU has input and output gates. In GRU, the forget 

function is done with a forget key [46]. With all these functions, 

LSTM and GRU can decide which long- and short-term 

dependencies are remembered and which are forgotten by 

controlling the flow of information [47]. Although the GRU has 

almost the same level of success as the LSTM, it has been 

observed that the GRU mostly completes the training process 

faster than the LSTM because the GRU has 2 gates instead of 3 

in the experiments. 

D. Performance Metrics 

The success of the models prepared in classification problems 

and other studies should be determined by various criteria. One 

of the most commonly used tools for determining success is the 

confusion matrix [48], and the accuracy, sensitivity, specificity, 

f-score, and average-precision values are calculated from this 

matrix [49]. In addition, these values will be used in drawing 

the Receiver Operating Characteristic (ROC) Curve [50]. While 

developing the models, the data sets are divided into parts in 

certain proportions and training, validation and testing steps are 

performed. Formulas for performance metrics are given in 

Equation 1-6. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑣 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑒) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (6) 

While developing the models, the data sets are divided into 

parts in certain proportions, and training, validation, and testing 

steps are performed. In K-fold cross-validation, the data set is 

divided into k pieces, and k-1 pieces are used for training and 1 

for testing at each step. In this way, one of the most accurate 

evaluations is performed as the models are trained and tested 

with different data many times [51], [52]. 

IV. RESULTS 

All training and testing processes of the proposed model, the 

design details given in Table I, were carried out in Google 

Colab Pro with version 3.8 of the Python programming 

language. The primates TF protein dataset used in the training 

and testing of the model consists of 36243 protein sequences. 

Of these sequences, 70%, i.e., 25370, were used for training, 

15% (5437) for validation, and 15% (5436) for testing. 

Samples from all 72 classes are also available in all train, 

validation, and test datasets. This partitioning is done 

completely randomly via Python's Sklearn library. In order to 

achieve the highest success in training the model, an early stop 

function was added [38], and the fault tolerance was 

determined as 3 epochs. In order to determine the amount of 

data to be processed in unit time, the value of 256 was given 

to the batch_size parameter, taking into account the sequence 

lengths. 

Two different models were studied for the effect of model 

layers and the number of units in each layer on model success 

and running time. The structures of these models are given in 

Table I. 
TABLE I 

BASIC STRUCTURES OF THE IMPLEMENTED MODELS 
Model No Model Structure 

M1 Bidirectional LSTM (128), Bidirectional LSTM (256), 

Bidirectional GRU (256) 

M2 Bidirectional LSTM (128), Bidirectional LSTM (128), 

Bidirectional LSTM (128), Bidirectional GRU (128) 

 

The accuracy, precision, recall, f-score, and train time results 

of these two implemented models are given in Table II. 
TABLE II 

TEST RESULTS IMPLEMENTED MODELS 
Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-score 

(%) 

M1 96.85 97.77 93.67 95.47 

M2 97.96 97.55 95.26 96.22 

 

When Table II is examined, it can be concluded that the 

model numbered M2 is a more successful classification. This 

result also indicates that models with more tiers and fewer units 

per tier perform better than models with fewer but more units 

per tier. The 5-fold cross-validation results of these two models 

are given in Table III. 
TABLE III 

5-FOLD CROSS VALIDATION RESULTS OF IMPLEMENTED 

MODELS 
Model No 5-Fold Cross Validation Accuracy Results (%) 

M1 96.67 

M2 97.42 

 

Table III also supports the result in Table II, showing that 

multilayer models with fewer units are more successful in this 

study. For this reason, in the continuation of the article, the 

model numbered M2 was determined as the proposed model. 

The reason for choosing 5-fold in this study is that the data set 

size is not very large. 

In the proposed model M2, 3 layers of bidirectional LSTM 

and 1 layer of bidirectional GRU were used after the embedding 

layer, where sequences represented by vectors using Word2Vec 

and these vector affinity values were given as initial weights. 

128 units were used in LSTM layers. A 0.3 dropout [53] layer 

has been added to prevent overfitting. The network of the next 

128-unit bidirectional layer is determined as a bidirectional 

GRU for the model to complete a faster training process. To 

prevent overfitting, a dropout [53] layer of 0.3 was added, and 

then the flatten function was used. At the output of this layer, 

first, a dense layer with a value of 256, then a dropout [53] layer 

of 0.4 to prevent overfitting, and the model was finalized with 
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a dense layer of the class number to classification. The details 

of the model are shown in Table IV. 
TABLE IV 

DETAILED STRUCTURE OF THE PROPOSED MODEL 
Layer (type) Output Shape Param # 

Embedding (None, 200, 300) 2540100 

Bidirectional LSTM (128) (None, 200, 256) 439296 

Bidirectional LSTM (128) (None, 200, 256) 394240 

Bidirectional LSTM (128) (None, 200, 256) 394240 

Dropout (0.3) (None, 200, 256) 0 

Bidirectional GRU (128) (None, 200, 256) 296448 

Dropout (0.3) (None, 200, 256) 0 

Flatten (None, 51200) 0 

Dense (256) (None, 256) 13107456 

Dropout (0.4) (None, 256) 0 

Dense (72) (Classification) (None, 72) 18504 

 

The default learning rate value of 0.01 was used in the LSTM 

and GRU layers of the model. ReLU [54] was used as the 

activation function in the first dense layer, and Softmax [55] 

was used in the second because it was the classification layer. 

Since the data set is multi-class, Categorical Crossentropy [56] 

was used as the loss function, and Adam [57] was used as the 

optimizer. 

The train and validation graphs for accuracy and loss of the 

model M1 are given in Figure 8, and the train and validation 

accuracy and loss graphs of the proposed model M2 are given 

in Figure 9. 

 
Fig. 8. Accuracy and loss graphs for train and validation of the model M1. 

 
Fig. 9. Accuracy and loss graphs for train and validation of the proposed 

model M2. 

 

The test results of the proposed model, the multi-layered 

structure of the model, which is prepared with layers with fewer 

units, increases the model's success and greatly shortens the 

training time. Figure 10 shows the ROC graph of the model M1. 

Figure 11 shows the ROC graph of the proposed model M2. 

 
Fig. 10. ROC curve graph of the model M1. 

 
Fig. 11. ROC curve graph of the proposed model M2. 

 

All the curves of the ROC graph in Figure 11 are gathered in 

the upper left corner, and their values are close to 1.0. This 

graph shows that the proposed model classifies 72 different 

classes with high success. 

V. DISCUSSIONS 

Along with the developments in computer science, computer 

science-supported studies have started to be carried out in 

bioinfomatics. Statistical-based studies such as HMM can be 

among the early-mid-term examples of bioinformatics. Then, 

artificial neural networks and machine learning studies were 

used in bioinformatics. Today, various deep learning-based 

studies are used in bioinformatics and various biological and 

genetic data. In this study, transcription factor proteins in 

primates were classified by preparing a hybrid model 

combining the light and fast structure of RNN-based LSTM and 

GRU networks with the success of the Word2Vec model in 

preprocessing and similarity analysis. The data set was 

automatically compiled from public bioinformatics data and 

prepared originally. In this way, it was ensured that a deficiency 

in the literature was completed and an important and new 

contribution to the literature was made. In this process, a 

proximity analysis was performed by first dividing the 

sequences into small protein groups, namely k-mers. In this 

way, the model, which started its education ahead of similar 

models, achieved a more successful result in less epochs. Then, 

3 LSTM layers and 1 GRU layer with fewer units per layer used 

were also used with lighter weight and more layers, and this 

design also increased the model's success while reducing the 

training time. In addition to all these contributions, the prepared 
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primates TF protein dataset was prepared and stored with the 

newly trained Word2Vec model and model weights for use in 

future studies. 

Although there is no direct study on the classification of TF 

proteins in primates when the literature is scanned, the 

comparison with studies using similar data for the evaluation of 

the study will highlight the success of this study. Table V shows 

the comparison of the proposed model with some studies in the 

literature. 
TABLE V 

COMPARISON OF THE PROPOSED MODEL WITH VARIOUS STUDIES 

IN THE LITERATURE 
Authors Dataset Accuracy (%) 

Le et al, 2019 [24] Vesicular transport 
proteins 

85.8 

Belzen et al., 2019 [30] CAFA3 93.7 

Bileschi et al., 2022 [28] Pfam Seed 95.8 

Proposed model (M2) Primates TF Proteins 
(original) 

97.96 

VI. CONCLUSION 

Within the scope of this study, the classification of primates TF 

proteins, which has no precedent in the literature, was carried 

out. The model completed the classification process with an 

accuracy of 97.96% and achieved a high success rate in the 

literature. However, although plant TF proteins have been 

studied before in the literature [38], there are still deficiencies 

in the literature regarding the classification of TF proteins of 

other animals and organisms besides primates. In future studies, 

more successful classification of the TF proteins of primates 

classified in this study and the development of preprocessing 

steps will be provided, and it will be possible to study on the 

classification of TF proteins in other kingdoms. 
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