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Abstract
In this paper, we introduce a notion of Morsi fuzzy hemimetrics, a common generalization
of hemimetrics and Morsi fuzzy metrics, as the basic structure to define and study fuzzy
rough sets. We define a pair of fuzzy upper and lower approximation operators and
investigate their properties. It is shown that upper definable sets, lower definable sets and
definable sets are equivalent. Definable sets form an Alexandrov fuzzy topology such that
the upper and lower approximation operators are the closure and the interior operators
respectively.
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1. Introduction
Rough set theory, originally proposed by Pawlak [20], is an effective mathematical tool

to deal with vagueness, imprecision and uncertainty characterized by insufficient and in-
complete information. It has become a well-established theory in a wide variety of applica-
tions related to process control, economics, medical diagnosis, biochemistry, environmental
science, biology, chemistry, psychology, conflict analysis and other fields.

One central problem of rough set theory is classification or clustering analysis. Indis-
cernibility is modeled by an equivalence relation which induces a partition of the universe
into equivalence classes of indiscernible objects. However, some granularity problems of
information tables in the real world can not be dealt with by known knowledge induced
by a simple equivalence relation, the tolerance relations [2,25] and similarity relations [26]
are also considered. We can call rough sets based on certain kinds of binary relations as
relation-based rough sets.

Besides, coverings and neighborhood operators based rough sets are two important ex-
tensions of the classical rough sets [1,34]. In the environment of set-valued analysis, neigh-
borhood operators are always associated with coverings. A covering is a generalization of
a partition, every member can be considered as an abstract of equivalence classes. Both of
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covering-based and neighborhood operator-based rough sets are indeed the granule-based
approaches, where discrete points in the universe are firstly combined into granules and
then are used to describe roughness. However, the above mentioned generalizations are
no longer equivalent and thus yield different generalized rough set models.

The real world is full of uncertainty, including fuzziness, roughness and probability.
Classical rough set theory is based on equivalence relations. However, the definition of
equivalence relations is too restrictive for some applications, thus fuzzification becomes
another important method to get generalizations of the classical rough set models [6,7,14].
In the framework of relation-based fuzzy rough set theory, various fuzzy generalizations
of approximation operators have been proposed and investigated.

Some researchers have tried to develop kinds of fuzzy rough sets based on the unit inter-
val [0,1] and provide axiomatic characterizations of fuzzy rough approximation operators
[16, 18, 22, 27–29]. As a matter of fact, the unit interval [0,1] can not be supplied as the
truth value table any more in the partial ordering setting. Based on this consideration,
Radzikowska et al [21,23] and She et al [24] chose a complete residuated lattice L to inves-
tigate L-fuzzy rough approximation operators. In the framework of covering-based fuzzy
rough set, a family of fuzzy subsets of the universe is used to define the concept of fuzzy
coverings, from which different pairs of upper and lower approximation operators can be
constructed [5, 15,17,30].

In applications, for both classical and fuzzy settings, although the concrete models are
different, all of binary relations, coverings and neighborhood operators have great effects
on the development of methods which can be used to describe relations between data
objects and play key roles in data mining. Besides these basic structures, some kinds
of distance functions are indeed natural structures to describe the relation between data
objects. If the distance between two objects is a small number, that is, one object is
near to the other, then they should have some similar data; conversely, if the distance
is relatively large, that is, one object is far away from the other, then their data have a
relatively big difference and are not similar so much. In this sense, the smaller the distance
of two objects is, the more similarity they have; and conversely, the larger the distance is,
the more difference they have.

By this motivation, Yao et al [32,33] introduced a new model of fuzzy rough set called
the hemimetric-based fuzzy rough set and proposed applications of the hemimetric-based
rough set model to fuzzy clustering and contour extraction of digital surfaces, where a
hemimetric (or called a pseudo-quasi-metric) is a weak version of the standard metric
which allows the distance between different points to be zero.

Different fuzzy metrics, for example, the Morsi fuzzy metrics [19], GV-fuzzy metrics [8]
and KM-fuzzy metrics [13], are kinds of important generalizations of the classical metrics,
and have important applications in fuzzy mathematics. In this paper, we will introduce
a new notion of fuzzy metrics, namely Morsi fuzzy hemimetrics, as the basic structure to
construct a fuzzy rough set model in hope of proposing a common framework of the rough
set models on hemimetrics and Morsi fuzzy metrics. We will study this model by means
of fuzzy upper and lower approximation operators, definability of fuzzy subsets and their
topological properties.

2. Preliminaries
2.1. The Morsi fuzzy hemimetrics

In this section, we recall some basic definitions and results on fuzzy set theory and
introduce a notion of Morsi fuzzy hemimetrics.

Definition 2.1. Let X be a nonempty set. A mapping m ∶ X ×X × (0,+∞) Ð→ [0, 1] is
called a Morsi fuzzy hemimetric if: ∀x, y, z ∈X,∀s, t > 0,
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(M1) m(x, x, s) = 0;
(M2) m(x, z, s + t) ≤m(x, y, s) +m(y, z, t).

The pair (X, m) is called a Morsi fuzzy hemimetric space.

Remark 2.2. Morsi defined his fuzzy metrics by using Hutton’s fuzzy real numbers w.r.t.
the maximum s-norm ∨ on [0, 1]. We here rewrite it in the form of the mapping in
Definition 2.1. A Morsi fuzzy metric on a nonempty set X is a mapping m ∶ X × X ×
[0,∞)Ð→ [0, 1] satisfying (M1) and

(Mor2∨) m(x, z, s + t) ≤m(x, y, s) ∨m(y, z, t) (∀s, t > 0).
(Mor3) m(x, y, r) =m(y, x, r) (∀x, y ∈X, ∀r > 0);
(Mor4) m(x, y, r) = 0 (∀r > 0) implies x = y (∀x, y ∈X);
(Mor5) m(x, y, ⋅)(∀x, y ∈X) is decreasing and left-continuous.

There are two explanations of the value m(x, y, r). The first one is that it can be
interpreted as the degree of the distance between x, y being larger than or equal to r. The
second explanation can be applied to algorithm implementation, we can consider m(x, y, r)
as the ability to distinguish the real distance between different pixels. Assume that we are
looking at a digital plane filled up with pixels. Then we can use a Morsi fuzzy hemimetric
m(x, y, r) to estimate the distance between x, y. The smaller the distance between the
place and the digital plane is, the more clearly we can see how far the two pixels x and
y are; and conversely, the larger the distance is, the weaker ability to distinguish the real
distance between different pixels we have, and at some points, two different pixels may be
merged into one in our eyes.

Example 2.3. Let (X, d) be a hemimetric space [9], that is d ∶ X × X Ð→ [0,+∞)
satisfying: (H1) d(x, x) = 0; (H2) d(x, z) ≤ d(x, y) + d(y, z). Define md, md ∶ X × X ×
(0,+∞)Ð→ [0, 1] by

md(x, y, t) = d(x, y)/(d(x, y) + t);

md(x, y, t) = d(x, y) ∗ (1/r + 1),
then both md, md are Morsi fuzzy hemimetrics.

Proof. For md, for every x, y, z ∈X, by (H1),
md(x, x, t) = d(x, x)/(d(x, x) + t) = 0;

For every x ∈ X and a ∈ (0,∞), let f(x) = x/(a + x), then it is easy to know that f(x)
is a monotonically increasing function. Therefore, by (H2),

md(x, z, s + t)

= d(x, z)
d(x, z) + (s + t)

≤ d(x, y) + d(y, z)
d(x, y) + d(y, z) + (s + t)

≤ d(x, y)
d(x, y) + d(y, z) + (s + t)

+ d(y, z)
d(x, y) + d(y, z) + (s + t)

≤ d(x, y)
d(x, y) + (s + t)

+ d(y, z)
d(y, z) + (s + t)

≤ d(x, y)
d(x, y) + s

+ d(y, z)
d(y, z) + t

.

Hence, md is a Morsi fuzzy hemimetric.
For md, for every x, y, z ∈X, by (H1),

md(x, x, t) = d(x, x) ∗ (1/r + 1) = 0;
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To prove that md satisfies the property (M2), we need to prove that

md(x, z, s + t) ≤md(x, y, s) +md(y, z, t),

which is equivalent to that,

d(x, z) ∗ ( 1
s + t

+ 1) ≤ d(x, y) ∗ (1
s
+ 1) + d(y, z) ∗ (1

t
+ 1);

d(x, z) ∗ s + t + 1
s + t

≤ d(x, y) ∗ s + 1
s
+ d(y, z) ∗ t + 1

t
;

d(x, z) ≤ d(x, y) ∗ s + 1
s
∗ s + t

s + t + 1
+ d(y, z) ∗ t + 1

t
∗ s + t

s + t + 1
;

d(x, z) ≤ d(x, y) ∗ s2 + st + s + t

s2 + st + s
+ d(y, z) ∗ t2 + st + s + t

t2 + st + t
.

The last inequality is valid since both of the two fractions therein are obviously greater
than 1. Hence, md is a Morsi fuzzy hemimetric. □

2.2. The Lukasiewicz logic system on [0, 1]
In order to study Morsi fuzzy hemimetric based fuzzy rough sets more deeply, we can

give some logical descriptions of definitions and formulas. Before that, we need logical
operations on [0, 1]. The most famous and most useful logical system on [0, 1] is the
Lukasiewicz system[11,12], which is a concrete MV-algebraic system.

The related four binary operations ⊕,⊖,⊗,→ on [0, 1] are given by

Table 1. Logical operations on [0,1].

Operation Logic meaning Definition
⊕ disjunction a⊕ b =min{a + b, 1}
⊖ difference a⊖ b =max{a − b, 0}
⊗ conjunction a⊗ b =max{a + b − 1, 0}
→ implication a→ b =min{1 − a + b, 1}

The pair (⊗,→) forms an adjoint pair on [0, 1], that is, a⊗ b ≤ c iff a ≤ b → c (∀a, b, c ∈
[0, 1]).

Proposition 2.4. For all a, b, c ∈ [0, 1], we have
(1) (a⊗ b)⊖ c = a⊗ (b⊖ c);
(2) (b⊖ a)⊖ c = b⊖ (a⊕ c);
(3) (a→ b)⊕ c = a→ (b⊕ c).

2.3. Fuzzy subsets and fuzzy topology
For a nonempty set X, every mapping A ∶ X Ð→ [0, 1] is called a fuzzy subset of X

and the value A(x) is called the membership degree of x in A. We use aX to denote the
constant fuzzy subset with the value a ∈ [0, 1] and use F(X) to denote the family of all
fuzzy subsets of X. For {Ai ∣ i ∈ I} ⊆ F(X), we define (⋁i Ai)(x) = sup{Ai(x) ∣ i ∈ I},
(⋀i Ai)(x) = inf{Ai(x) ∣ i ∈ I}, where sup and inf are respectively the supremum and
infimum of subsets in R.

Definition 2.5. Let X be a nonempty set. A subfamily δ ⊆ F(X) is called a stratified
Alexandrov fuzzy topology on X if

(1) aX ∈ δ for all a ∈ [0, 1];
(2) ⋁i Ai, ⋀i Ai ∈ δ for all {Ai ∣ i ∈ I} ⊆ δ.
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3. Fuzzy rough set model induced by Morsi fuzzy hemimetrics
In this section, we will define a pair of fuzzy rough approximation operators from Morsi

fuzzy hemimetrics, and then study their properties and interrelations.

Definition 3.1. Let (X, m) be a Morsi fuzzy hemimetric space. Define two operators
Aprm, Apr

m
∶ F(X)Ð→ F(X) respectively by, for every x ∈X,

Aprm(A)(x) = ⋁
y∈X
⋁

r>0
A(y) −m(x, y, r);

Apr
m
(A)(x) = ⋀

y∈X
⋀

r>0
A(y) +m(y, x, r).

The operators Aprm, Apr
m
∶ F(X) Ð→ F(X) are called the fuzzy upper rough approxi-

mation operator and the fuzzy lower rough approximation operator on X induced by the
Morsi fuzzy hemimetric m, respectively.

Since the Morsi fuzzy hemimetric m need not be symmetric, we should notice the order
of x, y after m in the definition of the fuzzy upper and lower approximation operators.

Remark 3.2. In [33], for a hemimetric d on a nonempty set X, we define a pair of fuzzy
upper and lower approximation operators Aprd, Apr

d
∶ F(X) Ð→ F(X) by, for every

x ∈X,

Aprd(A)(x) = ⋁
y∈X

A(y) − d(x, y);

Apr
d
(A)(x) = ⋀

y∈X
A(y) + d(y, x).

By Example 2.3, we know that the formula md(x, y, r) = d(x, y)(1/r + 1) defines a Morsi
fuzzy hemimetric space. It is a routine to show that

Aprmd = Aprd, Apr
md = Apr

d
.

Proof. For every x ∈X,

Aprmd(A)(x)
= ⋁

y∈X
⋁

r>0
A(y) −md(x, y, r)

= ⋁
y∈X
⋁

r>0
A(y) − d(x, y)(1/r + 1)

= ⋁
y∈X

A(y) − ⋀
r>0

d(x, y)(1/r + 1)

= ⋁
y∈X

A(y) − d(x, y) ∗ 1

= ⋁
y∈X

A(y) − d(x, y)

= Aprd(A)(x).

Hence, Aprmd = Aprd.
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Apr
md(A)(x)

= ⋀
y∈X
⋀

r>0
A(y) +md(y, x, r)

= ⋀
y∈X
⋀

r>0
A(y) + d(y, x)(1/r + 1)

= ⋀
y∈X

A(y) + ⋀
r>0

d(y, x)(1/r + 1)

= ⋀
y∈X

A(y) + d(y, x) ∗ 1

= ⋀
y∈X

A(y) + d(y, x)

= Apr
d
(A)(x).

Hence, Apr
md = Apr

d
. □

In this sense, we can say that the fuzzy rough set model of Morsi fuzzy hemimetrics in
this paper is a generalization of that of ordinary hemimetrics in [33], and by other kind of
Morsi fuzzy hemimetric induced by an ordinary hemimetric (for example md in Example
2.3), we may get a new pair of fuzzy upper and lower approximation operators.

Now we study the properties of the fuzzy upper and lower rough approximation opera-
tors.

Theorem 3.3. Let (X, m) be a Morsi fuzzy hemimetric space. Then for all A ∈ F(X), a ∈
[0, 1] and {Ai ∣ i ∈ I} ⊆ F(X), it holds that

(U1) A ≤ Aprm(A) ≤ 1X ;
(U2) Aprm(aX) = aX ;
(U3) Aprm(⋁i Ai) = ⋁i Aprm(Ai);
(U4) Aprm(Aprm(A)) = Aprm(A).

Proof. (U1) Clearly, Aprm(A) ≤ 1X . For every x ∈X,

Aprm(A)(x)
= ⋁y∈X ⋁r>0 A(y) −m(x, y, r)
≥ ⋁r>0 A(x) −m(x, x, r)
= A(x) − 0
= A(x).

Hence, A ≤ Aprm(A) ≤ 1X .
(U2) By (U1), Aprm(aX) ≥ aX . For every x ∈X,

Aprm(aX)(x) = ⋁
y∈X
⋁
r>0

a −m(x, y, r) ≤ a.

Hence, Aprm(aX) = aX .
(U3) For every x ∈X,

Aprm(⋁i Ai)(x)
= ⋁y∈X ⋁r>0(⋁i Ai)(y) −m(x, y, r)
= ⋁y∈X ⋁r>0⋁i Ai(y) −m(x, y, r)
= ⋁i⋁y∈X ⋁r>0 Ai(y) −m(x, y, r)
= ⋁i[⋁y∈X ⋁t>0 Ai(y) −m(x, y, r)]
= ⋁i Aprm(Ai)(x).

Hence, Aprm(⋁i Ai) = ⋁i Aprm(Ai).
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(U4) By (U1), we have Aprm(Aprm(A)) ≥ Aprm(A). For every x ∈X,

Aprm(Aprm(A))(x)
= ⋁

y∈X
⋁

r>0
(Aprm(A))(y) −m(x, y, r)

= ⋁
y∈X
⋁

r>0
[ ⋁
z∈X
⋁

s>0
A(z) −m(y, z, s)] −m(x, y, r)

= ⋁
y∈X
⋁

r>0
⋁

z∈X
⋁

s>0
A(z) − (m(x, y, r) +m(y, z, s))

≤ ⋁
z∈X

⋁
r,s>0

A(z) −m(x, z, r + s)

≤ ⋁
z∈X
⋁

m>0
A(z) −m(x, z, m)

= Aprm(A)(x).

Hence, Aprm(Aprm(A)) = Aprm(A). □

Theorem 3.4. Let (X, m) be a Morsi fuzzy hemimetric space. Then for all A ∈ F(X),
a ∈ [0, 1] and {Ai ∣ i ∈ I} ⊆ F(X), it holds that

(L1) 0X ≤ Apr
m
(A) ≤ A;

(L2) Apr
m
(aX) = aX ;

(L3) Apr
m
(⋀i Ai) = ⋀i Apr

m
(Ai);

(L4) Apr
m
(Apr

m
(A)) = Apr

m
(A).

Proof. (L1) Clearly, 0X ≤ Apr
m
(A). For every x ∈X,

Apr
m
(A)(x)

= ⋀y∈X ⋀r>0 A(y) +m(y, x, r)
≤ ⋀r>0 A(x) +m(x, x, r)
= A(x) + 0
= A(x).

Hence, Apr
m
(A) ≤ A.

(L2) By (L1), Apr
m
(aX) ≤ aX . For every x ∈X,

Apr
m
(aX)(x) = ⋀

y∈X
⋀
r>0

a +m(y, x, r) ≥ a.

Hence, Apr
m
(aX) = aX .

(L3) For every x ∈X,

Apr
m
(⋀i Ai)(x)

= ⋀y∈X ⋀r>0(⋀i Ai)(y) +m(y, x, r)
= ⋀y∈X ⋀r>0⋀i Ai(y) +m(y, x, r)
= ⋀i⋀y∈X ⋀r>0 Ai(y) +m(y, x, r)
= ⋀i[⋀y∈X ⋀r>0 Ai(y) +m(y, x, r)]
= ⋀i Apr

m
(Ai)(x).

Hence, Apr
m
(⋀i Ai) = ⋀i Apr

m
(Ai).
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(L4) By (L1), we have Apr
m
(Apr

m
(A)) ≤ Apr

m
(A). For every x ∈X,

Apr
m
(Apr

m
(A))(x)

= ⋀
y∈X
⋀

r>0
Apr

m
(A)(y) +m(y, x, r)

= ⋀
y∈X
⋀

r>0
[ ⋀
z∈X
⋀

s>0
A(z) +m(z, y, s)] +m(y, x, r)

= ⋀
y∈X
⋀

r>0
⋀

z∈X
⋀

s>0
A(z) + (m(y, x, r) +m(z, y, s))

≥ ⋀
y,z∈X

⋀
r,s>0

A(z) +m(z, x, r + s)

≥ ⋀
y,z∈X

⋀
m>0

A(z) +m(z, x, m)

= Apr
m
(A)(x).

Hence, Apr
m
(Apr

m
(A)) = Apr

m
(A). □

Theorem 3.5. Let (X, m) be a Morsi fuzzy hemimetric space. Then for every A ∈ F(X),
it holds that

(1) Aprm(Apr
m
(A)) = Apr

m
(A);

(2) Apr
m
(Aprm(A)) = Aprm(A).

Proof. (1) By (U1), we only need to show Aprm(Apr
m
(A)) ≤ Apr

m
(A). Let x ∈X. Then

Aprm(Apr
m
(A))(x)

= ⋁
y∈X
⋁

r>0
Apr

m
(A)(y) −m(x, y, r)

= ⋁
y∈X
⋁

r>0
[ ⋀
z∈X
⋀

m>0
A(z) +m(z, y, m)] −m(x, y, r)

= ⋁
y∈X
⋁

r>0
⋀

z∈X
⋀

m>0
A(z) +m(z, y, m) −m(x, y, r).

We need to prove that

⋁
y∈X
⋁
r>0
⋀

z∈X
⋀

m>0
A(z) +m(z, y, m) −m(x, y, r) ≤ ⋀

z∈X
⋀
s>0

A(z) +m(z, x, s),

which is equivalent to that, for every y, z ∈X and every r, s > 0,

⋀
z∈X
⋀

m>0
A(z) +m(z, y, m) ≤ A(z) +m(z, x, s) +m(x, y, r).

In fact,
⋀z∈X ⋀m>0 A(z) +m(z, y, m)

≤ ⋀z∈X ⋀r,s>0 A(z) +m(z, y, r + s)
≤ ⋀z∈X ⋀r,s>0 A(z) +m(z, x, s) +m(x, y, r)
≤ A(z) +m(z, x, s) +m(x, y, r).

Hence, Aprm(Apr
m
(A)) = Apr

m
(A).

(2) By (L1), we only need to show Apr
m
(Aprm(A)) ≥ Aprm(A). Let x ∈X. Then

Apr
m
(Aprm(A))(x)

= ⋀
y∈X
⋀

r>0
Aprm(A)(y) +m(y, x, r)

= ⋀
y∈X
⋀

r>0
[ ⋁
z∈X
⋁

m>0
A(z) −m(y, z, m)] +m(y, x, r)

= ⋀
y∈X
⋀

r>0
⋁

z∈X
⋁

m>0
A(z) −m(y, z, m) +m(y, x, r).

We need to prove that
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⋀
y∈X
⋀
r>0
⋁

z∈X
⋁

m>0
A(z) −m(y, z, m) +m(y, x, r) ≥ ⋁

z∈X
⋁
s>0

A(z) −m(x, z, s),

which is equivalent to that, for every y, z ∈X and every r, s > 0,

⋁
z∈X
⋁

m>0
A(z) −m(y, z, m) ≥ A(z) −m(x, z, s) −m(y, x, r).

In fact,
⋁z∈X ⋁m>0 A(z) −m(y, z, m)

≥ ⋁z∈X ⋁r,s>0 A(z) −m(y, z, r + s)
≥ ⋁z∈X ⋁r,s>0 A(z) − (m(x, z, s) +m(y, x, r))
≥ A(z) − (m(x, z, s) +m(y, x, r))
= A(z) −m(x, z, s) −m(y, x, r).

Hence, Apr
m
(Aprm(A)) = Aprm(A). □

Since ([0, 1],⊕) is a standard MV-algebra, We can give a strict logical description of
fuzzy upper and lower rough approximation operators.

Theorem 3.6. Let (X, m) be a Morsi fuzzy hemimetric space. Then for every A ∈ F(X)
and every x ∈X,

(1) Aprm(A)(x) = ⋁
y∈X
⋁

r>0
[A(y)⊖m(x, y, r)];

(2) Apr
m
(A)(x) = ⋀

y∈X
⋀

r>0
[A(y)⊕m(y, x, r)].

Proof. (1) For every x ∈X,
⋁y∈X ⋁r>0[A(y)⊖m(x, y, r)]

= ⋁y∈X ⋁r>0 max{A(y) −m(x, y, r), 0}
= max{⋁y∈X ⋁r>0 A(y) −m(x, y, r), 0}
= max{Aprm(A)(x), 0}
= Aprm(A)(x).

(2) For every x ∈X,
⋀y∈X ⋀r>0[A(y)⊕m(y, x, r)]

= ⋀y∈X ⋀r>0 min{A(y) +m(y, x, r), 1}
= min{⋀y∈X ⋀r>0 A(y) +m(y, x, r), 1}
= min{Apr

m
(A)(x), 1}

= Apr
m
(A)(x).

□
Further properties of fuzzy upper and lower rough approximation operators can be

studied by the logical meaning of the operations. As is known to us, (⊗,→) forms a Galois
adjoint pair on the poset ([0, 1],≤). For the operations ⊕,⊖, we have a ⊖ b ≤ c ⇐⇒ a ≤
b⊕ c (∀a, b, c ∈ [0, 1]). If we write a⊖ b =∶ b ↝ a and let ⪯=≤op, then b⊕ c ⪯ a⇐⇒ c ⪯ b ↝
a (∀a, b, c ∈ [0, 1]). Then (⊕,↝) also forms a Galois adjoint pair on ([0, 1],⪯). Then by
results in lattice theory [3], for every a ∈ [0, 1], the operator a ⊕ (−) preserves arbitrary
joins and that a ↝ (−) preserves arbitrary meets in ([0, 1],⪯), and therefore, a ⊕ (−)
preserves arbitrary meets and b↝ (−) preserves arbitrary joins in ([0, 1],≤).

Theorem 3.7. Let (X, m) be a Morsi fuzzy hemimetric space. Then for all A ∈ F(X)
and a ∈ [0, 1], we have

(U5) Aprm(a⊗A) = a⊗Aprm(A);
(U6) Aprm(a↝ A) = a↝ Aprm(A);
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(L5) Apr
m
(a⊕A) = a⊕Apr

m
(A);

(L6) Apr
m
(a→ A) = a→ Apr

m
(A).

Proof. The operations a ⊗ (−) and a ↝ (−) preserve joins, while those of a ⊕ (−) and
a → (−) preserve meets. Based on Theorem 3.5, (U5), (U6) and (L6) can be obtained
from Proposition 2.4(1–3) respectively, and (L5) is guaranteed by the associative law of
the operation ⊕. □

4. Definable fuzzy sets
A basic idea of rough set theory is the approximations of undefinable sets by definable

sets via certain formulas. Semantically, the formulas in the language are considered the
intensions of the concepts. Corresponding to a formula, its meaning set is assigned to the
set of objects satisfying the formula, which is considered as the extension of the concept. A
set of objects is therefore definable if it is the meaning set of a formula in the descriptive
language, otherwise it is undefinable. Another explanation is that definable sets of a
formula are exactly its fixed points, which are completely definite (or can be defined) by
this formula and then form the basic information of the approximation space [4, 31].

Let (X, m) be a Morsi fuzzy hemimetric space. For A ∈ F(X), if Aprm(A) = A (resp.,
Apr

m
(A) = A), then A is called upper (resp., lower) definable sets. We firstly show that

upper definability and lower definability are exactly the same thing.

Theorem 4.1. Let (X, m) be a Morsi fuzzy hemimetric space. For every A ∈ F(X), the
following statements are equivalent:

(1) A is upper definable;
(2) A(x) −A(y) ≤m(y, x, r) for all x, y ∈X and all r > 0;
(3) A is lower definable.

Proof. The equivalence between (1) and (2):
A is upper definable

⇐⇒ Aprm(A) ≤ A
⇐⇒ ⋁x∈X ⋁r>0 A(x) −m(y, x, r) ≤ A(y) (∀y ∈X)
⇐⇒ A(x) −A(y) ≤m(y, x, r) (∀x, y ∈X,∀r ∈ (0,+∞)).

The equivalence between (2) and (3):
A is lower definable

⇐⇒ A ≤ Apr
m
(A),

⇐⇒ A(x) ≤ ⋀y∈X ⋀r>0 A(y) +m(y, x, r) (∀x ∈X),
⇐⇒ A(x) −A(y) ≤m(y, x, r) (∀x, y ∈X,∀r ∈ (0,+∞)). □

If A ∈ F(X) satisfies the conditions of Theorem 4.1, then we call it a definable set of
(X, m) and use DF(X) to denote the family of all definable sets of (X, m).

Remark 4.2. (1) Let (X, m) be a Morsi fuzzy hemimetric space and A ∈ F(X). Then
Aprm(A) is the smallest definable set over A, and Apr

m
(A) is the largest definable set

below A.
(2) Theorem 3.4 can be considered as a corollary of Theorem 4.1. By (U4), we know

that Aprm(A) is definable and then Apr
m
(Aprm(A)) = Aprm(A); similarly, by (L4), we

know that Apr
m
(A) is definable and then Aprm(Apr

m
(A)) = Apr

m
(A).

Now we observe the topological properties of DF(X).

Theorem 4.3. Let (X, m) be a Morsi fuzzy hemimetric space. The family DF(X) has
the following properties:

(DF1) aX ∈DF(X) (∀a ∈ [0, 1]);
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(DF2) ⋁i Ai, ⋀i Ai ∈DF(X) (∀{Ai ∣ i ∈ I} ⊆DF(X));
(DF3) a⊕A, a↝ A, a⊗A, a→ A ∈DF(X) (∀a ∈ [0, 1],∀A ∈DF(X)).

Proof. We will use Theorem 4.1(2) to prove it. Let x, y ∈X.
(DF1) For every a ∈ [0, 1],

aX(x) − aX(y) = a − a = 0 ≤m(y, x, r).

Hence, aX ∈DF(X) .
(DF2) For every {Ai ∣ i ∈ I} ⊆DF(X), we have

⋁i Ai(x) −⋁i Ai(y)
= ⋁i[Ai(x) −⋁j Aj(y)]
≤ ⋁i[Ai(x) −Ai(y)]
≤ m(y, x, r)

and
⋀i Ai(x) −⋀i Ai(y)

= ⋁i[(⋀j Aj(x)) −Ai(y)]
≤ ⋁i[Ai(x) −Ai(y)]
≤ m(y, x, r).

Hence, ⋁i Ai, ⋀i Ai ∈DF(X).
(DF3) Suppose A ∈ F(X) is definable, that is, A(y)+m(y, x, r) ≥ A(x) (∀x, y ∈X,∀r ∈

(0,+∞)). Let a ∈ [0, 1], x, y ∈X and r ∈ (0,+∞). We have

a⊕A(y) +m(y, x, r)
= min{a +A(y), 1} +m(y, x, r)
= min{a +A(y) +m(y, x, r), 1 +m(y, x, r)}
≥ min{a +A(x), 1}
= a⊕A(x).

a↝ A(y) +m(y, x, r)
= max{A(y) − a, 0} +m(y, x, r)
= max{A(y) +m(y, x, r) − a, m(y, x, r)}
≥ max{A(x) − a, 0}
= a↝ A(x).

a⊗A(y) +m(y, x, r)
= max{a +A(y) − 1, 0} +m(y, x, r)
= max{a +A(y) +m(y, x, r) − 1, m(y, x, r)}
≥ max{a +A(x) − 1, 0}
= a⊗A(x).

a→ A(y) +m(y, x, r)
= min{1 − a +A(y), 1} +m(y, x, r)
= min{1 − a +A(y) +m(y, x, r), 1 +m(y, x, r)}
≥ min{1 − a +A(x), 1}
= a→ A(x).

Hence, a⊕A, a↝ A, a⊗A, a→ A ∈DF(X). □

Remark 4.4. It is a routine to show that the interior operator and the closure operator
of DF(X) are exactly the fuzzy lower rough approximation operator and the fuzzy upper
rough approximation operator respectively.
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5. Conclusion and future work
As a common generalization of hemimetrics and Morsi fuzzy metrics, Morsi fuzzy hemi-

metrics can be used to describe relations between data objects and thus rough set structure
is constructed and studied in this paper. The fuzzy rough set model on Morsi fuzzy hemi-
metrics has some general properties of rough set model. It is shown that upper definable
sets, lower definable sets and definable sets are equivalent. Definable sets form an Alexan-
drov fuzzy topology such that the upper and lower approximation operators are the closure
and the interior operators respectively.

The following topics can be some potential work in the future:
1. Following [32, 33], apply the fuzzy rough set model of the Morsi fuzzy hemimetrics

in this paper to find some applications in clustering analysis, image processing and data
mining.

2. We can replace (0,∞) by a complete lattice L (with an s-norm ⊕) and replace [0, 1]
by another one M (with an s-norm ⊞). Then we can get a concept of Morsi LM -fuzzy
hemimetric as a mapping m ∶X ×X ×LÐ→M satisfying

(LMM1) m(x, x, r) = 0;
(LMM2) m(x, z, s⊕ t) ≤m(x, y, s) ⊞m(y, z, t).

Then we can use Morsi LM -fuzzy hemimetrics to construct and study LM -fuzzy rough
sets. In fact, The ideal of replacing [0, 1] by some lattices with a t-norm or an s-norm has
been used in [10].

3. In fact, if we assume that d(x, y) = ⋀
r>0

m(x, y, r), then it is easy to prove that d is
a hemimetric on X. Since r can be considered as a parameter, we can define two new
operators as

Aprr
m(A)(x) = ⋁

y∈X
A(y) −m(x, y, r),

Aprr
m
(A)(x) = ⋀

y∈X
A(y) +m(y, x, r).

Then it can be shown that Aprm = ⋁r>0 Aprr
m, Apr

m
= ⋀r>0 Aprr

m
. That is to say, we can

study fuzzy rough set model based on Morsi fuzzy hemimetrics and its applications by a
level-wise manner in the future.
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