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Abstract
In this paper, the bifurcation theory of dynamical system is applied to investigate the
time-space fractional complex Ginzburg-Landau equation with Kerr law nonlinearity. We
mainly consider the case of α ̸= 2β which is not discussed in previous work. By overcom-
ing some difficulties aroused by the singular traveling wave system, such as bifurcation
analysis of nonanalytic vector field, tracking orbits near the full degenerate equilibrium
and calculation of complicated elliptic integrals, we give a total of 20 explicit exact trav-
eling wave solutions of the time-space fractional complex Ginzburg-Landau equation and
classify them into 11 categories. Some new traveling wave solutions of this equation are
obtained including the compactons and the bounded solutions corresponding to some
bounded manifolds.
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1. Introduction
With the development of some complex engineering and biological applications, many

fractional differential equations (FDEs) have emerged. Compared with integer order differ-
ential equations, FDEs seem to have more advantages in some fields, such as the rheology,
statistical mechanics, biology, circuitry, thermodynamics and electroanalytical chemistry
[4, 5, 20,21,25,34].

In fact, in 1832, Liouville proposed the definition of fractional derivative firstly and used
it to solve the problem of potential theory, which attracted people’s attention to fractional
derivative. Subsequently, more definitions of fractional derivatives were proposed, such
as the Riemann-Liouville fractional derivative [29], the Caputo fractional derivative [26],
the Grünwald-Letnikov fractional derivative [24] and the conformable fractional derivative
[16]. Especially, the modified Riemann-Liouville (mR-L) fractional derivative proposed by
Jumarie in 2006 is defined by the limit of fractional difference [11]. Compared with the
∗Corresponding Author.
Email addresses: cnp969810@163.com (N. Cai), cs97zyq@aliyun.com (Y.Q. Zhou),

cs80liuqian@aliyun.com (Q. Liu)
Received: 22.10.2022; Accepted: 14.11.2022

https://orcid.org/0000-0002-7459-4038
https://orcid.org/0000-0002-5493-5966
https://orcid.org/0000-0002-6413-1224


Wave solutions of the time-space fcGL equation with Kerr law nonlinearity 1493

definition of Riemann-Liouville fractional derivative, it does not need the condition that a
constant whose F-derivative is not zero and removes the effect of the initial value of func-
tion [11]. More importantly, the mR-L fractional derivative can handle non-differentiable
functions, while the Caputo-Djrbashian fractional derivative [6,7] can only be used for dif-
ferentiable functions. Due to the advantages of the mR-L fractional derivative mentioned
above, people have successfully applied it to fractional thermal wave models [10], stochas-
tic fractional models [12], Fourier transforms of fractional order [13], Laplace problems
[14] and fractional epidemic models [33]. How to solve a fractional equation defined by the
mR-L fractional derivative becomes an important and interesting problem. In fact, some
work to solve these equations has been done. In 2012, Tang used a generalized fractional
sub-equation method to solve the space-time fractional Gardner equation and obtained
hyperbolic function solutions [37]. In 2014, Bekir employed (G′/G)−expansion method
to obtain trigonometric function solutions of three kinds of fractional equations [3]. In
2016, Aksoy used exponential rational function method to obtain analytical solutions of
the space-time fractional Fokas equation and coupled Burgers’ equations [1].

Recently, a new fractional equation with the mR-L fractional derivative was proposed,
which is called the time-space fractional complex Ginzburg-Landau (fcGL) equation

i
∂δu

∂tδ
+m

∂2δu

∂x2δ + nF (|u|2)u = 1
|u|2 u∗

α |u|2 ∂
2δ |u|2

∂x2δ − β

(
∂δ |u|2

∂xδ

)2
+ γu,

where the complex-valued function u(x, t) represents the profile of optical soliton, x and
t represent the distance along the fiber and the time in dimensionless form respectively,
m,n, α, β, γ are valued constants. Among them, m,n denote the group velocity dispersion
and nonlinearity respectively. The terms with constants α, β, γ come from the perturba-
tion effects. 0 < δ < 1 is the order of the fractional derivative. The function F (|u|2),
denoting the nonlinear form of optical fiber, is a real-valued function and must possess the
smoothness of the function F (|u|2)u : C → C.

The time-space fcGL equation is a kind of fractional nonlinear Schrödinger equation and
controls the pulse propagation dynamics through the optical fibers for transcontinental
distances and transoceanic distances [8]. When δ = 1, it degenerates to the classical
complex Ginzburg-Landau equation. It can be used to describe phenomena including Bos-
Einstein condensation [15], Bénard convection [23] and plane Poiseuille flow [35]. When
F (|u|2) = u2, the time-space fcGL equation has the form

i
∂δu

∂tδ
+m

∂2δu

∂x2δ + nu3 = 1
|u|2 u∗

α |u|2 ∂
2δ |u|2

∂x2δ − β

(
∂δ |u|2

∂xδ

)2
+ γu, (1.1)

which is called the time-space fcGL equation with Kerr law nonlinearity [22]. Studying
the solutions of nonlinear evolution equations has always been a very meaningful thing
[31, 32, 39]. In 2018, Sulaiman obtained combined dark-bright and combined singular
optical solitons of equation (1.1) by using the extended sinh-Gordon equation expan-
sion method [36]. Arshed obtained solutions of equation (1.1) in the form of hyperbolic,
trigonometric and rational functions by using the exp(−ϕ(ξ))-expansion method [2]. In
2020, Hussain employed a new extended direct algebraic scheme to construct dark-singular
and singular solutions of equation (1.1) [9]. In 2021, Huang obtained four types of soli-
ton solutions via the complete discrimination system method [8]. More recently, Sadaf
obtained complexiton, singular and periodic optical solitons of equation (1.1) by using
improved tan

(
ψ(ζ)

2

)
-expansion technique [28]. In addition, the dynamical system of non-

linear evolution equation is also concerned [27,30].
Although there have been relatively rich results in the solitons of the time-space fcGL

equation, some problems still need further discussion. Especially, we note that the case



1494 N.P. Cai, Y.Q. Zhou, L. Qian

of α ̸= 2β was not discussed in previous work mentioned above. It means that some
wave phenomena could not be discovered yet. In addition, when referring to dynamical
behaviour of wave solutions, people still do not clearly know how these solutions evolve
with variation of parameters. In order to solve these problems, we introduce the dynamical
system method to study equation (1.1), which has been shown to be a powerful and efficient
method to find traveling wave solutions [17–19,41,42]. By this method, we convert equation
(1.1) into corresponding traveling wave system and discuss two cases (α = 2β and α ̸= 2β ).
According to the phase space geometry under different parameter conditions, the existence
conditions of various types of traveling wave solutions are given. Finally, by calculating
complicated elliptic integrals, we obtain explicit expressions of bounded and unbounded
traveling wave solutions of equation (1.1). Some new traveling wave solutions are obtained
including the compactons and the bounded solutions corresponding to some bounded
manifolds. In fact, to achieve the goal, we need overcome some difficulties and carry on
lots of calculations. First of all, when α ̸= 2β, equation (1.1) corresponds to a singular
traveling wave system with the nonanalytic vector field. One needs a more detailed analysis
to track various orbits. Secondly, when investigating the local bifurcation and distribution
of equilibria of this singular traveling wave system, we find that the equilibrium (0, 0)
is fully degenerate with a zero linearization. The traditional methods of normal sectors
and Z-sectors can not directly applied to judge its type. Thirdly, the degree of the energy
function is up to six, which leads to the difficulty of calculating elliptic integrals and giving
the explicit exact solutions.

2. Traveling wave systems and bifurcation analysis
In this section, we firstly derive traveling wave systems of equation (1.1) by an appropri-

ate traveling wave transformation. According to different parameter conditions, equation
(1.1) can be equivalently converted into two types of traveling wave systems. Then, we
carry on bifurcation analysis of the two types of traveling wave systems.

2.1. Two types of traveling wave systems of the time-space fcGL equation
(1.1)

Inspired by the properties of mR-L fractional derivative, we assume that the traveling
wave solution of equation (1.1) has the form

u(x, t) = ϕ(ξ) exp(iψ(x, t)), (2.1)

where ξ = xδ

Γ(1 + δ)
− ctδ

Γ(1 + δ)
, ψ(x, t) = −kxδ

Γ(1 + δ)
+ ωtδ

Γ(1 + δ)
+ θ and Γ(·) is gamma

function. Real functions ϕ(ξ) and ψ(x, t) represent the portion of the amplitude and the
phase component respectively. Parameters c, k, ω and θ are the speed, frequency, wave
number and phase constant of the wave respectively.

Inserting (2.1) into equation (1.1) and separating the real part and imaginary part, we
have  real part: (m− 2α)ϕ′′ − (ω +mk2 + γ)ϕ+ nϕ3 = 2(α− 2β)(ϕ′)2

ϕ
,

imaginary part: c = −2mk,
(2.2)

where ′ denotes d/dξ and m ̸= 2α. The first equation of (2.2) is equivalent to the following
system {

ϕ
′ = y,

y
′ = 1

m−2α

[
−nϕ3 +Aϕ+ 2(α− 2β)y

2

ϕ

]
,

(2.3)

where A = ω +mk2 + γ.
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When α = 2β, system (2.3) has the equivalent form ϕ
′ = y,

y
′ = n

2α−m

(
ϕ3 − A

n
ϕ

)
,

(2.4)

which has the energy function

H1(ϕ, y) = 1
2
y2 − nϕ2

4(2α−m)

(
ϕ2 − 2A

n

)
. (2.5)

When α ̸= 2β, system (2.3) is a singular traveling wave system. It has the energy
function

H(ϕ, y) = ϕr
(
nB1ϕ

4 − 2AB2ϕ
2 + 2B1B2y

2
)
,

where r = 4(2β−α)
m−2α , B1 = m + 4β − 4α and B2 = m + 2β − 3α. Especially, system (2.3)

has either a trivial traveling wave solution
ϕ1(ξ) = C1 exp(C2ξ)

if A = n = 0 and 2(α−2β)
m−2α = 1 or another trivial traveling wave solution

ϕ2(ξ) =
[4α− 4β −m

2α−m
(C1ξ + C2)

] 2α−m
4α−4β−m

if A = n = 0 and 2(α−2β)
m−2α ̸= 1, where C1, C2 are constants. In this article, we always

assume n ̸= 0. Taking into account symmetry, solvability and ability to obtain the explicit
expressions of solutions, we only consider the case of r = 2. Thus, system (2.3) can be
rewritten as the following traveling wave system{

ϕ
′ = y,

y
′ = n

2α−m

(
ϕ3 − A

nϕ
)

− y2

ϕ ,
(2.6)

which has the energy function

H2(ϕ, y) = 6(m− 2α)ϕ2y2 + ϕ4
(
2nϕ2 − 3A

)
. (2.7)

2.2. Bifurcation analysis
In this section, we discuss the distribution of equilibria of system (2.4) and system (2.6)

and give their global phase portraits.

Theorem 2.1. The equilibria of system (2.4) have the following properties:
• When A

n > 0, system (2.4) has three equilibria. If n
2α−m > 0, they are saddle

E1(−
√

A
n , 0) , center E2(0, 0) and saddle E3(

√
A
n , 0). If n

2α−m < 0, they are center

E1(−
√

A
n , 0) , saddle E2(0, 0) and center E3(

√
A
n , 0).

• When A = 0, n ̸= 0, system (2.4) has a degenerate equilibrium E4(0, 0). If n
2α−m >

0, it is a saddle. If n
2α−m < 0, it is a center.

• When A
n < 0, system (2.4) has a simple equilibrium E5(0, 0). If n

2α−m > 0, it is a
saddle. If n

2α−m < 0, it is a center.

Proof. For simply, we only proof the case of n
2α−m > 0 in detail since the proof of the

case of n
2α−m < 0 is similar to it. Let f1(ϕ) = ϕ3 − A

nϕ. A direct calculation shows that
when A

n > 0, function f1(ϕ) has three real zeros: 0, ±
√

A
n , which means system (2.4) has

three equilibria: (0, 0) and (±
√

A
n , 0). When A = 0, n ̸= 0, function f1(ϕ) = ϕ3 has only

one triple real zero: 0. When A
n < 0, function f1(ϕ) is strictly monotone increasing, so

f1(ϕ) has only one simple real zero.
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Let M1(Ej) (j = 1, ..., 5) be the Jacobi matrix of the system (2.4) at the equilibrium Ej

M1(Ej) =
[

0 1
n

2α−m

(
3ϕ2 − A

n

)
0

]
.

We have J1(Ej) = detM1(Ej) = − n
2α−m

(
3ϕ2 − A

n

)
. So, J1(E1) = J1(E3) = − 2A

2α−m ,
J1(E2) = J1(E4) = J1(E5) = A

2α−m . When n
2α−m > 0 and A

n > 0, we have J1(E1) <
0, J1(E2) > 0, J1(E3) < 0. By the theory of planar dynamical system and the properties
of Hamiltonian system, it is not difficult for one to check E1 is a saddle, E2 is a center
and E3 is a saddle. When n

2α−m > 0 and A
n < 0, we have J1(E5) < 0. So, E5 is a saddle.

When A = 0, n ̸= 0, we have J1(E4) = 0, which means E4 is a degenerate equilibrium. In
this case, system (2.4) degrades to the following form ϕ

′ = y := P (ϕ, y),
y

′ = n

2α−m
ϕ3 := Q(ϕ, y).

According to the qualitative theory of differential equation [40], if n
2α−m > 0, E4 is a

saddle. If n
2α−m < 0, we have P (ϕ,−y) = −P (ϕ, y) and Q(ϕ,−y) = Q(ϕ, y). So, E4 is a

center. □

(a) A
n

> 0, n
2α−m

> 0 (b) A
n

> 0, n
2α−m

< 0 (c) A = 0, n
2α−m

> 0

(d) A = 0, n
2α−m

< 0 (e) A
n

< 0, n
2α−m

> 0 (f) A
n

< 0, n
2α−m

< 0

Figure 1. The bifurcations of phase portraits of system (2.4)

According to the above analysis, we have the following results for system (2.4) :
Case I. When A

n > 0 and n
2α−m > 0, there are two heteroclinic orbits Γ+

0 and Γ−
0

connecting saddles E1 and E3. Inside them, there exists a family of periodic orbits

Γ(h) =
{
H(ϕ, y) = h, h ∈

(
0, A2

4n(2α−m)

)}
,
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which surround center E2. When h→ 0, orbit Γ(h) tends to center E2. When h →
A2

4n(2α−m) , orbit Γ(h) tends to heteroclinic orbits. As shown in figure 1(a), outside of the
heteroclinic orbits and the periodic orbits, other orbits of system (2.4) are unbounded.
Case II. When A

n > 0 and n
2α−m < 0, there are two homoclinic orbits Π−

0 and Π+
0

connecting the saddle E2. As shown in figure 1(b), center E1 and center E3 are surrounded
by two families of periodic orbits

ΠL(h) = ΠR(h) =
{
H(ϕ, y) = h, h ∈

(
A2

4n(2α−m)
, 0
)}

.

As h → A2

4n(2α−m) , ΠL(h) and ΠR(h) tend to E1 and E3 respectively. As h → 0, ΠL(h)
and ΠR(h) tend to Π−

0 and Π+
0 respectively.

Case III. When A
n ≤ 0, if n

2α−m > 0 ( n
2α−m < 0), as shown in figure 1(c)-1(f), all the

orbits of system (2.4) are unbounded (bounded).

In order to better understand the equilibria and orbits of the system (2.6), we first
consider the associated regular system of it. With the transformation dξ = ϕdη, it can be
converted to the associated regular system{

ϕ
′ = ϕy,

y
′ = n

2α−m

(
ϕ4 − A

nϕ
2
)

− y2,
(2.8)

where ′ denotes d/dη.

Theorem 2.2. The equilibria of system (2.8) have the following properties:
• When A

n > 0, system (2.8) has three equilibria: E1(−
√

A
n , 0), E2(0, 0) and E3(

√
A
n , 0).

Among them, E2(0, 0) is a high degenerate equilibrium. If n
2α−m > 0 ( n

2α−m < 0), E1 and
E3 are saddles (centers). If n

2α−m > 0 ( n
2α−m < 0), there are two (six) orbits tending to

E2(0, 0).
• When A = 0, n ̸= 0, system (2.8) has only one degenerate equilibrium E4(0, 0). If
n

2α−m > 0 ( n
2α−m < 0), there are six (two) orbits tending to E4(0, 0).

• When A
n < 0, system (2.8) also has only one degenerate equilibrium E5(0, 0). If

n
2α−m > 0 ( n

2α−m < 0), there are six (two) orbits tending to E5(0, 0).

Proof. Let M2(Ej) (j = 1, ..., 5) be the Jacobi matrix of the system (2.8) at the equilib-
rium Ej

M2(Ej) =
[

0 ϕ
n

2α−m

(
4ϕ3 − 2A

n ϕ
)

0

]
.

We have J2(Ej) = detM2(Ej) = − 2n
2α−mϕ

2
(
2ϕ2 − A

n

)
. Thus, J2(E2) = J2(E4) = J2(E5) =

0 and J2(E1) = J2(E3) = − 2A2

n(2α−m) . When A
n > 0 and n

2α−m > 0, we have J(E1) < 0 and
J(E3) < 0. So E1 and E3 are saddles. When A

n > 0 and n
2α−m < 0, we have J(E1) > 0

and J(E3) > 0. So E1 and E3 are centers. When A
n > 0, for higher degenerate equilibrium

E2(0, 0), we need to consider the characteristic equation of system (2.8) with ϕ = cos θ
and y = sin θ[40]

G1(θ) = cos θ
[

A

m− 2α
cos2 θ − 2 sin2 θ

]
= 0, (2.9)

and the other function

H1(θ) = sin θ
[(

A

m− 2α
+ 1

)
cos2 θ − sin2 θ

]
. (2.10)
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From G1(θ) = 0, one has θ1 = π
2 , θ2 = 3π

2 and when A
m−2α > 0, one has θ3,4 =

± arctan
√

A
2(m−2α) , θ5,6 = π ± arctan

√
A

2(m−2α) . Thus, when A
n > 0 and n

2α−m > 0,
one can check that π

2 and 3π
2 are simple roots of G1(θ) = 0, and

G
′
1

(
π

2

)
H1

(
π

2

)
= G

′
1

(3π
2

)
H1

(3π
2

)
= −2 < 0,

where ′ denotes d/dθ. According to the work [40], there are only two orbits tending to
equilibrium E2(0, 0) in the direction of θ1 = π

2 and θ2 = 3π
2 , respectively. When A

n > 0 and
n

2α−m < 0, one can check that G1(θ) = 0 has six single roots. The fact that orbits tend
to (0, 0) in the direction of θ1 and θ2 has the same proof as above. Next, we consider the
other roots θ3,4,5,6 of equation (2.9). Due to the symmetry of the phase portrait of (2.8),
we only check orbit tends to equilibrium E2(0, 0) in the direction of θ3 = arctan

√
A

2(m−2α)
in the first quadrant. In the subcase, one can easily know that θ3 is a simple root of the
equation (2.9) and

G
′
1(θ3)H1(θ3) = −(5l + 8)(6l + 8)(2l + 2)

4(l + 4)3 < 0,

where l = A
m−2α > 0. According to the work [40], the orbit can only tend to equilibrium

E2(0, 0) in the direction of θ3 in the first quadrant. Thus, for the case of A
n > 0 and

n
2α−m < 0, there are six orbits tending to E2(0, 0).

When A = 0, n ̸= 0, the equation (2.9) and function (2.10) become

G2(θ) = −2 cos θ sin2 θ = 0,
and

H2(θ) = sin θ
(
cos2 θ − sin2 θ

)
.

From G2(θ) = 0, one has θ1 = π
2 , θ2 = 3π

2 , θ7 = 0 and θ8 = π. One can check that
G

′
2(π2 )H2(π2 ) = G

′
2(3π

2 )H2(3π
2 ) = −2 < 0. A similar analysis makes it clear that the

orbits can tend to equilibrium E4(0, 0) in the direction of θ1 = π
2 and θ2 = 3π

2 . However,
G

′
2(0)H2(0) = G2(π)′

H2(π) = 0. In order to check that when n
2α−m > 0, there are other

orbits tending to E4(0, 0), we introduce the method of generalized normal sectors (GNS)
[38]. Since the phase portrait of system (2.8) has symmetry when A = 0, we only consider
the orbit in the first quadrant. From y′ in equation (2.8), we have the only horizontal
isocline

L :=
{

(ϕ, y) ∈ R2
+ : y =

√
n

2α−m
ϕ2, 0 <

√
ϕ2 + y2 < C

}
,

where C is a sufficiently small constant. Obviously, L is tangent to the ϕ-axis at O(0, 0)
and it is not a orbit of system (2.8). Let Φ :=

{
(ϕ, y) ∈ R2

+ : y = 0, 0 <
√
ϕ2 + y2 < C

}
and Y :=

{
(ϕ, y) ∈ R2

+ : ϕ = 0, 0 <
√
ϕ2 + y2 < C

}
. One can know that L divides the

first quadrant into two parts. Considering the open quasi-sectorial region ∆L̂OΦ, we find
that expect (0, 0), all positive semi-orbits starting from L and Φ enter ∆L̂OΦ (see figure
2) and ∂

∂y

(
y′

ϕ′

)
= −y2+ n

2α−m
ϕ4

ϕy2 < 0. According to the work [38], there is only one orbit

tending to (0, 0) in the direction of θ = 0 in ∆L̂OΦ. In another open quasi-sectorial region
∆Ŷ OL, we have y′

ϕ′ =
n

2α−m
ϕ4−y2

ϕy < 0. So no orbit tends to (0, 0) in ∆Ŷ OL. In the first
quadrant, there is a unique orbit tending to (0, 0) in the direction of θ = 0. In the entire
ϕ− y plane, there are six orbits tending to (0, 0). When n

2α−m < 0, in the first quadrant,
one can check no orbit tends to (0, 0) because of y′

ϕ′ < 0. In the entire ϕ − y plane, there
are two orbits tending to (0, 0) in the direction of θ = π

2 and θ = 3π
2 respectively.
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Figure 2. ϕ− y plane

When A
n > 0, for the degenerate equilibrium E5(0, 0), we have the same analysis as the

equilibrium E2(0, 0). We omit this proof for simplicity. □

(a) A
n

> 0, n
2α−m

> 0 (b) A
n

> 0, n
2α−m

< 0 (c) A = 0, n
2α−m

> 0

(d) A = 0, n
2α−m

< 0 (e) A
n

< 0, n
2α−m

> 0 (f) A
n

< 0, n
2α−m

< 0

Figure 3. The bifurcations of phase portraits of system (2.6)

Because of the symmetry of system (2.6), we only consider the case of A > 0. According
to the Theorem 2.2, we have the following results for system (2.6):
Case I. When A

n > 0 and n
2α−m > 0, there are four stable manifolds and four unstable

manifolds connecting the saddles E1 and E3. Among them, only manifolds Ω+
2 , Ω−

2 , Ω+
2′

and Ω−
2′ are bounded orbits. Inside them, there exists a family of compact orbits

Γ(h) =
{
H(ϕ, y) = h, h ∈

(
−A3

n2 , 0
)}

,

for which one Γ(h) tends to the singular straight line ϕ = 0 as |y| → ∞. When h → 0,
orbit Γ(h) gets closer to the singular straight line. When h → −A3

n2 , orbit Γ(h) tends to the
saddle. Outside of the orbits mentioned here, other orbits of system (2.6) are unbounded.
Case II. When A

n > 0 and n
2α−m < 0, as shown in figure 3(b), there are two homoclinic or-

bits ΠL4 and ΠR4 connecting the equilibrium E2. Center E1 and center E3 are surrounded
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by two families of periodic orbits

ΠL5(h) = ΠR5(h) =
{
H(ϕ, y) = h, h ∈

(
−A3

n2 , 0
)}

.

As h → −A3

n2 , ΠL5(h) and ΠR5(h) tend to E1 and E3 respectively. As h → 0, ΠL5(h) and
ΠL5(h) tend to homoclinic orbits ΠL4 and ΠR4 respectively.
Case III. When A

n ≤ 0, if n
2α−m > 0 ( n

2α−m < 0), as shown in figure 3(c)-3(f), all the
orbits of system (2.6) are unbounded (bounded).

3. Exact solutions of systems (2.4) and (2.6)
In this section, by calculating the complicated elliptic integrals, we give explicit exact

solutions of of system (2.4) and (2.6).

3.1. Explicit exact solutions of system (2.4)
In this part, we will give the bounded and unbounded solutions of system (2.4), which

requires us to identify every type of orbits of system (2.4) including homoclinic orbits,
heteroclinic orbits, periodic orbits and other unbounded ones.

In order to calculating the solutions of system (2.4), from the first equation of it, we
have

ξ =
∫ ϕ

ϕ0

dϕ

±
√

n
2(2α−m)

√
ϕ4 − 2A

n ϕ
2 + 4(2α−m)h

n

,

for n
(2α−m) > 0,

ξ =
∫ ϕ

ϕ0

dϕ

±
√

−n
2(2α−m)

√
−ϕ4 + 2A

n ϕ
2 − 4(2α−m)h

n

,

for n
(2α−m) < 0.

First of all, we discuss bounded solutions of system (2.4), including the kick wave
solutions, smooth solitary wave solutions and periodic solutions. As shown in figure 1(a),
1(b), 1(d), 1(f), four cases need to be discussed.

(I) For A
n > 0 and n

m−2a > 0 in figure 1(a), there are three equilibria: saddle E1(−
√

A
n , 0),

center E2(0, 0) and saddle E3(
√

A
n , 0). We have two subcases in this case.

(i) The periodic orbits Γ in figure 1(a), whose energy is higher than 0, but lower than the
energy of saddles E1 and E3, can be expressed by

y = ±
√

n

2(2α−m)

√
(ϕ+ ϕ1)(ϕ+ ϕ2)(ϕ1 − ϕ)(ϕ2 − ϕ),

where ϕ1 and ϕ2 are reals and the relation 0 < ϕ < ϕ2 <
√

A
n < ϕ1 holds. Choosing initial

value ϕ(0) = ϕ2 and assuming the period is 2T1, we have∫ ϕ

ϕ2

dϕ√
n

2(2α−m)
√

(ϕ+ ϕ1)(ϕ+ ϕ2)(ϕ1 − ϕ)(ϕ2 − ϕ)
=
∫ ξ

0
dξ, 0 < ξ < T1,

∫ ϕ2

ϕ

dϕ

−
√

n
2(2α−m)

√
(ϕ+ ϕ1)(ϕ+ ϕ2)(ϕ1 − ϕ)(ϕ2 − ϕ)

=
∫ 0

ξ
dξ, −T1 < ξ < 0,

which can be rewritten as∫ ϕ

ϕ2

√
2(2α−m)

n

dϕ√
(ϕ2

1 − ϕ2)(ϕ2
2 − ϕ2)

=| ξ |, −T1 < ξ < T1.
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By calculating the elliptic integral, we get first type of periodic solution of system (2.4)

ϕb1(ξ) = −ϕ1 + ϕ2
1 − ϕ2

2

ϕ1 + ϕ2 − 2ϕ2sn2
(√

n
2α−mξ, k1

) , −T1 < ξ < T1,

where k2
1 = 4ϕ1ϕ2

(ϕ1+ϕ2)2 .
(ii) The heteroclinic orbit Γ+

0 in figure 1(a), whose energy is equal to the energy of two
saddles h = H(E1) = H(E2) = A2

4n(2α−m) , can be expressed by

y =
√

n

2(2α−m)
(An − ϕ2),

where −
√

A
n < ϕ <

√
A
n . Choosing the initial value ϕ(0) = 0, we have∫ ϕ

0

dϕ√
n

2(2α−m)(An − ϕ2)
=
∫ ξ

0
dξ, −∞ < ξ < +∞.

So, we obtain the kink wave solution of system (2.4)

ϕb2 =

√
A

n

1 − 2
1 + exp

(√
2A

2α−mξ
)
 , −∞ < ξ < +∞.

The another kink wave solution of system (2.4), corresponding heteroclinic orbit Γ−
0 , has

similar expression

ϕ
b

′
2

=

√
A

n

1 − 2
1 + exp

(
−
√

2A
2α−mξ

)
 , −∞ < ξ < +∞.

(II) For A
n > 0 and n

2α−m < 0 in figure 1(b), there are three equilibria: center
E1(−

√
A
n , 0), saddle E2(0, 0) and center E3(

√
A
n , 0). We have three subcases in this case.

(1) The periodic orbit ΠR in figure 1(b), whose energy is higher than the energy of centers
E1 and E3, but lower than 0, can be expressed by

y = ±
√

− n

2(2α−m)

√
(ϕ+ ϕ3)(ϕ+ ϕ4)(ϕ− ϕ4)(ϕ3 − ϕ),

where ϕ3 and ϕ4 are reals and the relations 0 < ϕ4 <
√

A
n < ϕ3 and ϕ4 < ϕ < ϕ3 hold.

Choosing initial value ϕ(0) = ϕ3 and assuming the period is 2T2, we have∫ ϕ3

ϕ

√
2(m− 2α)

n

dϕ√
(ϕ2

3 − ϕ2)(ϕ2 − ϕ2
4)

=| ξ |, −T2 < ξ < T2.

By calculating the elliptic integral∫ ϕ3

ϕ

dϕ√
(ϕ2

3 − ϕ2)(ϕ2 − ϕ2
4)

= 1
ϕ3
sn−1

(√
ϕ2

3 − ϕ2

ϕ2
3 − ϕ2

4
, k2

)
,

where k2
2 = ϕ2

3−ϕ2
4

ϕ2
3

, we get second type of periodic solution of system (2.4)

ϕb3 =

√√√√ϕ2
3 + (ϕ2

4 − ϕ2
3)sn2

(√
n

2(m− 2α)
ϕ3ξ

)
, −T2 < ξ < T2.
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The another periodic solution of system (2.4), corresponding periodic orbit ΠL and initial
value ϕ(0) = −ϕ3, has similar expression ϕ

b
′
3

= −ϕb3 .
(2) The homoclinic orbit Π+

0 shown in figure 1(b) , whose energy is equal to 0. It can be
expressed by

y = ±
√

− n

2(2α−m)

√√√√√ϕ2

ϕ+

√
2A
n

√2A
n

− ϕ

,
where the relation 0 < ϕ <

√
2A
n holds. Choosing initial value ϕ(0) =

√
2A
n = ϕ5, we have

∫ ϕ

ϕ5

√
2(m− 2α)

n

dϕ

ϕ
√
ϕ2

5 − ϕ2
= − | ξ |, −∞ < ξ < +∞.

By a direct calculation, we obtain the solitary wave solution of system (2.4)

ϕb4 = ϕ5

cosh(
√

A
m−2αξ)

, −∞ < ξ < +∞.

The another solitary wave solution of system (2.4) in figure 1(b), corresponding homoclinic
orbit Π−

0 , has similar expression ϕ
b

′
4

= −ϕb4 .
(3) The periodic orbit Π1 in figure 1(b), whose energy is higher than 0, can be expressed
by

y = ±
√

− n

2(2α−m)

√
(ϕ+ ϕ6)(ϕ6 − ϕ)

(
ϕ2 + ϕ2

6 − 2A
n

)
,

where ϕ6 is a real and the relations ϕ6 >
√

2A
n and 0 < ϕ < ϕ6 hold. Choosing initial

value ϕ(0) = −ϕ6 and assuming the period is 2T3, we have

∫ ϕ

−ϕ6

√
2(m− 2α)

n

dϕ√
(ϕ2

6 − ϕ2)
(
ϕ2 +

(
ϕ2

6 − 2A
n

)) = |ξ|, −T3 < ξ < T3.

Noting ∫ ϕ

−ϕ6

dϕ√
(ϕ2

6 − ϕ2)
(
ϕ2 +

(
ϕ2

6 − 2A
n

)) = 1√
2
(
ϕ2

6 − A
n

)cn−1
(−ϕ
ϕ6

, k3

)
,

where k2
3 = ϕ2

6
2(ϕ2

6− A
n ) , we obtain the third type of periodic solution of system (2.4)

ϕb5 = −ϕ6cn

√ϕ2
6n−A

m− 2α
ξ

 , −T3 < ξ < T3.

(III) For A = 0 and n
2α−m < 0 in figure 1(d), there is only one type of bounded solution,

corresponding to periodic orbit Π2, whose energy is higher than the energy of center E4.
So, it can be expressed by

y = ±
√

− n

2(2α−m)

√
(ϕ2

7 − ϕ2)(ϕ2
7 + ϕ2),
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where ϕ7 is a real and the relations ϕ7 > 0 and 0 < ϕ < ϕ7 hold. Choosing the initial
value ϕ(0) = ϕ7 and assuming the period is 2T4, we have

∫ ϕ7

ϕ

√
2(m− 2α)

n

dϕ√
ϕ4

7 − ϕ4
= |ξ|, −T4 < ξ < T4.

So, we obtain the four type of periodic solution of system (2.4)

ϕb6 = ϕ7cn

(√
n

m− 2α
ϕ7ξ

)
, −T4 < ξ < T4.

(IV) For A
n < 0 and n

2α−m < 0 in figure 1(f), there is only one type of bounded orbit,
such as orbit Π3. The solution of system (2.4), corresponding orbit Π3, has the similar
form as solution ϕb5 .

Then, we discuss all unbounded solutions of system (2.4). As shown in figure 1(a), 1(c)
and 1(e), three cases need to be considered.

(I) For A
n > 0 and n

2α−m > 0 in figure 1(a), we have five subcases in this case.
(1)Consider a class of unbounded orbits in figure 1(a), whose energy h = n

2(2α−m)h1 are
higher than the energy of saddles E1 and E3, such as the orbits Γ+

1 and Γ−
1 . Obviously,

h1 > 0. Taking the right-hand side of orbit Γ+
1 as an example, we have the expression for

it

y =
√

n

2(2α−m)

√
ϕ4 − 2A

n ϕ
2 + h1,

where ϕ > 0. Choosing initial value ϕ(0) = +∞, we have
∫ ϕ

+∞

√
2(2α−m)

n

dϕ√
ϕ4 − 2A

n ϕ
2 + h1

=
∫ ξ

0
dξ, ξ > 0.

Noting that ∫ +∞

ϕ

dϕ√
ϕ4 − 2A

n ϕ
2 + h1

= 1
2 4√h1

cn−1
(
ϕ2 −

√
h1

ϕ2 +
√
h1
, k4

)
,

where k2
4 = 1

2 + A
2n

√
h1

, we obtain the first type of unbounded solution of system (2.4)

ϕu1 =
√√√√ 2

√
h1

1 − cn
(√

2n
2α−m

4√h1ξ
) −

√
h1, 0 < ξ < ξ1,

where ξ1 =
√

8(2α−m)
n

√
h1

∫ π
2

0
dθ√

1−k2
4sin

2θ
.

(2) Consider a class of unbounded orbits in figure 1(a), whose energy are equal to the
energy of two saddles. They are Γ+

L2, Γ−
L2, Γ+

R2 and Γ−
R2. Take Γ−

R2 as an example. It can
be expressed respectively by

y = −
√

n

2(2α−m)

(
ϕ2 − A

n

)
,

where ϕ >
√

A
n . Choosing initial value ϕ(0) = +∞, we have∫ ϕ

+∞

dϕ

−
√

n
2(2α−m)(ϕ2 − A

n )
=
∫ ξ

0
dξ, ξ > 0.
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By a direct calculation, we obtain the second type of unbounded solution of system (2.4)

ϕu2 =

√
A

n

 2
1 − exp

(
−
√

2A
2α−mξ

) − 1

 , ξ > 0.

(3) Consider a class of unbounded orbits in figure 1(a), whose energy are higher than the
energy of center E2, but lower than the energy of two saddles, such as orbits ΓR3 and ΓL3.
Take the orbit ΓR3 as an example. It can be represented by

y = ±
√

n

2(2α−m)

√
(ϕ2 − ϕ2

1)(ϕ2 − ϕ2
2),

where ϕ > ϕ1. Choosing initial value ϕ(0) = +∞, we have∫ +∞

ϕ

√
2(2α−m)

n

dϕ√
(ϕ2 − ϕ2

1)(ϕ2 − ϕ2
2)

= |ξ|.

By calculating the elliptic integral∫ +∞

ϕ

dϕ√
(ϕ2 − ϕ2

1)(ϕ2 − ϕ2
2)

= 1
ϕ1
sn−1

(
ϕ1
ϕ
, k5

)
,

where k5 = ϕ2
ϕ1

, we obtain the third type of unbounded solution of system (2.4)

ϕu3 = ϕ1

sn

(√
n

2(2α−m)ϕ1|ξ|
) , −ξ2 < ξ < ξ2,

where ξ2 = 1
ϕ1

√
32(2α−m)

n

∫ π
2

0
dθ√

1−k2
5sin

2θ
.

(4) Consider orbits ΓR4 and ΓL4 in figure 1(a), whose energy is equal to the energy of the
center E2. Take the orbit ΓR4 as an example. It can be represented by

y = ±
√

n

2(2α−m)

√
ϕ2 (ϕ2 − ϕ2

5
)
,

where ϕ > ϕ5. Choosing initial value ϕ(0) = +∞, we have∫ +∞

ϕ

dϕ√
n

2(2α−m)ϕ
√
ϕ2 − ϕ2

5

= |ξ|.

Noting that ∫ +∞

ϕ

dϕ

ϕ
√
ϕ2 − ϕ2

5

= 1
ϕ5

arcsin ϕ5
ϕ
,

we obtain the fourth type of unbounded solution of system (2.4)

ϕu4 = ϕ5 csc
(√

n

2(2α−m)
ϕ5|ξ|

)
, −ξ3 < ξ < ξ3,

where ξ3 = 2π
ϕ5

√
2(2α−m)

n .
(5) Consider a class of unbounded orbits in figure 1(a), whose energy is lower than the
energy of center E2, such as orbits ΓR5 and ΓL5. Take the orbit ΓR5 as an example. It
can be represented by

y = ±
√

n

2(2α−m)

√
(ϕ2 − ϕ2

6)
(
ϕ2 + ϕ2

6 − 2A
n

)
,
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where ϕ > ϕ6 >
√

2A
n . Choosing the initial value ϕ(0) = +∞, we have∫ +∞

ϕ

dϕ√
n

2(2α−m)

√
(ϕ2 − ϕ2

6)
(
ϕ2 + ϕ2

6 − 2A
n

) = |ξ|.

By calculating the elliptic integral

∫ +∞

ϕ

dϕ√
(ϕ2 − ϕ2

6)
(
ϕ2 +

(
ϕ2

6 − 2A
n

)) = 1√
2ϕ2

6 − 2A
n

sn−1


√√√√ 2ϕ2

6 − 2A
n

ϕ2
6 − 2A

n + ϕ2 , k6

 ,
where k2

6 = 1 − nϕ2
6

2nϕ2
6−A , we obtain the fifth type of unbounded solution of system (2.4)

ϕu5 =
√√√√√√ 2(nϕ2

6 −A)

nsn2

(√
nϕ2

6−A
2α−m ξ

) − ϕ2
6 + 2A

n
, −ξ4 < ξ < ξ4,

where ξ4 = 4
√

2α−m)
nϕ2

6−2A
∫ π

2
0

dθ√
1−k2

6 sin2 θ
.

(II) For A = 0 and n
2α−m > 0 in figure 1(c), system (2.4) has only one equilibrium:

saddle E4. In this part, we have three subcases in this case.
(1) Consider a class of unbounded orbits in figure 1(c), whose energy h = n

4(2α−m)h2 is
higher than 0, such as orbits γ+

0 and γ−
0 . Them can be represented by

y = ±
√

n

2(2α−m)

√
ϕ4 + h2,

where ϕ > 0. Choosing initial value ϕ(0) = +∞, the solution corresponding the right-hand
side of orbit γ+

0 is the same as ϕu1

ϕu6 =
√√√√ 2

√
h2

1 − cn
(√

2n
2α−m

4√h2ξ
) −

√
h2, 0 < ξ < ξ5,

where ξ5 =
√

8(2α−m)
n

√
h2

∫ π
2

0
dθ√

1− 1
2 ·sin2 θ

.

(2) Consider a class of unbounded orbits in figure 1(c), whose energy is equal to 0. They
are orbits γ+

L1, γ−
L1, γ+

R1 and γ−
R1. Take the orbit γ−

R1 as an example. It can be represented
by

y = −
√

n

2(2α−m)
ϕ2,

where the relation ϕ > 0 holds. Choosing the initial value ϕ(0) = +∞, we obtain the sixth
type of unbounded solution of system (2.4)

ϕu7 =

√
2(2α−m)

n

1
ξ
, ξ > 0.

(3) Consider a class of unbounded orbits in figure 1(c), whose energy is lower than 0, such
as orbits γL2 and γR2. Take orbit γR2 as an example. It can be represented by

y = ±
√

n

2(2α−m)

√
(ϕ2 − ϕ2

7)(ϕ2 + ϕ2
7),
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where the relation ϕ > ϕ7 holds. Choosing the initial value ϕ(0) = +∞, we obtain the
seventh type of unbounded solution of system (2.4)

ϕu8 = ϕ7

√√√√√ 2

sn2
(√

n
2(2α−m)ϕ7ξ

) − 1, −ξ6 < ξ < ξ6,

where ξ6 = 4
ϕ7

√
2(2α−m)

n

∫ π
2

0
dθ√

1− 1
2 ·sin2 θ

.

(III) For A
n < 0 and n

2α−m > 0 in figure 1(e), system (2.4) also has only one equilibrium.
There are three different types of unbounded orbits. The solutions corresponding to these
orbits are similar to the ones we gave above, and will not be written down in detail.

3.2. Explicit exact solutions of system (2.6)
In this part, we will classify the bounded solutions of system (2.6), which requires us to

identify every type of orbits of system (2.6) including periodic orbits, homoclinic orbits,
compact orbits and other bounded ones. As shown in figure 3(a), 3(b), 3(d), 3(f), four
cases need to be discussed.

In order to calculating the solutions of system (2.6), from the first equation of system
(2.6), we have

ξ =
∫ ϕ

ϕ0

dϕ

±
√

n
3(m−2α)

√
−ϕ6+ 3A

2n
ϕ4+ h

2n
ϕ2

,

for n
(2α−m) < 0,

ξ =
∫ ϕ

ϕ0

dϕ

±
√

−n
3(m−2α)

√
ϕ6− 3A

2n
ϕ4− h

2n
ϕ2

,

for n
(2α−m) > 0.

(I) For A
n > 0 and n

2α−m > 0 in figure 3(a), There are two types of bounded orbits.
Thus, we need to discuss two subcases in this case.
(1) Consider a class of bounded orbits in figure 3(a), whose energy is equal to the energy
of the two saddles E1 and E3. They are stable manifolds Ω+

2 , Ω−
2′ and unstable manifolds

Ω−
2 , Ω+

2′ . Take the stable manifold Ω+
2 as an example. It can be represented by

y =
√

n

3(2α−m)

√√√√√
(√

A
n − ϕ

)2 (
ϕ+

√
A
n

)2
(ϕ2 + A

2n)

ϕ2 ,

where 0 < ϕ < A
n . Taking the initial value ϕ(0) = 0, as shown in figure 4(a), we obtain

first type bounded solution of system (2.6)

ϕb7 =

√√√√√3A
2n

1 − 2
exp(5 − 2

√
6 −

√
2A

2α−mξ)

2

− A

2n
, 0 < ξ < +∞.

(2) Consider a family of open orbits in figure 3(a), whose energy H = h, h ∈ (−A3

n2 , 0),
such as ΩL1 and ΩR1. Take the bounded orbit ΩR1 as an example. It can be represented
by

y = ±
√

n

3(2α−m)

√
(ϕ2

1 − ϕ2)(ϕ2
2 − ϕ2)(ϕ2 + ϕ2

1 + ϕ2
2 − 3A

2n )
ϕ2 ,
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where 0 < ϕ < ϕ2. Choosing the initial value ϕ(0) = ϕ2, as shown in figure 4(c), we obtain
the first type compacton solution of system (2.6)

ϕb8 =
√
ϕ2

1 + ϕ2
2 − ϕ2

1
1 − k2

7sn
2(g1ξ, k7)

, −ξ7 < ξ < ξ7,

where g1 =
√

n(2ϕ2
1+ϕ2

2− 3A
2n

)
3(2α−m) , k2

7 = 2ϕ2
2+ϕ2

1− 3A
2n

2ϕ2
1+ϕ2

2− 3A
2n

and ξ7 = 1
g1
sn−1

(
ϕ2
k7ϕ1

, k7
)
.

(a) (b) (c)

Figure 4. The bounded solutions of system (2.6) defined by ϕb7 and ϕb8

(II)For A
n > 0 and n

2α−m < 0, we need to discuss three subcases in this case.
(1) Consider a class of bounded orbits in figure 3(b), whose energy is lower than 0 but
higher than the energy of the two centers E1 and E3, such as orbits ΠL4 and ΠR4. Take
the orbit ΠR4 as an example. It can be expressed by

y = ±
√

n

3(m− 2α)

√
(ϕ2

1 − ϕ2)(ϕ2 − ϕ2
2)(ϕ2 + ϕ2

1 + ϕ2
2 − 3A

2n )
ϕ2 ,

where 0 < ϕ2 < ϕ < ϕ1. Choosing the initial value ϕ(0) = ϕ2 and assuming the periodic
is 2T5, as shown in figure 5(a), we obtain the periodic solution of system (2.6)

ϕb9 =

√√√√3A
2n

− ϕ2
1 − ϕ2

2 +
2ϕ2

2 − 3A
2n + ϕ2

1
1 − k2

8sn
2(g2ξ, k8)

, −T5 < ξ < T5,

where g2 =
√

n(2ϕ2
1+ϕ2

2− 3A
2n

)
3(m−2α) , k2

8 = ϕ2
1−ϕ2

2
2ϕ2

1+ϕ2
2− 3A

2n

.
(2) Consider the homoclinic orbits ΠL5 and ΠR5 in figure 3(b), whose energy is equal to
0. Take the homoclinic orbit ΠR5 as an example. It can be represented by

y = ±
√

n

3(m− 2α)

√
ϕ2
(3A

2n
− ϕ2

)
,

where 0 < ϕ <
√

3A
2n . Choosing the initial value ϕ(0) =

√
3A
2n , as shown in figure 5(b), we

obtain solitary wave solution of system (2.6)

ϕb10 =

√
3A
2n

1
cosh

(√
A

2(m−2α)ξ
) ,−∞ < ξ < +∞.

(3) Consider a class of orbits in figure 3(b), whose energy is higher than 0, such as orbits
ΠR6 and ΠL6. Take the orbit ΠR6 as an example. It can be represented by

y = ±
√

n

3(m− 2α)

√
(ϕ2

6 − ϕ2)[ϕ4 + (ϕ2
6 − 3A

2n )ϕ2 + ϕ4
6 − 3A

2nϕ
2
6]

ϕ2 ,
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(a) (b) (c)

Figure 5. The bounded solutions of system (2.6) defined by ϕb9 , ϕb10 and ϕb11

where 0 < ϕ < ϕ6. Choosing the initial value ϕ(0) = ϕ6, as shown in figure 5(c), we obtain
the second type of compacton solution of system (2.6)

ϕb11 =
√
ϕ2

6 +B3 − 2B3
1 + cn(g3ξ, k9)

, ξ ∈ (−ξ8, ξ8),

whereB3 =
(
−ϕ2

6
2 + 3A

4n − ϕ6
)2

− (ϕ2
6− 3A

2n
)2

4 −ϕ4
6+3Aϕ2

6
2n , g3 = 2

√
nB3

3(m−2α) , k2
9 = 4B3−3A+2ϕ2

6+ϕ6
8B3

and ξ8 = 1
g3
cn−1

(
B3−ϕ6
B3+ϕ6

, k9
)
.

(III) For A = 0 and n
2α−m < 0 in figure 3(d), there is one type of bounded orbits, whose

energy is higher than 0. Any one of them can be represented by

y = ±
√

n

3(m− 2α)

√
(ϕ2

7 − ϕ2)(ϕ4 + ϕ2
7ϕ

2 + ϕ4
7)

ϕ2 ,

where 0 < ϕ < ϕ7. Choosing the initial value ϕ(0) = ϕ7, we obtain the compacton solution
of system (2.6)

ϕb12 = ϕ7

√
1 + ϕ7 − 2ϕ7

1 + cn(g4ξ, k10)
, ξ ∈ (−ξ9, ξ9),

where g4 = 2ϕ7
√

nϕ7
3(m−2α) , k2

10 = 4ϕ2
7+ϕ7+1
8ϕ2

7
and ξ9 = 1

g4
cn−1

(
1 − 2

ϕ2
7+1 , k10

)
.

(IV) For A
n < 0 and n

2α−m < 0 in figure 3(f), there is only one type of bounded orbits,
whose energy is higher than 0. The corresponding solution for each orbit has the same
expression as ϕb12 .

4. Conclusion
In this paper, we apply the dynamical system method to investigate the traveling wave

solutions of the time-space fractional complex Ginzburg-Landau equation with Kerr law
nonlinearity. This method allows detailed analysis of the phase space geometry of the
traveling wave system (2.4) and the singular traveling wave system (2.6) to clearly ob-
serve various orbits which just correspond to different types of traveling wave solutions.
Although the singular traveling wave system brought us some difficulties, for example,
tracking orbits near the full degenerate equilibrium, we succeed overcoming it by the
method of generalized normal sectors. Through a lot of complicated calculations, we
give many types of traveling wave solutions of the time-space fcGL equation. The main
contributions of our results are threefold.

1. A total of twenty explicit exact traveling wave solutions of the time-space fcGL
equation are obtained in this paper. According to the forms of them, we further classify
them into 11 categories as shown in table 1.



Wave solutions of the time-space fcGL equation with Kerr law nonlinearity 1509

2. We obtain some new solutions ϕbi
(ξ), (i = 7, ..., 12) and ϕuj (ξ), (j = 1, ..., 8), which

are not reported in previous work and will be helpful in understanding the complicated
wave phenomena described by equation (1.1). To observe them intuitively, we give the
simulations of solutions ϕb7 and compactons ϕb8 and ϕb11 in figure 6.

3. By the method of dynamical system, we can clearly observe the evolution of traveling
waves. For simplicity, we give an example to illustrate it. When α = 2β, An > 0 and
n

2α−m < 0, as shown in figure 1(b), there exist periodic orbits and homoclinic orbits. Take
the initial value ϕ(0) = ϕ3. When

√
A
n < ϕ3 <

√
2A
n , system (2.4) has a periodic orbit

which corresponds to a periodic traveling wave of the time-space fcGL equation. As ϕ3

increases from
√

A
n to

√
2A
n , the amplitude of the periodic wave will gradually increase.

When ϕ3 =
√

2A
n , the periodic orbit breaks into the homoclinic orbit which implies the

disappearance of periodic wave and the appearance of the solitary wave of the time-space
fcGL equation. When ϕ3 >

√
2A
n , periodic wave appears again with the disappearance of

the solitary wave. Then, the periodic wave’s amplitude will become larger and larger as
the initial value ϕ3 increases.

Table 1. Classification of expression ϕ

Type Category of solutions The corresponding expression ϕ

1 W1
(

2
1±exp(W2ξ) − 1

)
ϕb2 , ϕu2

2 W1
cosh(W2ξ) ϕb4 , ϕb10

3 W1cn(W2ξ) ϕb5 , ϕb6

4 W1
√
W2 ± W3

1±cn(W4ξ) ϕu1 , ϕu6 , ϕb11 , ϕb12

5 W1
√
W2 + W3

W4+W5sn2(W6ξ) ϕb8 , ϕb9 , ϕu5 , ϕu8

6 W1 + W2
W3−W4sn2(W5ξ) ϕb1

7
√
W1 +W2sn2(W3ξ) ϕb3

8
√
W1

(
1 − 2

exp(W2+W3ξ)

)2
−W4 ϕb7

9 W1
sn(W2|ξ|) ϕu3

10 W1 csc(W2|ξ|) ϕu4

11 W1
ξ ϕu7

1 (W1, W2, W3, W4, W5, W6 are real parameters).

(a) ϕb7 (x, t) (b) ϕb8 (x, t) (c) ϕb11 (x, t)

Figure 6. The bounded solutions ϕbi
(x, t) (i = 7, 8, 11) of system (2.6) defined

by ϕbi
and ξ
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Remark 4.1. Note that the final solution of the time-space fcGL equation has the form

u(x, t) = ϕ(ξ) exp(iψ(x, t)), where ψ(x, t) = −kxδ

Γ(1 + δ)
+ ωtδ

Γ(1 + δ)
+ θ is a given function as

shown in expression (2.1). So, the traveling wave solution of the time-space fcGL equation
we mentioned in this section refer specifically to the solution ϕ(ξ).
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