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Abstract

This paper shows the solution form of the rational difference equation

xn+1 =
axn−(2k+3)

−a∓ xn−(k+1)xn−(2k+3)
, n = 0,1, ...

where k is a positive integer a and initial conditions are non-zero real numbers with xn−(k+1)xn−(2k+3) 6=∓a for all n ∈ N0.
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1. Introduction

The theory of difference equations play important role in applicable analysis. Rational difference equations are an important class of
difference equations which have many applications in real life, for example the difference equation xn+1 =

a+bxn
cxn

,which is known as Riccati
Difference Equation, has applications in optics and mathematical biology (see 15). Many researchers have investigated the solution of
rational difference equations. For example see Refs. [1-16].
El-Sayed et al. [6] obtained the formulas of the recursive sequences

xn =
xnxn−5

xn−4(±1± xnxn−5)
.

Gelişken and Karatas[2] studied the solutions of the difference equation

xn+1 =
anxn−2k

bn + cn
2k
∏
i=0

xn−i

.

Simsek and Abdullayev [5] studied a solution of the difference equation

xn+1 =
xn−(k+1)

1+ xnxn−1...xn−k
.

Karatas [12] studied the global behavior of the nonnegative equilibrium points of the difference equation

xn+1 =
Axn−m

B+C
2k+1
∏
i=0

xn−i

.

Çinar et al. [3] investigated the solutions of the difference equation

xn =
xn−3kxn−4kxn−5k

xn−kxn−2k (±1± xn−3kxn−4kxn−5k)

Email address: rkaratas@akdeniz.edu.tr (Ramazan Karatas)



Konuralp Journal of Mathematics 21

Abo-Zeid [10] investigated the global behavior of all solutions of the difference equation

xn+1 =
Axn−k

B+C
k
∏
i=0

xn−i

.

Karataş and Gelişken [11] investigated the solutions of the difference equation

xn+1 =
(−1)nxn−2k

a+(−1)n
2k
∏
i=0

xn−i

.

Our aim in this paper is to obtain the solutions of the difference equation

xn+1 =
axn−(2k+3)

−a∓ xn−(k+1)xn−(2k+3)
, n = 0,1, ... (1.1)

where k is a positive integer, a and initial conditions are non zero real numbers with xn−(k+1)xn−(2k+3) 6=∓a.

Definition 1.1. Let I be some interval of real numbers and let f : Ik+1→ I be a continuously differentiable function. Then for every set of
initial conditions x−k,x−(k+1), ...,x0 ∈ I, the difference equation

xn+1 = f (xn,xn−1, ...,xn−k) , n = 0,1, ...

has a unique solution {xn}∞

n=−k .

Definition 1.2. A sequence {xn}∞

n=−k is said to be periodic with period p if

xn+p = xn for all n≥−k.

2. Main Results

Theorem 2.1. Let {xn}∞

n=−(2k+3) be a solution of Eq.(1.1). Assume that
xn−(k+1)xn−(2k+3) 6=∓a. Then for n = 0,1, ...,all solutions of Eq.(1.1) are of the form

x(2k+4)n+i =


an+1x−(2k+4−i)

[−a∓x−(k+2−i)x−(2k+4−i)]
n+1 , for i = 1,2, ...,k+2

1
an+1 x−(2k+4−i)

[
−a∓ x−(2k+4−i)x−(3k+6−i)

]n+1
, for i = k+3,k+4, ...,2k+4

Proof. For n = 0,the result holds. Assume that n > 0 and that our assumption holds n−1. That is

x(2k+4)(n−1)+i =


anx−(2k+4−i)

[−a∓x−(k+2−i)x−(2k+4−i)]
n , for i = 1,2, ...,k+2

1
an x−(2k+4−i)

[
−a∓ x−(2k+4−i)x−(3k+6−i)

]n
, for i = k+3,k+4, ...,2k+4

(2.1)

Firstly, for i = 1 it follows from Eq.(1.1) and Eq.(2.1) that
x(2k+4)n+1 =

ax(2k+4)n−(2k+3)
−a∓x(2k+4)n−(k+1)x(2k+4)n−(2k+3)

=
a

anx−(2k+3)

[−a∓x−(k+1)x−(2k+3)]
n

−a∓ 1
an x−(k+1)[−a∓x−(k+1)x−(2k+3)]

n anx−(2k+3)

[−a∓x−(k+1)x−(2k+3)]
n

=

an+1x−(2k+3)

[−a∓x−(k+1)x−(2k+3)]
n

−a∓x−(k+1)x−(2k+3)

=
an+1x−(2k+3)

[−a∓x−(k+1)x−(2k+3)]
n+1 .

That is, for i = 1

x(2k+4)n+1 =
an+1x−(2k+3)[

−a∓ x−(k+1)x−(2k+3)

]n+1 . (2.2)

Similarly one can obtain other cases for i = 2,3, ...,k+2.
Secondly, we will show for i = k+3. It follows from Eq.(1.1), Eq.(2.1) and Eq.(2.2) that
x(2k+4)n+k+3 =

ax(2k+4)n−(k+1)
−a∓x(2k+4)n+1x(2k+4)n−(k+1)
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=
a 1

an x−(k+1)[−a∓x−(k+1)x−(2k+3)]
n

−a∓
an+1x−(2k+3)

[−a∓x−(k+1)x−(2k+3)]
n+1

1
an x−(k+1)[−a∓x−(k+1)x−(2k+3)]

n

=
ax−(k+1)[−a∓x−(k+1)x−(2k+3)]

n

an

−a∓
ax−(k+1)x−(2k+3)
−a∓x−(k+1)x−(2k+3)

=
ax−(k+1)[−a∓x−(k+1)x−(2k+3)]

n+1

an+2 .
So, for i = k+3

x(2k+4)n+k+3 =
1

an+1 x−(k+1)

[
−a∓ x−(k+1)x−(2k+3)

]n+1
. (2.3)

Similarly one can obtain the other cases for i = k+4,k+5, ...,2k+4.
The proof is completed.

Theorem 2.2. Assume that x0x−(k+2) = x−1x−(k+3) = ...= x−(k+1)x−(2k+3) =∓2a.
Then every solution of Eq.(1.1) is periodic with period (2k+4).

Proof. In view of Theorem 1 and from our assumption, we get
x(2k+4)n+1 = x−(2k+3),x(2k+4)n+2 = x−(2k+2), ...,x(2k+4)n+2k+4 = x0.
It is obvious that every solution of Eq.(1.1) is periodic with period (2k+4).

Corollary 1. Let {xn}∞

n=−(2k+3) be a solution of equation xn+1 =
axn−(2k+3)

−a+xn−(k+1)xn−(2k+3)
. Assume that

a = 1,x−(2k+3),x−(2k+2), ...,x0 > 0
and
x0x−(k+2) > 2,x−1x−(k+3) > 2, ...,x−(k+1)x−(2k+3) > 2.
Then
lim
n→∞

x(2k+4)n+i = 0 (i = 1,2, ...,k+2),

lim
n→∞

x(2k+4)n+i = ∞ (i = k+3,k+4, ...2k+4).

Proof. Let a = 1,x−(2k+3),x−(2k+2), ...,x0 > 0
and
x0x−(k+2) > 2,x−1x−(k+3) > 2, ...,x−(k+1)x−(2k+3) > 2.
So we can write
−1+ x0x−(k+2) > 1,−1+ x−1x−(k+3) > 1, ...,−1+ x−(k+1)x−(2k+3) > 1.
From Theorem 1 we get
for i = 1,2, ...,k+2,
lim
n→∞

x(2k+4)n+i = lim
n→∞

x−(2k+4−i)

[−1+x−(k+2−i)x−(2k+4−i)]
n+1 = 0

and
for i = k+3,k+4, ...,2k+4,

lim
n→∞

x(2k+4)n+i = lim
n→∞

x−(2k+4−i)

[
−1∓ x−(2k+4−i)x−(3k+6−i)

]n+1
= ∞.

The poof is completed.

Corollary 2. Let {xn}∞

n=−(2k+3) be a solution of equation xn+1 =
axn−(2k+3)

−a+xn−(k+1)xn−(2k+3)
. Assume that

a = 1,x−(2k+3),x−(2k+2), ...,x0 < 0
and
x0x−(k+2) > 2,x−1x−(k+3) > 2, ...,x−(k+1)x−(2k+3) > 2.
Then
lim
n→∞

x(2k+4)n+i = 0 (i = 1,2, ...,k+2),

lim
n→∞

x(2k+4)n+i =−∞ (i = k+3,k+4, ...2k+4).

Proof. The proof is similar to Corollay 1.

The following corollaries can be written from view of Theorem 1.

Corollary 3. Let {xn}∞

n=−(2k+3) be a solution of equation xn+1 =
axn−(2k+3)

−a−xn−(k+1)xn−(2k+3)
. Assume that

a > 0 and x−(2k+3),x−(2k+2), ...,x0 < 0.
Then all solutions of Eq.(1.1) are positive.

Corollary 4. Let {xn}∞

n=−(2k+3) be a solution of equation xn+1 =
axn−(2k+3)

−a+xn−(k+1)xn−(2k+3)
. Assume that

a > 0,x−(2k+3),x−(2k+2), ...,x0 > 0
and
x0x−(k+2) > a,x−1x−(k+3) > a, ...,x−(k+1)x−(2k+3) > a.
Then all solutions of Eq.(1.1) are positive.
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