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ABSTRACT.  The object of the present paper is to study Quasi-concircularly flat and ¢—quasi-concircularly flat
generalized Sasakian-space-forms. Also, we consider generalized Sasakian-space-forms satisfying the condition
P, X).V =0, V(X).P =0, and V(£,X).V = 0 and we obtain some important results. Finally, we give an
example.
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1. INTRODUCTION

The curvature tensor of Riemannian in differential geometry plays an important role. As well as the sectional
curvatures of a manifold determine the curvature tensor R completely. A Riemannian manifold with constant sectional
curvature c is a known as real space-form whose curvature tensor is given by

RX,Y)Z = c[g(Y, D)X - g(X,2)Y],

VX Y,ZeTM.
A Sasakian manifold with constant ¢—sectional curvature becomes a Sasakain space-form and it has a specific form
of its curvature tensor. In order to, Alegre et al. in 2004 [1] introduced the notion of generalized Sasakian space form.
An almost contact metric manifold M(¢, &, 1, g) is known as generalized Sasakian space form whose curvature
tensor R is given by
RX,Y)Z = fiR\ + foRs + f3R3,
where fi, f», f3 are differentiable functions on M and
RiX,NZ = g(Y,2)X -gX,2)Y,
Ry(X.Y)Z = g(X,9Z)pY — g(Y,pZ)pX + 28(X, pY)¢Z,
Ry(X.V)Z = nXn2)Y —n(¥)mZ2)X + g(X, Z)n(Y)&
—8(Y, 2)n(X)é,
V X,Y,Z € TM. In 2004, the author give several examples of generalized Sasakian space-forms. If f| = %, Hh= %

and f; = %, then a generalized Sasakain space form becomes Sasakian space form. The geometry of generalized
Sasakian space form has been developed by several authors such as Alegre and Carriazo [2], Sular and Ozgiir [22],
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Nagaraja et al. [16], Shah [23], Majhi and De [13], Sarkar and Akbar [24], Hui and Chakraborty [11], Venkatesha
and Shanmukha [28], Chaubey and Yadav [6], Singh and Kishor [25], Singh and Lalmalsawma [26] and many others.
Recently, De and Majhi [8] studied ¢ — Q—flat generalized Sasakian space-forms and ¢ — Q—flat Sasakian space forms
under the consideration that characteristic vector field ¢ is killing and he classified locally symmetric generalized
Sasakian space-forms. Also, he proved some geometric properties of generalized Sasakian space-form which depends
on the nature of differentiable functions fi, f> and f;.

2. PRELIMINARIES

A (2n+1) dimensional Riemannian manifold (M?**!, g) is said to be an almost contact metric manifold if admits a
tensor ¢ of type (1,1), £ is a vector fields of type (0,1) and 1-form 7 is a tensor of the type (1,0) satisfying [4, 5]

¢* = -1 +0®E or ¢*X = —X + n(X)é, n(&) = 1, ¢& = 0, n(¢X) =0, Q.1
8(X, &) = n(X), g¢X,¢Y) = g(X,Y) - n(X)n(Y), 2.2)
89X, 9Y) = g(X, ¥) — n(X)n(Y), 2.3)

8(X,9Y) = —g(¢X.Y), g(¢X,X)=0.
Again for a (2n + 1) dimensional generalized Sasakian space-form, the following relation holds [1]:

RX,Y)Z = filg(Y.2)X — g(X, 2)Y] + f2[8(X, ¢Z)pY — g(Y, L)X + 28(X, pY)¢Z]

+ BICOND)Y = qNNDX + (X, 20V — g(Y, D(XE], 24
S(X.Y) = Qufy +3f2 - f)8(X.Y) ~ [3fs + @n — DAIEY).
O'X = Qnfi +3f - )X - [3f2 + Qn - DAL, 2.5)
S(@X.4Y) = S(X.Y) = 2u(fi - f)nX(Y),
R V) = (fi — ()X - n(X)Y], 2.6)
REX)Y = (fi - f)Ig(X. V) - n(V)X], @.7)

SX, &) = 2n(fi — )nX),
S(&,6) = 2n(fi — f),
Q¢ = 2n(fi — HE,
r=2n[2n+ 1)fi +3f —-2f], (2.8)
where R, S, Q" and r are the curvature tensor, Ricci tensor, Ricci operator and scalar curvature tensor of the space-form,
respectively.

The conformal curvature tensor C [30], the projective curvature tensor [10], and the concircular curvature tensor
V [29] on Riemannian manifold (M?"*!, g) defined by

CX,Y)Z =R(X,Y)Z - L[S(Y, DX - SKX,2)Y] + gV, 2)0°X - g(X, 2)Q° Y] + ————[g(V.2)X — g(X, 2)Y],
2n—1 2n(2n—1)

PX,Y)Z =R(X,Y)Z - Zl_n[s Y. 2)X - S(X,2)Y], 2.9)

.
V(X.Y)Z =R(X,Y)Z - m[g(x 2)X - X, 2)Y],

VX, Y,Z € TM respectively, where Q" is the Ricci operator defined by S (X, Y) = g(Q*X, Y).

Conformal curvature tensor, projective curvature tensor and concircular curvature tensor studied by Kim [12], De
and Sarkar [9], and Shukla and Shah [21] and many others.
On the other hand, the Q—curvature tensor in a Riemannian manifold (M>"*!, g) defined by Montica and Suh [14]

O(X. V)Z =R V)Z - - (8K DX - g(X. DY

VX,Y,Z € TM. Q—curvature tensor studied by many worker such as De and Majh [8], Singh and Prasad [27] etc.
In a recent paper, Prasad and Maurya [19] introduced “Quasi—concircular curvature tensor ” of type (1,3) in (2n+1)
dimensional Riemannian manifold (M?"*!, g) denoted by V and defined by

V(X,Y)Z = aR(X,Y)Z +

(ﬁ + Zb) [e(Y, 2)X — g(X, Z)Y]. (2.10)

2n+1\2n
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Ifa=1, b= —ﬁ, then the quasi-concircular curvature tensor V reduces to concircular curvature tensor defined by
Yano and Kon [30]. Quasi-concircular curvature tensor was studied by many authors such as Narain et al. [15], Prasad
and Yadav [20], Ahmad et al. [3] etc.

Let C be the Conformal curvature tensor of M>**!. The tangent space T,(M) into direct sumn 7', M = ¢ (T,,M )69{6 ,,},

where {gp} is a 1-dimensional linear subspace of T,(M) generated by £, we have a map:
C:Ty(M) x T,M x T,M - $(T,M)&&,}.

It may be natural to consider the following particular cases:
i) C:T,(M) x T,M x T,M — L{f,,} , that is, the projection of the image of C in ¢(T,(M)) is zero.

(i) C: Tpy(M) x TyM x T,M — ¢(T,(M)), that is, the projection of the image of C in L{fp} is zero. This

condition is equivalent to

CX,Y)¢é=0.
(iii) C : ¢(Tp(M)) X H(T,(M)) x §(T,(M)) — L{fp},that is, when C is restricted to ¢(T,(M)) X ¢(T,(M)) X
¢(T,(M)), the projection of the image of C in ¢(T,(M)) is zero. This condition is equivalent to Cabrerizo et
al. [7],

¢*C(¢pX, ¢Y)pZ = 0 if and only if g(C(¢pX, pY)pZ,¢W) = 0. (2.11)
A differentiable manifold satisfying the condition (2.11) is called —Conformally flat manifold studied by many authors

such as Zhen [31], Zhen et al. [32], Ozgiir [17], Oztiirk [18], Singh and Prasad [27] in K-contact manifold, LP-Sasakain
manifold and a-cosymplectic manifolds.

Definition 2.1. A generalized Sasakian space-form (M?"*!, g),n > 1 is called é—quasi-concircularly flat if
V(X,Y)é=0on M.
Definition 2.2. A generalized Sasakian space-form (M?"*!, g),n > 1 is called ¢—quasi-concircularly flat if
g(V(¢X,4Y)$Z, $W) = 0 on M.

After introduction and preliminaries, in section 3 we consider é—quasi concircularly flat generalized Sasakian space
form. Section 4 is devoted to study ¢—quasi concircularly flat generalized Sasakian-space-forms. Sections 5, 6 and 7
deal with generalized Sasakian-space-forms satisfying P(&, X).\~/ =0, P&, X).V =0, \7(5;‘, X).P=0and \7(5, X).\~/ =0
respectively. Finally, the results of sections 3 and 4 are illustrated by examples.

3. &—Quasi-ConNcIRCULARLY FLAT GENERALIZED SASAKIAN SPACE-FORMS

A generalized Sasakian space-form (M>**!, g),n > 1 is é—quasi-concircularly flat if

VX, Y)é = 0. (3.1
Putting £ for Z in eqn. (2.10) and using (2.2), we get
— r a
V(X,Y)é = aR(X, Y)é + ] (;l + 2b) ()X - n(X)Y], (3.2)

VX,Y € TM. Using (2.6) and (2.8) in (3.2), we get

alfi = )+ 5 (5 + 2)| HONX = o0

VX 1E = 2n+1\2n

which implies that

(V)X = n(X)Y]. (3.3)

V(X, V)¢ = [a(ﬁ _f3)+(2n(2n+ Dfi +6nf —4nf3)(

2n+1

In view of (3.1) and (3.3), we can state the following theorem.

a
a Zb)
2n *

Theorem 3.1. A (2n+1)-dimensional generalized Sasakain space-form M(fi, f>, f3) is é—quasi-concircularly flat if
and only if a(fi - fy) + (ZELMENA ) (44 9p) = 0,

2n+1
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Particular case : (i) If a = 1,b = —ﬁ, then quasi-concircualr curvature tensor becomes concircular curvature
tensor.
i) Ifa=1,b= —ﬁ, ﬁ =, then quasi-concircualr curvature tensor reduces to Q-curvature tensor.

Hence, Theorem 3.1 can be restated as follows.
Corollary 3.2. A generalized Saasakian space-form M(f1, f», f3) is é—concircularly flat if and only if f3 = ﬁ .
Corollary 3.3. A generalized Saasakian space-form M(f1, f>, f3) is &€ — Q flat if and only if & = 2n(fi — f3).

Corollary 3.2 and 3.3 have been proved by De and Majhi [8] in 2019.
Therefore, Corollary 3.2 and 3.3 are particular case of Theorem 3.1.

4. ¢—Quasi-CoNCIRCULARLY FLAT GENERALIZED SASAKIAN SPACE-ForRMS
In this section, we assume that (M>"*!, g) be ¢—quasi-concircularly flat generalized Sasakian space-form. Then,

P*V($X, pY)$Z = 0,

holds if and only if _
s(V@X.$Y)Z.$W) = 0. (1)
From (2.1) and (4.1), we get
ROV@X, 9107, 0W) = 5" (5= + 26 [g@¥, 6Z)(6X, SW) - 8(6X, 6Z)(@Y. oW (42)

Using (2.1) in (2.4), we get
R(V($X, Y)Z.¢W) = fi[3(0Y, pZ)($X, ¢W) — g($X, $Z)(@Y,dW)] + fo[g(¢X. Z)(Y, pW)

4.3
- 8(@Y. 2)(X, ¢W) + 28(¢X, Y)g(Z, pW)]. @3
In view of (4.2) and (4.3), we get
r a
[+ 55 (55 + 20)| [6@Y. 020X, W) - 8(6X, 02)0Y, oW w
+ f2[8(¢X, Z)(Y, ¢W) — g(¢Y, Z)(X, W) + 28(pX, Y)g(Z, pW)] = 0.
Contracting eqn. (4.4) with respect to Y and Z, we get
r a
[ fit 5 (E + Qb)] [2n(@X. o) — g (9X. ¢*W)| + 3 f28(6X. oW) = 0. 4.5)
Using (2.1) in (4.5), we get
[+ 5 (5 + 26)|[218(6X, 6W) = gX W) + HCORW)] + 3 (8, 4W) = 0. “6)
n+1\2n
Again using (2.3) in (4.6), we get
r a
[(211 -nifi+ 2 (5 + 2b)} ¥ 3f2] g(@X. oW) = 0,
which gives
r a _3f
f1+2n+1(ﬂ+2b)‘_2n—1' @7
Using (4.7) in (4.4), we get
3
B = 377 18@Y.0Z)@X.6W) — 50X, 4Z)(@Y.$W))
+{8(oX, Z)(Y, pW) — g(9Y, Z)(X, pW) + 28(¢X, Y)(Z, W)} | = 0,
which gives either f, = 0, or
3
B [8(8Y, 9Z) (X, W) — g(¢X, pZ)(pY, pW)] 4.8)

+[8(¢X, Z)(Y, pW) — g(¢Y, Z)(X, pW) + 28(¢X, Y)g(Z, pW)] = 0.
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Replacing W by ¢W in (4.8) and using (2.1), we have

3
21 8@BY.2)(X. W) — g($X. $Z)(¢Y. W)]
— [8(¢X, 2)(Y, W) = g(¢Y, Z)(X, W) + 28(¢X, Y)g(Z, W)] = 0.

4.9)

Putting ¢ for Z in (4.9), we obtain
8(eX, Y)n(W) =0,

which gives either n = 0 or g(¢X, Y) = 0. Both case is not possible.
Hence, ¢—quasi concirclarly flat generaized Sasakian space-form implies f, = 0.
Therefore, we have the following theorem.

Theorem 4.1. A (2n+1)-dimensional n > 1 generalized Sasakian space-form M(fi, f>, f3) is ¢—quasi concircularly
Aat if f, = 0.
In 2006, Kim [12] proved that for a (2n+1)—dimensional generalized Sasakian space-form the following hold:

(i) If n > 1, then M is conformally flat if and only if f, = 0.
(i) If M is conformally flat and £ is Killing, then M is locally symmetric and has constant ¢-sectional curvature.

Recently in [8], De and Majhi proved a (2n+1)—dimensional generalized Sasakian space-form the following hold:

(1) If n > 1, then M is ¢ — Q—flat if and only if f, = 0.
(1) If M is ¢ — Q—flat and £ is Killing, then M is locally symmetric and has constant ¢-sectional curvature.

In view of first part of above theorem, we have the following.

Corollary 4.2. In a (2n+ 1)-dimensional n > 1 generalized Sasakian-space-form ¢p—quasi concircularly flat, ¢ — Q—flat
and conformally flat are equivalent.

Again in view of the second part of the above theorem, we have the following.

Corollary 4.3. A quasi-concircurly flat (2n+1)-dimensional n > 1 generalized Sasakian-space-form M(fi, f>, f3) with
¢ as Killing vector field is locally symmetric and has constant ¢—sectional curvature.

Let us consider f, = 0. Then, from (4.4), we get

s (V(@X. pY)OZ, pW) = [ﬁ s (s Zb)] [S(BY, SZ) (DX, pW) — g(dX. GZ)(BY. W), 4.10)
n+1\2n
Putting f, = 0in (4.7), we get
r a
f,=—2n+l(%+2b). @.11)

Combining the eqn. (4.10) and (4.11), we have the following theorem.
Theorem 4.4. A (2n+ 1)-dimensional n > 1 generalized Sasakian-space-form M(f1, f>, f3) is ¢—quasi concircularly
flat if and only if f, = 0.
5. GENERALIZED SASAKIAN SPACE-FORMS SATISFYING P(&, X ).17 =0
In this section, we assume that generalized Sasakian space-from M(f;, f>, f3) satisfying the condition
P X).V =0,

which implies that
(P& X).V) (¥, 2)U =0, G.1)

VX,Y,Z € TM, where P is the projective curvature tensor.
In view of (5.1), we get

P& X)V(Y, Z)U — V(P X)Y, Z)U — V(Y, P(&, X)Z)U — V(Y, Z)P(¢, X)U = 0. (5.2)
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After using (2.7), (2.9) and (2.10), we obtain

PEX)VY,2)U =a [

»L-3f

r

S+

After using (2.7), (2.9) and (2.10), we obtain

V(P& X)Y, Z)U = [ﬁ 2 f]

a(fi =

f)+

Further use of (2.7), (2.9) and (2.10), we have

V(Y. P&, X)Z)U = [f3 3f2—f3] a(, -

-+

Similarly use of (2.7), (2.9) and (2.10), we have

V(Y,Z)P(&, X)U =

[f3 32

-5 [a(fl H)+

2n+1

3f2_f3

3fz_f3

2

Now, substituting (5.3), (5.4), (5.5) and (5.6) in (5.2), we get

[f b fa} [8(X. RO, 2)U)E - R, Z)U)mCOE ] +
[0, V)£ = n(Xm(NE 92, U) - 5 (5=
_ % 5 :a(fl R Et 21)): [g(X.Y)
_ % 5 :a(fl 45— (o Zb): [(X.Z) -

Taking inner product with & in (5.7), we have

3f

f3
2n

[¢X,Y) —n(Xn(Y)]gZ, U) -

- [@ —fa] lath - 7+ 5
n

- [% - f3] [a(fl H)+

Putting X = Y = ¢; in (5.8), where {e;,£},1 < i < 2n is an orthonormal basis of the tangent space at each point of the
manifold and taking summation over i, we get

3/

[fa

f” S(Y.U) = 2na(fi - 3)8(Z, U)+2n{a(f1 - f)+

Hence, either (1 —2n)f3 —3f, = 0 or

2+1

+1

2n+1

(
il

- fa] [¢(X, R(Y, Z)U) — n(R(Y, 2)U)n(X)] +

— +2b
2n

— +2b
ot

[f3 3

)] [8(X, Y) = n(X)n(V)][g(Z, U) = n(U)n(Z)]

)| tex.2 -

aS(Y,U) = 2na(fi = f3)8(Z,U) = 2n {a(fl —f)+

- f3] [¢(X. R(Y, 2)U)¢ = n(R(Y, Z2)U)n(X)§ ]

r f3—
Tt (2n+2b)[

1 <2n +2b)[f3
+1 (Zan +2b):

a .
+2
+1 (2n b)A

[¢(X, Y)é = n(X)n(Y)E 1¢(Z, U)

[¢(X, 2)¢ = n(X)n(Z)¢ 18(Y, U).

[¢(X,Y) = n(X)n(N][g(Z, U)§ — n(U)Z].

[¢(X,Z) -

(e 2b)] (X, U) - iCOnWN@)Y - n(¥)Z).

(20 *
1\2n

- nXOnM][g(Z, U)é — n(U)Z]

nXmD1n(0)Y — g(Y, U)¢]

nXnU)2)Y - n(Y)Z] =

r1(2n+ )[ﬁzw2 f3}'

fa] [g(X,Z) = n(X)n(2D)]g(¥, U)

1\2n

2—:1 (i + Zb)} 2.

2n

nXmD])Y - g(Y, U)¢].

f=3f
Zb)[T —f3].

-3
9 [% _ ]»3] [8(X, 2)¢ - n(X)n(2)¢ 1g(Y, U)

nXm@1n(U)nY) - g(¥, U)] =

# (i + 2b)} n(U)n(Z)].

(5.3)

5.4)

(5.5)

(5.6)

(5.7

(5.8)

(5.9)
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In the second case, comparing eqn. (5.9) with (2.5), for Z and W orthogonal to &, we get

2n(fi — f3) =2nfi +3f2 — f3,

which yeilds

3
fr= 1- anz‘

Then, as f; = ﬁfz from (2.5), S(X,Y) = 2nfi +3f, — f3)g(X,Y) and M is an Einstein manifold. Conversely if
L3k _ = 0, thatis, f3 = = />, then from eqn. (5.3), (5.4), (5.5) and (5.6), we have

P(£,X).V = 0.
Hence, we have the following theorem.

Theorem 5.1. A (2n+1)-dimensional n > 1 generalized Sasakain space-form M(fi, f>, f3) satisfies P(¢, X).V =0, if
and only if f3 = ]fﬂfz. In such a case, it is an Einstein manifold provided a # 0.

Particular case: If a = 1,b = —ﬁ and 2nr+1 =, then quasi-concircular curvature tensor reduces the Q—curvature
tensor. Now putting Z = U = £ in (5.9), where {e;, £}, 1 < i < 2n is an orthonormal basis of the tangent space at each
point of the manifold and taking summation over i, we get

r=2n2n+ 1)(fi = f3) - 2n [(fl —fs)%]- (5.10)

Using ¢ = 575 = r = (2n + 1)y, the equation (5.10) becomes

L~ (- £,

and the manifold reduces to an Einstein manifold.
Hence, Theorem 5.1 can be restated as follows.

Corollary 5.2. A (2n+1)-dimensional n > 1 generalized Sasakain space-form M(fi, f>, f3) satisfies P(¢£,X).Q = 0 if
and only if f3 = 1_% fo. In such a case it is an Einstein manifold.

This Corollary has been proved by De and Majhi [8] by another way.
Therefore, Corollary 5.2 is particular case of Theorem 5.1.
6. GENERALIZED SASAKIAN SPACE-FORMS SATISFYING V(g, X).P=0
We assume that generalized Sasakian space-from M(fi, f>, f3) satisfying the condition
(VEx).P) (Y. 2)U =0, 6.1)
VX, Y,ZU €TM. View of (6.1), we get
VEXP(Y.2)U ~ PV(EX)Y.2)U ~ P(Y,V(E X)Z)U ~ P(Y.Z)V(E X)U = 0. (6.2)
Now, using (2.7), (2.9) and (2.10), we have

W&mmxbU=Pm—ﬁw-’”(ﬁwaﬂuw@ﬂmzwx—mmxawm

2n+1\2n
1 ] (6.3)
—ZﬂﬂXYE—nWM$WZU%+ZﬂﬂXZE—n@ﬂﬂMKU%
Again using (2.7), (2.9) and (2.10), we have
HW&&K@U=Pw—ﬁHd"(fwaﬂuwajm@zw—mnmxaw
n+1\2n 6.4)

1 1
= 7, BENE=n(NX}S(Z,U) + 7S € U)X, Y)Z = S (X, Un(Y)Z) ]
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Further using (2.7), (2.9) and (2.10), we have

—_ r a
P(Y, V(& X)Z)U = [a(ﬁ “f s (5 2b)] [{g(x, DR, £)U — n(Z)R(Y, X)U) o

1 1
+ 5, 828 = n2)X} = S (€, U)g(X. 2)Y = S(X, Un(2)Y} ]

Finally, using (2.7), (2.9) and (2.10), we have

POLZVE XU = |ath = )+ 5 (5 +2b)|

{g(X, U)R(Y, 2)¢ — n(U)R(Y, 2)X}
(6.6)

1 1
=5, BZOY =SX.HZ} (X, U) + - {S(Z. X)Y = S (¥. X)Z} n(U)}-

Using (6.3)-(6.6) in eqn. (6.2), we get

2n+1\2n
+n(V)R(X, Z)U - g(X, Z2)R(Y,E)U + n(Z)R(Y, X)U - g(X, U)R(Y, 2)¢ + n(U)R(Y, Z)X

a(fi - f3) + — (i + 2b)] [g(x, R, 2)U)é - n(R(Y, Z)U)X — g(X, V)R, Z)U

1 1 (6.7)
= 2, 8E U)X NZ = SX, Un(Y)Z} + 548 (& U)g(X. )Y = S(X, Un(2)Y}

1 1
+ 2, 8EOY =S HZEg(X, U) - S (Z, X)Y =S (¥, X)Z}n(U) | = 0.

In (6.7), taking inner product with W, we get

2n+1\2n
ERX,2D)U, W) - g(X,2)g(R(Y,EO)U, W) + n(2)g(R(Y, X\)U, W) — g(X, U)g(R(Y, 2)¢, W) + n(U)g(R(Y, 2)X, W)

alfi = )+ 5 (50 + 2b)] [g(x, RO, Z)U)n(W) - n(R(Y, Z2)U)g(X, W) - g(X. V)g(R(E Z)U, W) + n(¥).

1 1 (6.8)
= 5, 8 & U)X Y)gZ W) = SX, Un(¥)g(Z, W)} + 7S (£, U)g(X, Z)g(Y, W) = S (X, Un(2)g(Y, W)}
1 1
+ 5 8(Z (X W) = S(X.6)8(Z, W)} g(X, U) = ——{S(Z, X)g(Y, W) = § (¥, X)g(Z, W)} n(U) | = 0.
Taking X = Y = ¢; in (6.8), where {¢;,£},1 < i < 2n is an orthonormal basis of the tangent space at each point of the
manifold and taking summation over i, we get

alfi = )+ 5 (50 +26)| [(fl - R @)U, W) = nU)g(Z, W)

—2fi = ) OV)Z U) = n(U)Z W)} = @n+ D = fomU)gZ, W) (69)
1

+SZ UMW) = U)S ZW) + 2 1S (U WD) = S Z W)} + 2g(Z. W)n(U)] =0.

Putting £ for W in (6.9), we obtain

alfi - f3) + —— (i ¥ 2b)] S(Z.U) - 2n(fi - £)8(Z. U) - {(2n (i - f) + i} n(U)n(Z)} =0,

2n+1\2n

Therefore, either a(f; — f3) + 2n’+1 (% + Zb) =Q0or

S(Z,U) = 2n(fi - f3)8(Z,U) - {(2n + D - f)+ %} nWUmnz) = 0. (6.10)
Putting Z = U = £ in (6.10), we get
2n(fi = )= 5.

Using in eqn. (6.10), we get
S(Z,U) = 2n(fi = f2)8(Z, U).
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In this case, the manifold M2**! is an Einstien manifold. Conversely if

alfi - f3) + =— (a 2b)=o,

— +
2n+1\2n

then in view of (6.3)-(6.6), we have _
V(i X).P=0.

Thus, we have the following theorem.

Theorem 6.1. A (2n+1)-dimensional n > 1 generalized Sasakain space-form M(fi, f2, f3) satisfies V({;‘, X).P=0if
and only if a(fi — f3) + 557 (% + 2b) = 0. In such a case, the manifold M*'*" is an Einstein manifold .

Particular case : (i) If a = 1,b = —ﬁ, then quasi-concircualr curvature tensor becomes concircular curvature

tensor.
(i) Ifa=1,0b= —ﬁ and 2nr+1 =, then quasi-concircualr curvature tensor reduces to Q-curvature tensor.

Hence, Theorem 6.1 can be restated as follows.

Corollary 6.2. A (2n+1)-dimensional n > 1 generalized Sasakain space-form M(fi, f>, f3) satisfies V(&,X).P = 0 if
and only if 3fo + 2n—1)f; = 0.

Corollary 6.3. A (2n+1)-dimensional n > 1 generalized Sasakain space-form M(fi, f>, f3) satisfies Q(&,X).P = 0 if
and only if fi — f- —2—‘1; =0.

These Corollary 6.2 and 6.3 have been proved by De and Yildiz [10] and De and Majhi [8], respectively.
Therefore, Corollary 6.2 and 6.3 are particular case of Theorem 6.1.

7. GENERALIZED SASAKIAN SPACE-FORMS SATISFYING V(g—“, X).V=0
Let a (2n+1) dimensional n > 1 generalized Sasakian space-from M(f, f>, f3) satisfying the condition
(V& x.v)xzu =o, (7.1)
VX,Y,Z, U €TM. View of (7.1), we get
V(E XV, 2)U - V(VE XY, Z)U - V(Y V(EX)Z)U - VY, Z)V(E, X)U = 0. (7.2)
Now using (2.7) and (2.10), we have

—_ —_ r a
Ve, V(Y. 2)U = [a(fl “f s (5 2b)] [{g(x, R(Y, 2)U)é — n(R(Y, Z)U)X)

r a r a
p (E + 2b) (8(X, V) = XV 9(Z, V) - - (E + 2b) {g(X. 2)¢ - @)X} gV, U) .
(7.3)
Again using (2.7) and (2.10), we have
—_ 2
VXU = atfi - ) + 5 (50 + 2b)] [5(U, 2)¢ - n(U)Z]g(X. ¥) o
r a ] — ’
- [a(f1 - f) (ﬂ + 2b)7 NV, Z)U.
Further using (2.7) and (2.10), we have
~ . 12
V(Y V(& X)Z)U = [a(ﬁ ~f+ 5 50+ 26)[ )Y - gL V) T9(X, 2) s
r a ] — .
~latri - 5 (o 2b)_ N2V, X)U.
Again using (2.7) and (2.10), we have
— — r a 2
V(Y Z)V(E XU = [a(ﬁ -~ (Z + 2b)] [7(V)X = n(X)Y]g(X. U) e

~lath =+ 55 (5 + 20) oV 2)x.
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Using (7.3)-(7.6) in (7.2), we get

lath = 0+ 5= (5= + 20| [{g(x, ROLZY)E = RO DUX) + 5 (55 +2b).

(80X, V)& = (VX 8(Z, U) = 5 (5= + 20 (X, 20 = n2)X) g0, U)]

~lath -+ 5 (e + )] (U, 2)¢ = nU)ZIgX V) + [aCh = fo) + 5 (5= + 26 [n(n VX, 20

~lath -+ 5 (e + )] )Y = g U)E 18X, 2) +|ath = )+ 5 5=+ 20) @V x0U

~lati- o+ —(2i )] [NX = nOYIgX, U) +[ath = )+ 57— (52 + 2b) [0V 2)x.
(1.7)

Taking inner product with £ in (7.7), we obtain

r a
Jati— £+ 5 (2 +20) [{go(,R(Y,zw)—n(R(Y,Z)wn(X)}+ (& ).

{8(X.Y) = n(X)n(X)} g(Z, U) -

(— + 2b) (8(X.Z) — n(@n0O} gL, U)]

2n+11\2
r a r a T
- [a(f. ] b 2b)] (§(0,2) = (UMD V) + [aCh = )+ - (5= + Zb)] nV (X, 2)U)
2 —_
- [a(ﬁ “ft (5 2b)] [(U)(Y) - (Y, UNg(X. Z) + [a(ﬁ -+ (% + 2b)] n@n(V(Y, X)U)
+ [a(ﬁ ™ (% + 2b)] UMV, 2)X) =

(7.8)

Putting X = Y = ¢; in (7.8), where {e;,£},1 < i < 2n is an orthonormal basis of the tangent space at each point of the
manifold and taking summation over i, we get

[a( =)+ (— + Zh)] [S(Z, U) - {2n.a( fi- )+ 5 (i + 2b)} 2(ZU)

+11\2 +1\2n

TN (_ " 2]’)'7((])'7(2)]

Hence, either

=1+ 5 (5 2) =0
" S@Z,U) = [2na(fl )+ 2n+l(2_+ b)]g(Z U+ 5 1(;—n+2b)n(U)n(Z). (7.9)
When

Then, equation (7.9) will be
S(Z,U) = a2n— (i — )8(Z,U) - a(fi = fnU)n(Z)
=5(Z,U) = Ag(Z,U) + Bn(U)n(Z)
where
A=an-1)(fi - ), B=-alfi—f).

Hence we have the following theorem.

Theorem 7.1. A (2n+1)-dimensional n > 1 generalized Sasakain space-form M(f1, f>, f3) satisfies V(f, X).V =0, then
the manifold M*™*" is n—Einstein manifold.
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8. EXAMPLES

Example 8.1. Let N(a, b) be a generalized complex space-form, then the warped product M = Rf X N endowed with
the almost contact metric structure (¢, &, 7, g5) is a generalized Sasakian-space-form with M(f1, f2, f3) [1] with

a—( /)2 E a—( /)2
e A At

where f(r) = t,t € R and f” denotes the derivstive of f with respect to ¢. If we choose a = 2,b=0and f(®) =t with
t#0,then fi = 5, fo=0and f3 = &,

1

RX.Y)Z =5 [8(Y.2)X = g(X. 2)Y + n(XmZ)Y = (VDX + g(X. ZynY)é = (Y. Zyn(X)E]. (8.1)

"

fi=

In view of (8.1), we have
RX,Y)¢ =0.

Moreover, in this case

=—a(fi = f3)

2n2n+ D)fi +6nfy —4nfs\( a
( 2n + 1 )(;l+2b)

will be

2n+ 1 2n 22

(2n(2n+1)f1+6nf2—4nf3)(i+2b):_(1 1 —O).

Thus, from (3.3), we get V(X, Y)¢é=0.
Thus, generalized Sasakian space-form is é—quasi concircularly flat if and only if

(2n(2n+1)f1+6nf2—4nf3)(£+2b):_(1 1 —O).

2n+ 1 n 2 2
Hence, Theorem 3.1 is verified

Example 8.2. In 2004 [1], Alegre et al. showed that warped product Rf Xy C* is a generalized Sasakian form with
(f > f
flz_f29 f2:0’ f3:_f2 +Fa
where f(r) = t,r € R and f’ denotes the derivstive of f with respect to 7. If we choose m = 4 and f(¢) = ¢, then
M(f1, f>, f3) is a 5-dimensional conformally flat generalized Sasakian-space-form with fj = -1, = O and f3 = 0.
Hence, the generalized Sasakian-space-form is ¢—-quasi concircularly flat. Thus, verify Theorem 4.1 .

’r
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