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ABSTRACT 

The estimation of unknown parameters of two-parameter bathtub-shaped lifetime distribution based on Type-II 

progressive censoring with binomial removals is studied. Maximum likelihood estimators are evaluated and using Fisher 

information matrix, asymptotic confidence intervals are provided. By applying Markov Chain Monte Carlo techniques, 
Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. The 

expected time required to complete the life test under this censoring scheme is investigated. Monte Carlo simulations are 

performed to compare the performances of the different methods, and a real data set is analyzed for illustrative purposes. 
 

Keywords: Two-parameter bathtub-shaped lifetime distribution, Type-II progressive censoring, Maximum likelihood 

estimator, Bayes estimator, Binomial removal, Expected experiment time. 

 

1. INTRODUCTION 

Among the different censoring schemes, the progressive 

Type-II censoring scheme has most widely been used 

particularly in reliability analysis and survival analysis. 

Progressive censoring is useful in both industrial life 

testing applications and clinical settings and it allows the 

removal of surviving experimental units before the 

termination of the test. The progressively Type-II 

censored life test is described as follows. Under this 

scheme, n  units are placed on test at time zero, and m  

failure are going to be observed. When the first failure is 

observed, 1r  of surviving units are randomly selected, 

removed, and so on. This experiment terminates at the 

time when the m th failures is observed and remaining 

121=  mm rrrmnr   surviving units are 

all removed. The statistical inference on the parameters of 

failure time distribution under progressive Type-II 

censoring has been studied by several authors [1, 2, 3, 4]. 

Note that, in this scheme, mrrr ,,, 21   are all prefixed. 

However, in some practical situations, these numbers 

may occur at random.  

There have been several references about the statistical 

inference on lifetime distributions under progressive 

censoring with random removals. Recently, [5] studied 

Weibull distribution under progressive Type-II censoring 

for competing risk data with binomial removals. [6] 

studied generalized exponential distribution under 

progressive censoring with binomial removals. They also 

obtained the expected termination point under this 

censoring scheme. [7] studied Fréchet distribution under 

progressive Type-II censoring with random removals. [8] 

studied Bayesian estimation based on Rayleigh 

progressive Type-II censored data with binomial 
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removals. [9] studied statistical inference for the Rayleigh 

distribution under progressively Type-II censoring with 

binomial removal. [10] studied the statistical inference 

for generalized Pareto distribution based on progressive 

Type-II censored data with random removals. [11] 

studied the inferences using Type-II progressively 

censored data with binomial removals.  

In the area of lifetime analysis, many parametric 

probability distributions have been introduced to analyze 

sets of real data with bathtub-shaped failure rates. The 

bathtub-shape hazard function provides an appropriate 

conceptual model for some electronic and mechanical 

products as well as the lifetime of humans. The previous 

work in detail on parametric probability distributions with 

bathtub-shaped failure rate function can be referred to 

many different authors’ papers. [12, 13, 14] considered 

statistical methods of parameter estimation for a two-

parameter bathtub-shaped lifetime distribution. [15, 16] 

studied parameter estimation of this distribution based on 

hybrid censored scheme and progressive type-II censored 

scheme, respectively. Also, [17] discussed Bayesian 

estimation based on progressive Type-II censoring from 

two-parameter bathtub-shaped lifetime model. [18] 

considered stress-strength reliability of a two-parameter 

bathtub-shaped lifetime distribution based on 

progressively censored samples.  

In this paper, we study the two-parameter lifetime 

distribution with the bathtub shape or increasing hazard 

function which is proposed by [19]. Its probability 

density function is given by  

0,>      ,=)( )(11 xexxf xxe 
 

 (1) 

and the corresponding cumulative distribution function is 

,1=)( )(1


 xeexF   where 0>x  and 0>,  

are the parameters.  

The layout of this paper is as follows: In Section 2, we 

discuss the maximum likelihood estimation of the 

unknown parameters. It is observed that the MLE can be 

obtained by using an iterative procedure. The asymptotic 

confidence interval are presented in Section 3. Bayes 

estimate and the associated credible interval are discussed 

in Section 4. The expected time required to complete the 

life test under this censoring scheme is investigated in 

Section 5. Simulation results and data analysis are 

presented in Sections 6. Finally, we conclude the paper in 

Section 7. 

 

2. THE STUDY 

Let 
),,(= :::,:1 nmmnm XX X

 be a progressively Type-II censored sample, where mXX <<1 
 be the ordered 

failure times out of n  randomly selected times and m  is pre-determined before the test. At the i th failure, iR
 items are 

removed from the test. With pre-determined number of removals 
)=,,=(= 11 mm rRrR R

, the conditional likelihood 

function can be defined as the following form: 
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 where 
1)(1)(= 111   mrrnrnnc m

. Equation (2) is derived conditional on ir . Each ir  can be of 

any integer value between 0 and 
j

i

j
rmn 




1

1= . It is different from progressive censoring with fixed removal that ir  is a 

random number and is assumed to follow a binomial distribution with parameter 
p

. It means that each unit leaves with 

equal probability 
p

 and the probability of ir  units leaving after the i th failure occurs is  
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r

mn
rRP

rmnr








  

1
11

1

11 0,)(1=)=(

    (3) 

and  

,)(1=)=,,=|=( 1=

1

1=1111

j
r

i

j

mn

i
r

i

j

i

jiiii pp

r

rmn
rRrRrRP






 



















 (4) 



 GU J Sci, 29(1):783-792 (2016)/ Akram Kohansal 785 
 

 

 

 where 
k

i

ki rmnr 



1

1=
0

, 
1,2,3,= mi 

. Also supposing further that iR
 is independent of iX

 for all i . 

Therefore, the joint likelihood function of 
),,(= 1 mXX X

 and 
),,(= 1 mRR R

 can be expressed as 

),=()=|,;(=),,;,( rRrRxrx PLpL 
 (5) 

 where  

).=()=|=()=,,=|=(=)=( 111122112211 rRPrRrRPrRrRrRPP mmmm rR
 (6) 

 Substituting (3) and (4) into (6), we get  
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originally who got Equation (7) and some authors used this method (e. g. [10, 11]). Now substituting (2) and (7) into (5), we 

can write the full likelihood function as  
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The MLEs of 
p

,   and  , say 
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 From (9) and (10), respectively, we obtain  
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 and ̂  can be found as the solution of the non-linear equation 
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 Since, ̂  is a fixed point solution of the above non-linear equation, therefore, it can be resulted using an iterative scheme as 

,=)( 1)()( jjk 
 where )( j

 is the 
j

th iterate of ̂ . The iteration procedure should be stopped when 
|| 1)()(  jj 
 

becomes sufficiently small. Once we obtain ̂ , then ̂  can be resulted.  

 

3. CONFIDENCE INTERVAL 

The asymptotic variances and covariances of the MLEs, ̂ , ̂  and p̂ , are given by the entries of the inverse of the Fisher 

information matrix })/({= 2

jiij EJ   Θ , where 1,2,3=, ji  and ),,(=),,(= 321 pΘ . 

Unfortunately, the exact closed forms for the above expectations are difficult to obtain. Therefore, the observed Fisher 

information matrix 
ΘΘ

Θ ˆ=

2 })/({= jiijI    , which is obtained by dropping the expectation operator E , will be 

used. The observed Fisher information matrix has second partial derivatives of log -likelihood function as the entries, which 

can be obtained as follows:  
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 It is known that the asymptotic distribution of the MLE ,  and p  is  
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Using the above matrix, one can derive the approximate 100 )%(1   confidence intervals of the parameters ,  and 

p  in the following forms 
2
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z  is the upper 
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th percentile of 

the standard normal distribution.  
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4. BAYES ESTIMATION 

In this section, we develop the Bayesian inference of the unknown parameters based on progressively Type-II censored data 

with binomial removals. We mainly discuss the Bayes estimates and the associated credible intervals of the unknown 

parameters. In our Bayesian analysis, we have assumed only squared error loss function. Note that if three parameters are 

unknown, the joint conjugate priors do not exist. In such cases, there are several ways to choose the priors. One way is to 

consider the piecewise independent priors. In this article, we consider the following priors on  ,   and p  which are fairly 

general:  
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Moreover, they are assumed to be independent. Based on the observed sample, the joint posterior density function of  ,   

and p  is  
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 (11) 

From (11), it is obvious that the Bayes estimate will not be analytically obtained. Consequently, we adopt the Gibbs sampling 

techniques to compute the Bayes estimates and the corresponding credible intervals of the unknown parameters. The 

conditional posterior pdfs of  ,   and p  are, respectively, as follows:  
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 It is clear that, direct generation of a pseudo-random number from the posterior pdf of  , is not easy, instead, we use the 

Metropolis-Hastings method. Therefore, the algorithm of Gibbs sampling is as follows:   

 • 1. Take some initial value of  ,  , such as 0 , 0 .  

 • 2. Set 1=t .  

 • 3. Generate t  from ),,|( 11 rxt .  

 • 4. Generate t  from ),,|( 12 rxt .  

 • 5. Set 1= tt .  

 • 6. Repeat Steps 2-5, T  times.  

 • 7. Obtain Bayes estimators of   and  :    t

T

tB
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1
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 • Obtain the HPD confidence interval of  : Order T ,,1   as )((1) ,, T   and construct all the   )%100(1   

confidence intervals of  , as ),(,),,( )(])([)])(1([(1) TTT    , where ][M  symbolizes the largest integer less than 
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or equal to M . The HPD confidence interval of   is the shortest length interval. Similarly, we can construct a 

)%100(1   HPD confidence interval of  .  

Now under squared error loss function, the Bayes estimator of p  is given as  
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5. EXPECTED EXPRIMENT TIMES 

In practical situations, an experimenter may be interested to know whether the test can be completed within a specified time. 

This information is important for an experimenter to choose an appropriate sampling plan because the time required to 

complete a test is directly related to cost. Under a progressive Type-II censoring scheme with binomial removals, the 

expected termination time for the experiment is given by the expectation of the m th order statistic mX . According to [2], 

the conditional expectation of mX , for a fixed set of R  is  
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Substituting this value of S  into (12), the expected experimentation time is given by  
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Furthermore, the expected experiment time of a Type-II censoring test without removal can be found by setting the R  terms 

to 0 in (12). It is given by  
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Similarly, the expected experiment time of a complete sampling case with n  test units can also be obtained by setting 

nm =  in (13). It is given by  
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For the progressive Type-II censoring with random removals, the expected termination point is given by 
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where mnrg =)( 1 , 11=)(  ii rrmnrg  ; 1,2,= mi  , and )=( rRP  is given by (7). The ratio 

of the expected experiment time (REET) REET  is computed between progressive Type-II censoring with binomial removals 

and the complete sampling case using the formula  
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It can be noted that the REET  provides important information in determining the shortest experiment time significantly if a 

much larger sample of n  test units is used. When REET  is closer to 1, the termination point will be closer to the complete 

sample.  

The expected experiment times of progressive censoring sample with binomial removals, Type-II censored sample, and 

complete sample are derived. We will calculate them numerically for various values of n , m  and p . Furthermore, we 

gain some idea about the roles of n , m  and p  on the experiment according to compare these expected experiment times. 

A numerical study is conducted and the results are presented in Table 0. From this table, the following general observations 

can be made. For all the parameters,   

  for fixed m  and p , as n  increases, the REET  decreases,  

  for fixed n  and p , as m  increases, the REET  increases,  

  for fixed n  and m , as p  increases, the REET  increases.  

Moreover, for large values of p  and m , we see that the REET  approaches 1 quite sharply.   

Table 1: The REET  for (1,2)=),(   with varying values of p . 

 n    m    p   

      0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9  

6  3   0.2532   0.3924   0.5029   0.6190   0.7051   0.7665   0.8011   0.8195   0.8474  

   4   0.5746   0.7075   0.8127   0.8195   0.8627   0.8892   0.9035   0.9204   0.9250  

   5   0.8861   0.9213   0.9329   0.9417   0.9517   0.9616   0.9669   0.9677   0.9692  

10  5   0.2272   0.4937   0.5674   0.7153   0.8672   0.8726   0.8795   0.8928   0.8985  

   8   0.7148   0.9404   0.9466   0.9664   0.9681   0.9705   0.9716   0.9717   0.9727  

12  8   0.4856   0.8611   0.9026   0.9457   0.9471   0.9522   0.9533   0.9535   0.9560  

   9   0.9343   0.9380   0.9436   0.9617   0.9630   0.9643   0.9663   0.9670   0.9679  
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   10   0.9632   0.9673   0.9730   0.9775   0.9780   0.9789   0.9790   0.9801   0.9850  

14  9   0.7265   0.9000   0.9254   0.9490   0.9493   0.9500   0.9512   0.9527   0.9531  

   10   0.8806   0.9082   0.9442   0.9575   0.9605   0.9610   0.9614   0.9638   0.9643  

   12   0.9633   0.9732   0.9750   0.9805   0.9830   0.9835     

 

6. DATA ANALYSIS AND COMPARSION 

STUDY 

In this section, we present some results based on Monte 

Carlo simulations and real data to compare the 

performance of the different methods described in the 

preceding sections.  

6.1. Numerical Experiments and Discussions 

In this section, we carry out a simulation study to 

consider the performance of MLEs and Bayes estimators 

using progressively Type-II censoring under binomial 

removal scheme. We have studied different sample sizes: 

20=n , 30, 40, different effective sample sizes: 

10=m , 15, 20 with 

2====== 332211 bababa . Without loss of 

generality, in all cases 1.5= , 2=  and 0.5=p  

are taken. We have generated samples for a given n  and 

m  along with a sampling scheme by using binomial 

removal technique. We estimate the unknown parameters 

using the MLE and Bayes method. The performance of 

the estimates are compared based on the average bias 

(AB) and the corresponding mean squared error (MSE) of 

the estimates under 1000 replications. In addition, we 

also computed the 95 %  confidence intervals and the 

HPD credible intervals based on the same 1000 

replications. Simulation study results are summarized in 

Tables 2 and 3. Tables show that as sample size 

increases, the MSEs decrease. Also, for fixed n  as m  

increases, the Biases and MSEs decrease. The 

performance of the Bayes estimates are better than the 

MLEs, in terms of both the biases and the MSEs. It 

should be mentioned that the Bayes estimators are more 

computationally expensive than those followed by MLEs. 

Both 95 %  asymptotic confidence intervals and HPD 

credible intervals show good coverage of the true value of 

the parameters being considered. The HPD credible 

intervals lengths are smaller than the asymptotic 

confidence intervals lengths.   

Table 2: Average bias and mean squared error of the MLE and Bayes estimates of the parameters. 

 n    m    MLE   Bayes  

      p            p           

      AB   MSE   AB   MSE   AB   MSE   AB   MSE   AB   MSE   AB   MSE  

20  10   0.033   0.013   0.112   0.052   0.111   0.079   0.007   0.008   0.007   0.015   0.021   0.018  

30   10   0.029   0.012   0.095   0.034   0.071   0.078   0.007   0.006   0.005   0.015   0.020   0.014  

30   15   0.014   0.009   0.070   0.040   0.081   0.077   0.006   0.004   0.001   0.014   0.010   0.013  

30   20   0.008   0.007   0.054   0.048   0.080   0.062   0.004   0.003   0.001   0.010   0.008   0.012  

40   10   0.010   0.006   0.088   0.030   0.016   0.073   0.007   0.005   0.004   0.014   0.006   0.014  

40   15   0.006   0.005   0.067   0.031   0.027   0.070   0.006   0.005   0.005   0.012   0.020   0.013  

40   20   0.003   0.005   0.048   0.039   0.024   0.057   0.001   0.004   0.001   0.013   0.002   0.012  

 

Table 3: Average confidence/credible length and coverage percentage for estimates of the parameters. 

n  m  MLE Bayes 

  p      p      

  CL CP CL CP CL CP CL CP CL CP CL CP 

20 10 0.437 0.965 2.632 1.000 2.820 1.000 0.314 0.968 0.365 0.978 0.365 0.972 

30 10 0.435 0.960 2.370 0.995 2.615 0.990 0.289 0.967 0.363 0.965 0.361 0.968 

30 15 0.354 0.955 2.068 0.980 2.357 0.987 0.274 0.958 0.364 0.977 0.362 0.970 

30 20 0.307 0.935 1.501 0.950 1.696 0.940 0.247 0.956 0.361 0.963 0.354 0.957 

40 10 0.308 0.935 2.143 0.990 2.300 0.975 0.247 0.956 0.351 0.953 0.360 0.967 

40 15 0.275 0.925 2.044 0.970 2.220 0.960 0.224 0.954 0.356 0.954 0.359 0.962 
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40 20 0.251 0.915 1.432 0.945 1.611 0.935 0.213 0.951 0.306 0.952 0.350 0.953 

 

6.2. Data Analysis 

Here we demonstrate one dataset for illustrative purposes. 

This data represent the number of revolutions to failure 

for each of 23 ball bearing in a life test. The data were 

first used by [21] and is given below:  

0.1788, 0.2892, 0.33, 0.4152, 0.4212, 0.4560, 0.4848, 

0.5184, 0.5196, 0.5412, 0.5556, 0.6780, 0.6864, 0.6864, 

0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 

1.2804, 1.7340. 

This data has been analyzed previously by [22] and [23]. 

For illustrative purposes, we have been generated 

different progressive Type-II censoring using binomial 

removal scheme from the above data set. We considered 

this dataset based on 15=m  and several values of p  

to generate several removal schemes. The Kolmogorov-

Smirnov (KS) distances between the empirical 

distribution functions and the fitted distribution functions 

and corresponding p-values for different sampling 

schemes are presented in Table 4. The results indicate 

that the two-parameter bathtub-shaped distribution have a 

reasonable fitting to all different sampling schemes.  

To compare the performances of the different methods, 

we obtain the MLE and Bayes estimations of the 

unknown parameters and corresponding confidence or 

credible interval lengths. For Bayes estimation, we have 

used the informative priors 

2====== 332211 bababa . Table 4 

represents the results of data analysis. The HPDs provide 

the shorter length than the asymptotic confidence lengths 

for different censoring schemes.   

Table 4: Kolmogorov-Smirnov (KS) test statistic and its corresponding p-values for different sampling schemes. 

 p    Number   Scheme   KS Statistic   p-value  

0.2   (1)   (3, 3, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2697   0.1873  

   )(1     (1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0)   0.2687   0.1905  

   )(1     (1, 0, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)   0.2558   0.2363  

0.5   (2)   (4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2256   0.3734  

   )(2     (6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2237   0.3836  

   )(2     (1, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2402   0.3015  

0.8   (3)   (7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2209   0.3988  

   )(3     (8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2180   0.4146  

   )(3     (7, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   0.2219   0.3931  

 

Table 5: Data analysis results of the Ball bearing data. 

    MLE   Bayes  

Scheme           p            p   

  
 ̂   

 CL  
 ̂   

 CL   p̂    CL  
 B̂   

 CL  
 B̂   

 CL   Bp̂    CL  

(1)    1.224   0.863   0.704   0.878   0.265   0.303   1.237   0.372   0.725   0.567   0.233   0.147  

(2)    1.231   0.884   0.751   0.865   0.572   0.519   1.265   0.341   0.741   0.530   0.556   0.168  

(3)    1.200   0.884   0.744   0.876   0.889   0.411   1.241   0.338   0.740   0.671   0.769   0.149  

 

7. CONCLUSION 

This paper considered some results of two-parameter 

bathtub-shaped distribution under progressive Type-II 

censoring with binomial removals. We investigate the 

MLEs, interval estimations and Bayes estimations of the 

unknown parameters. Based on the simulation study, the 

parameter estimation using Bayesian technique performs 

better than the MLE approach. We have also computed 

the experimentation time under Type-II progressive 

censoring scheme. Using a numerical experiment, we 

confirm that the role of removal probability is quite 
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significant with respect to the length of the 

experimentation time. 
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