
Gazi University Journal of Science 

GU J Sci  

29(4):909-914 (2016)  

 

 
 

 

 

 

Corresponding author, e-mail: newtonisaac41@yahoo.com 

On Some Classes of  -AG-Groupoids 
 

 

 

 

Thiti  GAKETEM1,  

 

 

 

1School of Science,University of Phayao, Phayao, 56000 
 

 

 

 Received:06/08/2016   Accepted: 10/08/2016 

ABSTRACT 

In this paper, we have introduced the notion of   -regular, weakly  -regular, left  -regular, right  -regular, 

 -completely regular and  - left quasi regular of  -AG-groupoids, and we have investigated their properties. 
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1. INTRODUCTION 

Kazim, M. A. and  Naseeruddin, MD. defined the 

concept of LA-semigroup as follows a groupoid S  is 

called a left almost semigroup, abbreviated as LA-

semigroup if ( ) ( )ab c cb a  for all  , ,a b c S . 

Kazim, M. A. and Naseeruddin, MD. [1, Proposition 

2.1] asserted that, in every LA-semigroup S , a medial 

law hold 

( )( ) ( )( )ab cd ac bd        for all , , ,a b c d S . 

Mushtaq, Q. and Khan, M. [2. p.322] introduced in 

every LA-semigroup S with left identity 

( )( ) ( )( )ab cd db ca        for all , , ,a b c d S . 

Further Khan, M., Faisal, and Amjid, V. [3] introduced 

if a LA-semigroup S  with left identity, then the 

following law holds: 

( ) ( )a bc b ac           for all  , , ,a b c d S . 

In this note we prefer to called left almost semigroup 

(LA-semigroup) as Abel-Grassmann’s groupoid 

(abbreviated as an“AG-groupoid”). 

In [2]introduced the concepts of regular, weakly 

regular, left regular, right regular, completely regular 

and left quasi regular of an AG-groupoids as follows 

Definition 1.1. [2. P1]. An element a  of an AG-

groupoid S  is called a regular if there exists 

x S such that ( )a ax a  and S  is called regular 

if all elements of S are regular. 

Definition 1.2. [2. P1]. An element a  of an AG-

groupoid S  is called an intra-regular if there exist 

,x y S such that ( ( ))a x aa y  and S  is called 

intra-regular if all elements of S are intra-regular. 

Definition 1.3. [2. P2]. An element a  of an AG-

groupoid S  is called a weakly regular if there exist 

,x y S such that ( )( )a ax ay  and S  is called 

weakly regular if all elements of S are weakly regular. 

Definition 1.4. [2. P2]. An element a  of an AG-

groupoid S  is called a left regular if there exists 

x S such that ( )a x aa  and S  is called left 

regular if all elements of S are left regular. 
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Definition 1.5. [2. P2]. An element a  of an AG-

groupoid S  is called a right regular if there exists 

x S such that ( )a aa x  and S  is called right 

regular if all elements of S are right regular. 

Definition 1.6. [2. P2]. An element a  of an AG-

groupoid S  is called a left quasi regular if there exist 

,x y S such that ( )( )a xa ya  and S  is called 

left quasi regular if all elements of S are left qausi 

regular. 

Definition 1.7. [2. P2]. An element a  of an AG-

groupoid S  is called a completely regular if a  is 

regular, left and right regular. S  is called completely 

regular if it is regular, left and right regular. 

2. DEFINITION OF  -AG-GROUPOIDS 

Shah, T. and Rehman, I. [6, p.268] asserted that, in 

1981, the notion of  -semigroups was introduced by 

Sen, M. K.  Let S and   be any nonempty sets.  If 

there exists a mapping S S S    written 

( , , )a c a c  , S  is called a  -semigroups if 

S satisfies the identity ( ) ( )a b c a b c     for 

all , ,a b c S  and ,   .  A  -AG-groupoids 

analogous to  -semigroups. 

Definition 2.1. [6, p.268]  Let S and   be any non-

empty sets. We call S  to be  -AG-groupoid if there 

exists a mapping S S S  , written 

( , , )a b a b   such that S satisfies the identity 

( ) ( )a b c c b a     for all , ,a b c S  and 

,   . 

Definition 2.2. [3, p.2]. Let S and   be any non-

empty sets. We call S to be a  -medial if it satisfies 

( ) ( ) ( ) ( )a b c d a c b d       and                   

S is called a  -paramedial if it satisfies 

( ) ( ) ( ) ( )a b c d d c b a       for all 

, , ,a b c d S  and , ,    . 

Definition 2.3.  A  -AG-groupoids S with left 

identity, the following law hold 

( ) ( )a b c b a c    , for all , ,a b c S  and 

,   . 

In this paper, we introduce the concept of a  -regular, 

weakly  -regular, left  -regular, right  -regular, 

 -completely regular and left  -quasi regular of  -

AG-groupoids which is defined analogous to [2] and 

investigate its properties. 

Definition 2.4. [6. P274]. An element a  of a  -AG-

groupoid S  is called a  -regular if there exists 

x S and ,   such that ( )a a x a   and 

S  is called  -regular if all elements of S are  -

regular. 

Definition 2.5. [2. P1]. An element a  of a  -AG-

groupoid S  is called an intra- -regular if there exist 

,x y S  and , ,     such that 

( ( ))a x a a y    and S  is called intra- -

regular if all elements of S are intra- -regular. 

Definition 2.6. An element a  of a  -AG-groupoid 

S  is called a weakly  -regular if there exist 

,x y S  and , ,    such that 

( ) ( )a a x a y    and S  is called weakly  -

regular if all elements of S are weakly  -regular. 

Definition 2.7. An element a  of a  -AG-groupoid 

S  is called a left  -regular if there exists x S  

and ,   such that ( )a x a a   and S  is 

called left  -regular if all elements of S are left  -

regular. 

Definition 2.8. An element a  of a  -AG-groupoid 

S  is called a right  -regular if there exists x S  

and ,    such that ( )a a a x   and S  is 

called right  -regular if all elements of S are right 

 -regular. 

Definition 2.9. An element a  of a  -AG-groupoid 

S  is called a left  -quasi regular if there exist 

,x y S  and , ,    such that 

( ) ( )a x a y a    and S  is called left  -quasi 

regular if all elements of S are left  -qausi regular. 

Definition 2.10. An element a  of a AG-groupoid S  is 

called a completely  -regular if a  is  -regular and 

left (right)  -regular. S  is called completely  -

regular if it is  -regular, left and right  -regular. 

 

 

3. MAIN RESULTS  
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Lemma 3.1. If S is  -regular (intra- -regular, weakly  -regular, left  -regular, right  -regular, left  -quasi 

regular and completely  -regular)  -AG-groupoid, then S S S  . 

Proof. Let S be a  -regular and a S . Then there exists x S and ,   such that ( )a a x a  . Thus 

( )a a x a S S     so S S S  . Since S is a  -AG-groupoid we have S S S  . Hence S S S  . 

Similarly if S is an intra- -regular, weakly  -regular, right  -regular, left  -regular, left  -quasi regular, 

completely  -regular, then can show that S S S  .                                                                                                                                

Theorem 3.2 If S is a  -AG-groupoid with left identity, then S  is an intra- -regular if and only if for 

all a S , ( ) ( )a x a a z    for some ,x z S  and , ,   . 

Proof ( ) Let S  be an intra- -regular  -AG-groupoid with left identity, then for any a S there exist ,x y S  

and , ,     such that ( ( ))a x a a y   . Now by using Lemma 3.1 let y u v  for some ,u v S  and 

 . Thus by using Definition 2.1, 2.2, 2.3, we have  

( ( ))a x a a y   ( ( )) ( ( ))a x a y y x a a        

    ( ( ) ( ( )) ) (( ) ( ) ( ( )) )y x a x a a y u v x a x a a y                   

    (( ) ( ) ( ( )) ))a x v u x a a y       (( ) ) ( ( )) ))a x t x a a y       

         ((( ( )) ) ) ( )x a a y t a x      ( ) ( ( )) ( )t y x a a a x       

    (( ) ) ( ) ( ))a a x y t a x      ((( ) ) ) ( )a a x s a x      

    (( ) ( )) ( )s x a a a x     (( ) ( )) ( )a a x s a x      

    (( ) ) ( )a a k a x    (( ) ) ( )k a a a x     

               ( ) ( )z a a x   ( ) ( )x a a z   , 

where v u t  , y t s  , x s k  and  k a z  for some , ,t s k S  and , ,    . 

( )  Let a S , ( ) ( )a x a a z    for some ,x z S and ,  . Thus by using Definition 2.1, 2.2, 2.3, 

we have  

 ( ) ( ) (( ) ) ( ) ( ) (( ) )a x a a z a x a z x a a z x a z               

              ( (( ) )) (( ) )a x a z x a z      ((( ) ) (( ) ))x a z x a z a       

              ((( ) ( )) ( ))x a x a z z a      ((( ) ( )) ( ))a x a x z z a       

   (( (( ) )) ( )))a a x x z z a      ((( ) (( ) )) )z z a x x a a       

             ((( ) (( ) )) )a x z z x a a      ((((( ) ) ) ) )z z x x a a a       

  (((( ) ( )) ) )x x z z a a a      (( ) ( ) ( ))a a x x z z a       

             ( ( ) ( )) ( )a x x z z a a      ( ) ( )a t a a   , 

where ( ) ( )x x z z t     for some t S  and ,   . Now by using Definition 2.1, 2.2, we have  

          ( ) ( ) (( ) ( ) ) ( )a a t a a a t a a t a a          (( ) ( ) ) ( )a a t a t a a       

   ( ( ) ( )) ( )t t a a a a a      ( ( ))u a a v   , 

where ( )t t a u    and ( )a a v   for some ,u v S and ,  . Thus S  is an intra- -regular.                                                                                                                                   

Lemma 3.3 If S is a  -AG-groupoid, then the following are equivalent. 
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(1) S  is weakly  -regular. 

(2) S  is intra- -regular. 

Proof (1) (2) Let S  be a weakly  -regular  -AG-groupoid with left identity, then for any a S  there exist 

,x y S  and , ,    such that ( ) ( )a a x a y    and by Lemma 3.1 let x u v  for some ,u v S  

and  .  Now by using Definition 2.1, 2.2, 2.3, we have  

   ( ) ( ) ( ) ( ) ( ) (( ) )a a x a y y a x a y a u v a             

     ( ) (( ) ) ( ) (( ) ) ( ( )) ( )y a a v u a v y a u a y a v u               

     ( ( )) ( ( ))a y a t y a a t       , 

where v u t   for some t S . Thus  S  is intra- -regular. 

(2) (1) Let S  be an intra- -regular, for any a S there exist ,x y S  and , ,     such 

that ( ( ))a x a a y    and by Lemma 3.1 let x u v  for some ,u v S  and  .  Now by using Definition 

2.1, 2.2, 2.3, we have   

                       ( ( )) ( ( )) ( ( )) ( )a y a a t a y a t a y a v u             

          ( ) (( ) )a v y a u    ( ) (( ) )y a a v u    ( ) (( ) )y a u v a     

          ( ) ( )y a x u   ( ) ( )a x a y   , 

where x u v  for some ,u v S  and   . Thus S  is weakly  -regular.                                                                               

Lemma 3.4 If S is a  -AG-groupoid, then the following are equivalent. 

      (1) S  is weakly  -regular. 

      (2) S  is right  -regular. 

Proof (1) (2) Let S  be a weakly  -regular  -AG-groupoid with left identity, then for any a S  there exist 

,x y S  and , ,    such that ( ) ( )a a x a y    and let x y t   for  some t S . Now by  -medial, 

we have ( ) ( ) ( ) ( ) ( )a a x a y a a x y a a t          . Thus S  is right  -regular. 

(2) (1) Let S be a right  -regular, for any a S  there exists t S  and ,    such that ( )a a a t   

and let x y t   for some ,x y S . Now by  -medial, we have. 

( ) ( ) ( ) ( ) ( )a a a t a a x y a a x y           Thus S  is weakly  -regular.                                                        

Lemma 3.5 If S is a  -AG-groupoid, then the following are equivalent. 

(1) S  is weakly  -regular. 

(2) S  is left  -regular. 

Proof (1) (2) Let S  be a weakly  -regular  -AG-groupoid with left identity, then for any a S  there exist 

,x y S  and , ,    such that ( ) ( )a a x a y    and let y x t   for some t S . Now by Definition 

2.2, we have ( ) ( ) ( ) ( ) ( ) ( ) ( )a a x a y a a x y y x a a t a a              . Thus S  is left  -

regular. 

(2) (1) Let S is left  -regular, for any a S  there exists t S  and ,    such that ( )a t a a   and let 

y x t   for some ,x y S . Now by Definition 2.2, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )a t a a y x a a y a x a a x a y              .  

Thus S  is weakly  -regular.                                                                                                                                                                                                                                
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Lemma 3.6. Every weakly  -regular  -AG-groupoid with left identity is  -regular. 

Proof.  Assume that S is a weakly  - regular  -AG-groupoid with left identity then for any a S  there exist 

,x y S  and , ,    such that ( ) ( )a a x a y   . Let x y t   for some t S  and 

((( ) ))t y x a u S      for some , ,   . Now by Definition 2.1, we have 

   ( ) ( ) (( ) )a a x a y a y x a          

      (( ) ) ( )x y a a t a a      ;  by Definition 2.1 and x y t   

      ( ( ) ( ))t a x a y a     ;  where ( ) ( )a a x a y    

      ( ( ) ( ))t a a x y a     ;  by  -medial  law 

      ( ( ) ( ))t y x a a a     ;  by  -paramedial law 

      ( ( (( ) )))t a y x a a     ;   by Definition 2.3 

                                                  ( ( (( ) )))a t y x a a     ;                 by Definition 2.3 

                                                   ( )a u a  ;    where ((( ) )))t y x a u    . 

Thus S is a  -regular.                                                                                                         

Theorem 3.7. If S is a  -AG-groupoid, then the following are equivalent. 

 (1) S is weakly  -regular. 

 (2) S  is completely  -regular. 

Proof. (1) (2) Let S be a weakly  -regular. Then by Lemma 3.4, 3.5, 3.6, we have S  is a completely  -regular. 

(2) (1) Let S be a completely  -regular. Then by Lemma 3.5, we have S is a weakly  -regular.                                                                                                                               

Lemma 3.8 If S is a  -AG-groupoid, then the following are equivalent. 

(1) S  is weakly  -regular. 

(2) S  is left  -quasi regular. 

Proof (1) (2) Let S  be a weakly  -regular  -AG-groupoid with left identity, then for any a S  there exists 

,x y S  and , ,    such that ( ) ( )a a x a y    . Then 

     ( ) ( )a a x a y    

        ( ) ( )y a x a     by  -paramedial law 

                                    ( ' ) ( ' )x a y a                           where 'y x and 'x y  

Thus S  is left  - quasi regular. 

(2) (1) Let S  be a left  -quasi regular  -AG-groupoid with left identity, then for any a S  there exists 

,x y S  and , ,    such that ( ) ( )a x a y a    . Then 

     ( ) ( )a x a y a    

        ( ) ( )a y a x     by  -paramedial law 

                                    ( ') ( ')a x a y                                   where 'y x and 'x y  

Thus S  is weakly  -regular.                                                                                                                                                                                                                           

The next Theorem will conclude of research. 
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Theorem 3.9. If S is a  -AG-groupoid, then the following are equivalent. 

(1) S is weakly  -regular. 

(2) S  is intra- -regular. 

(3) S  is right  -regular. 

(4) S  is left  -regular. 

(5) S  is left  -qausi regular. 

(6) S  is completely  -regular. 

(7) for all a S  there exist ,x y S and ,  such that ( )( )a x a a y  .  
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