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Abstract
In recent years, the intrinsic metrics have been formulated on the classical fractals. In par-
ticular, Sierpinski-like triangles such as equilateral, isosceles, scalene, added and mod−3
Sierpinski triangle have been considered in many different studies. The intrinsic metrics
can be defined in different ways. One of the methods applied to obtain the intrinsic metric
formulas is to use the code representations of the points on these self-similar sets. To de-
fine the intrinsic metrics via the code representations of the points on fractals makes also
possible to investigate different geometrical, topological properties and geodesics of these
sets. In this paper, we investigate some circles and closed sets of the added Sierpinski
triangle and express them as the code sets by using its intrinsic metric.
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1. Introduction
Fractals are interesting and fascinating shapes with the models such as Cantor set, Sier-

pinski triangle, Menger sponge, Mandelbrot set and Julia sets ([6,9,10]). Apart from many
different features, these structures have a common feature like the self-similarity. Many
properties of these sets have been investigated from every aspect for years. Especially the
Sierpinski triangle, S, has been considered as a fundamental model in various studies. In
recent years, studies in which the intrinsic metric is formulated on this fractal come to
the fore. As seen in [7, 8, 11–14, 19], there are different ways to formulate this metric. To
define the intrinsic metrics by using the code representations of the points on self-similar
sets satisfies some advantages while determining geodesics or investigating geometrical
and topological features of these sets (for details see [14–17]). Moreover, the intrinsic
metrics are used in many studies obtained the chaotic dynamical systems on fractals such
as Sierpinski triangle, Box fractal, Sierpinski propeller and Sierpinski tetrahedron (see
[1–4,18]).
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Throughout this paper, we are interested in the added Sierpinski triangle, S̃, which can
be obtained as the attractor of the iterated function system {R2; f0, f1, f2, f3} where
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In [20], the intrinsic metric is formulated on S̃ via the code representations of the points.
Note that it is much more complicated to formulate the intrinsic metric on S̃ compared
to S (for the details see [14] and [20]). So, the computations of many interesting code
sets of S̃ can be difficult. Moreover, the intrinsic metric on the added Sierpinski triangle
has a special importance since it is the first formula expressed using code representations
of points on a fractal, which is the attractor of an iterated function system with different
contraction coefficients. In addition, there are very few studies on this fractal in the
literature (see [5, 20]). That is why it is worthwhile to explore different code sets.

This paper presents some closed sets and circles with the code sets. For this aim, we
consider the intrinsic metric defined on S̃ and compute these code sets by using the metric
formulas and the code representations of the points on S̃. We obtain some closed sets
and circles with code sets and only give the proofs of Proposition 2.3 and Proposition
2.5. Different cases, such as Example 2.7 and 2.8 with Corollary 2.4, 2.6, can be similarly
proven. In addition, we illustrate them in Figure 2, 3, 4, 5, 6, 7, 8, 9.
The intrinsic metric formula on the added Sierpinski triangle: We want to briefly
recall the intrinsic metric defined on the added Sierpinski triangle owing to the fact that it
is too long to construct the intrinsic metric formula on (for the details such as coding and
geometric interpretation see [20]). By the associated iterated function system, the code
representations of the points on the added Sierpinski triangle is obtained as follows:

Let σ = a1a2 . . . ak−1 and fσ(S̃) = S̃σ where ai ∈ {0, 1, 2, 3} for i = 0, 1, 2, . . . , k − 1.
The middle part, the left-bottom part, the right-bottom and the upper parts of S̃σ are
expressed by f0(S̃σ) = S̃σ0, f1(S̃σ) = S̃σ1, f2(S̃σ) = S̃σ2 and f3(S̃σ) = S̃σ3 respectively.
Consequently, we have

S̃σ = S̃σ0 ∪ S̃σ1 ∪ S̃σ2 ∪ S̃σ3

(see Figure 1).
The sub-added triangles of S̃ have the nested set sequence relation such that

S̃ ⊇ S̃a1 ⊇ S̃a1a2 ⊇ S̃a1a2a3 . . . ⊇ S̃a1a2a3...ak
. . . .

As a result of Cantor intersection theorem,
⋂∞

k=1 S̃a1a2a3...ak
gives an unique point A on S̃

and a1a2a3 . . . ak . . . is called as the code representation of the point A.
Let the code representations of the points A and B on S̃ be a1a2 . . . ak−1akak+1 . . . and

b1b2 . . . bk−1bkbk+1 . . . respectively, where ai, bi ∈ {0, 1, 2, 3}. Assume that k = min{i | ai ̸=
bi} and σ = a1a2 . . . ak−1 and the number of elements of the set {i | ai = bi = 0, i < k} is
t. Suppose also that

M = {i + 1 | ai = 0, i > k} = {m1, m2, m3, . . .}
L = {i + 1 | bi = 0, i > k} = {l1, l2, l3, . . .}

where m1 < m2 < m3 < . . . and l1 < l2 < l3 < . . ..
The intrinsic metric is formulated in [20] as follows:
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Figure 1. The sub-added Sierpinski triangle

Theorem 1.1. Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be two representa-
tions respectively of the points A and B on the added Sierpinski triangle such that ai = bi

for i = 1, 2, . . . , k −1 and ak ̸= bk and ai, bi ∈ {0, 1, 2, 3}. If ak ̸= 0 ̸= bk, then the intrinsic
metric between the points A and B is formulated as

d(A, B) = min
{

A + B,
1

2k+t
+ A′ + B′,

1
2k+t+1 + A′′ + B′′

}
, (1.1)

and if ak ̸= 0, bk = 0, then this formula is obtained as

d(A, B) = min
{
A′′ + 1

2
B,

1
2t+k+1 + A′ + 1

2
B′,

1
2t+k+1 + A + C

}
. (1.2)

In the following, we give A,A′,A′′,B,B′,B′′,C (for details see [20]):
• Let ak ̸= 0 ̸= bk.
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where ak ̸= ck ̸= bk for ck ∈ {1, 2, 3} and

γi =
{

0, ai = ck

1, ai ̸= ck
δi =

{
0, bi = ck

1, bi ̸= ck
,

αi =
{

0, ai = bk

1, ai ̸= bk
βi =

{
0, bi = ak

1, bi ̸= ak
.

For the computation of A′′ (B′′ is computed similarly), there are three cases:
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i) Let ak+1 ̸= ak and ak+1 ̸= 0. For aµ ̸= ak+1, aµ ̸= ak and aµ ̸= 0,

A′′ =
m1−1∑
i=k+2

φi
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2
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φi

2i+t
+ · · · + 1

2r
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i=mr

φi

2i+t
+ · · · (1.7)

where
φi =

{
0, ai = aµ

1, otherwise.
ii) Suppose that ak+1 = 0. For

r = min{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2},

A′′ = 1
2k+t+2 + 1

2

m2−1∑
i=k+2

φi

2i+t
+ 1

22

m3−1∑
i=m2
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+ · · · + 1

2r
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i=mr

φi
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+ · · · (1.8)

where
φi =

{
0, ai = ar

1, otherwise.
Note that, we obtain φi = 1 for i = k + 2, k + 3, k + 4, . . . if

{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅.

iii) a) Let ak = ak+1 = · · · = as−1 ̸= as ̸= 0 (s > k + 1). We define
r = min{i | ai ̸= 0, ai ̸= ak, i > s}.

In this case, we obtain

φi =
{

0, ai = ar

1, otherwise
for i ̸= s and φs = 0 for i = s. If

{i | ai ̸= 0, ai ̸= ak, i > s} = ∅,

then we also get φi = 1 for i ̸= s and φs = 0 for i = s.
b) Let ak = ak+1 = · · · = as−1 and as = 0 (s > k + 1). In this case, we get

φi =
{

0, ai = ar

1, otherwise

for i ̸= s and φs = 1
2

for i = s where r = min{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2}.
If

{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅,

then we obtain φi = 1 for i ̸= s and φs = 1
2

for i = s.
c) If ak = ak+1 = · · · = ai = · · · , then φi = 1 for i = k + 2, k + 3, k + 4, . . .
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• Let ak ̸= 0, bk = 0.
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C = 1
2
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i=k+1

β′
i

2i+t
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β′
i
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2p
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β′
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where

βi =
{

0, bi = ak

1, bi ̸= ak
,

δi =
{

0, bi = ck

1, bi ̸= ck
,

β′
i =

{
0, bi = b′

k
1, bi ̸= b′

k

and ck ̸= ak for ck ∈ {1, 2, 3} and b′
k ̸= ak, b′

k ̸= ck and b′
k ∈ {1, 2, 3}.

2. Some code sets of the added Sierpinski triangle
In this section, we give the code sets of some circles and closed discs of the added

Sierpinski triangle and then we illustrate them. First of all, we give a few lemmas that we
use them to prove some of propositions in the present paper.

Lemma 2.1. Let A be a vertex point and B be any point of S̃σ and suppose that the
code representations of these points are σakakak . . . and σbkbk+1bk+2 . . . respectively, where
ak ∈ {1, 2, 3} and bi ∈ {0, 1, 2, 3} for i ∈ {k, k + 1, k + 2, . . .}.

a) If bk ̸= 0, then d(A, B) = A + B.

b) If bk = 0, then d(A, B) = A′′ + 1
2
B.

For the details of the proof see Lemma 3.5 in [20].

Lemma 2.2. Let A be an arbitrary point of S̃σ whose code representation is σakak+1ak+2 . . .
for ai ∈ {0, 1, 2, 3} and ak ̸= 0. Suppose also that σ000 . . . is the code representation of
Oσ ∈ S̃σ. In this case, we get

d(A, Oσ) = A′′ + 1
2
B.

Proof. If the formulas given in (1.10), (1.11) and (1.12) are used, then the following
equalities are obviously obtained:

1
2
B = 1

2
B′ = C = 1

2

( 1
2k+t+1 + 1

2
1

2k+t+2 + 1
22

1
2k+t+3 + · · ·

)
= 1

2k+t+2

(
1 + 1

4
+ 1

42 + 1
43 + · · ·

)
= 1

3.2k+t
.

Furthermore, even if φi = 1 for i = k + 2, k + 3, k + 4, . . ., for Case (i) and (ii), the
maximum value of A′′ is calculated as

A′′ = 1
2k+t+2 + 1

2k+t+3 + 1
2k+t+4 + 1

2k+t+5 + · · · = 1
2k+t+1 ,

and we then get

A′′ + 1
2
B ≤ 1

2k+t+1 + A′ + 1
2
B′ and A′′ + 1

2
B ≤ 1

2k+t+1 + A + C.

A similar situation is also valid for Case (iii). Therefore, the proof is completed. □
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Proposition 2.3. Let P, Q and R be vertices of S̃ with the code representations 111 . . . , 222 . . .

and 333 . . . respectively. In this case, circles with radii 1
2n−1 (n = 1, 2, 3, . . .) centered at

P, Q, R are determined by the following code sets:

S
(
P,

1
2n−1

)
= {111 . . . 1xnxn+1xn+2 . . . |xn+i ∈ {2, 3}, i = 0, 1, 2, 3, . . .},

S
(
Q,

1
2n−1

)
= {222 . . . 2xnxn+1xn+2 . . . |xn+i ∈ {1, 3}, i = 0, 1, 2, 3, . . .},

S
(
R,

1
2n−1

)
= {333 . . . 3xnxn+1xn+2 . . . |xn+i ∈ {1, 2}, i = 0, 1, 2, 3, . . .}.

Proof. We know that the only code representation of P is 111 . . .. Let us investigate
the code representations of X ∈ S̃ such as x1x2 . . . xn−1xnxn+1 . . . for xi ∈ {0, 1, 2, 3}
satisfying d(X, 111 . . .) = 1

2n−1 . The first n − 2 terms of X and P must be exactly equal
to each other. That is, it must be xi = 1 for i = 1, 2, 3, . . . , n − 2. Note that if xn−2
(similarly, xi for i = 1, 2, . . . , n − 1) were not 1, then

B =
∞∑

i=n−1

βi

2i
=

∞∑
i=n−1

1
2i

= 1
2n−1 + 1

2n
+ 1

2n+1 + · · · = 1
2n−2 (2.1)

and d(X, P ) would be greater than or equal to 1
2n−2 . We thus obtain the code representa-

tion of X as the form
111 . . . 1xn−1xnxn+1 . . . .

Note that, to compute d(X, P ) we use the formulas given in Lemma 2.1 owing to the fact
that P is a vertex point.

• If xn−1 ∈ {2, 3} and xi = 1 (n ≥ 2) for i = 1, 2, . . . , n − 2, then it is computed that

B =
∞∑

i=n

βi

2i
=

∞∑
i=n

1
2i

= 1
2n

+ 1
2n+1 + 1

2n+2 + · · · = 1
2n−1 . (2.2)

Therefore, we get

d(X, 111 . . .) =
∞∑

i=n

αi + βi

2i
=

∞∑
i=n

αi

2i
+ 1

2n−1 = 1
2n−1 (2.3)

and it must be
∞∑

i=n

αi

2i
= 0.

This shows that xi = 1 for i = n, n + 1, n + 2, . . ., that is the code representation of X ∈ S̃
that satisfies Equation (2.3) must be one of the elements of the set

{111 . . . 12111 . . . , 111 . . . 13111 . . .}.

• If xn ∈ {2, 3} and xi = 1 for i = 1, 2, 3, . . . , n − 1, then we have

B =
∞∑

i=n+1

βi

2i
=

∞∑
i=n+1

1
2i

= 1
2n+1 + 1

2n+2 + 1
2n+3 + · · · = 1

2n
. (2.4)

In this way, we obtain

d(X, 111 · · · ) =
∞∑

i=n+1

αi + βi

2i
=

∞∑
i=n+1

αi

2i
+ 1

2n
= 1

2n−1 (2.5)

and it follows that
∞∑

i=n+1

αi

2i
= 1

2n
.
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This is possible in the case of xi ̸= 1 for i = n + 1, n + 2, n + 3, . . .. It means that the code
representations of X are the elements of the set

{111 . . . 1xnxn+1xn+2 . . . |xi ∈ {2, 3}, i = n, n + 1, n + 2, . . .}.

• If xn−1 = 0 and xi = 1 (n ≥ 2) for i = 1, 2, 3, . . . , n − 2, then the formula

d(X, 111 . . .) = A′′ + 1
2
B

must be used. Since the code representations of P and X are

111 . . . 111 . . .

and
111 . . . 10xnxn+1xn+2 . . .

respectively, we compute

A′′ = 1
2n

+
∞∑

i=n+1

1
2i

= 1
2n

+ 1
2n+1 + 1

2n+2 + · · · = 1
2n−1 (2.6)

(see Theorem 1.1 (iii-c)) and thus we get

d(P, X) = A′′ + 1
2
B = 1

2n−1 + 1
2
B = 1

2n−1 . (2.7)

Therefore, it must be B = 0. This happens in the case of xi = 1 for i = n, n + 1, n +
2, n + 3, . . .. As a result, one of the code representations of the point X that provides
d(X, 111 . . .) = 1

2n−1 is 111 . . . 10111 . . ..

• If xn = 0 and xi = 1 (n ≥ 2) for i = 1, 2, 3, . . . , n − 1, then we compute

A′′ = 1
2n+1 +

∞∑
i=n+2

1
2i

= 1
2n+1 + 1

2n+2 + 1
2n+3 + · · · = 1

2n
. (2.8)

This shows that

d(X, 111 . . .) = A′′ + 1
2
B = 1

2n
+ 1

2
B = 1

2n−1 . (2.9)

It means that B = 1
2n−1 . Even if xi ̸= 1 for i = n, n + 1, n + 2, . . ., it is impossible

to satisfy the following equation:
∞∑

i=n+1

1
2i

= 1
2n−1 .

Note that the points whose code representations are 11 . . . 1011 . . . , 11 . . . 1211 . . ., 111 . . . 1311 . . .
have different code representations such as 11 . . . 11233 . . . , 11 . . . 11222 . . . , 111 . . . 11333 . . .
respectively.

It follows that the code representations 11 . . . 1011 . . . , 11 . . . 1211 . . . and 111 . . . 1311 . . .
are the elements of the set

{111 . . . xnxn+1xn+2 . . . |xn+i ∈ {2, 3}, i = 0, 1, 2, . . .}.

Consequently, we obtain

S
(
111 . . . ,

1
2n−1

)
= {111 . . . 1xnxn+1xn+2 . . . |xn+i ∈ {2, 3}, i = 0, 1, 2, . . .}.

The other cases are done in a similar way and thus the proof is completed (see Figure 2).
□
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Figure 2. The circles with radii 1
2n−1 for n = 1, 2, 3, 4 centered at P, R, Q respec-

tively.

Corollary 2.4. Let P, Q and R be vertices of S̃ with code representations 111 . . . , 222 . . .
and 333 . . . respectively. In this case, closed discs with radii 1

2n−1 (n = 1, 2, 3, . . .) centered
at P, Q, R are determined by the following code sets:

D
(
P,

1
2n−1

)
= {111 . . . 1xnxn+1xn+2 . . . |xn+i ∈ {0, 1, 2, 3}, i = 0, 1, 2, 3, . . .},

D
(
Q,

1
2n−1

)
= {222 . . . 2xnxn+1xn+2 . . . |xn+i ∈ {0, 1, 2, 3}, i = 0, 1, 2, 3, . . .},

D
(
R,

1
2n−1

)
= {333 . . . 3xnxn+1xn+2 . . . |xn+i ∈ {0, 1, 2, 3}, i = 0, 1, 2, 3, . . .}

(see Figure 3).

  

  

Figure 3. The closed discs with radii 1
2n−1 for n = 1, 2, 3, 4 centered at P respec-

tively.

Proposition 2.5. Let Oσ be a point of S̃, whose code representation is σ000 . . .. In this
case, circles with radii 1

2n+t+k + 1
3.2k+t centered at Oσ are obtained as follows:
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i) For n = 0,

S
(
Oσ,

1
2t+k

+ 1
3.2k+t

)
= {σ111 . . . , σ222 . . . , σ333 . . .}.

ii) For n = 1 and xk ̸= xk+1 and xk ̸= 0 ̸= xk+1,

S
(
Oσ,

1
2t+k+1 + 1

3.2k+t

)
= {σxkxk+1xk+2xk+3 . . . |xk+i ∈ {xk, xk+1}, i = 2, 3, . . .}

∪{σxk0xkxk . . . | xk ̸= 0}.

iii) For n = 2, 3, 4, . . . and xk ̸= xk+1, xk ̸= 0 ̸= xk+1 and xµ ̸= xk, xµ ̸= xk+1, xµ ̸= 0,

S
(
Oσ,

1
2t+k+n

+ 1
3.2k+t

)
= {σxkxk+1xµ . . . xµxk+n+1xk+n+2 . . . | xk+n+i ∈ {xk, xk+1}, i = 1, 2, . . .}.

Proof. Suppose that
X = σxkxk+1xk+2 . . . ,

Oσ = σ000 . . . 000 . . . ,

where xk ̸= 0.
Firstly, let us determine the code representations of the points on circle with radii

1
2t+k + 1

3.2k+t centered at Oσ for n = 0. The length of the shortest paths between points
X and Oσ must be calculated from Lemma 2.2 with the formula

d(X, Oσ) = A′′ + 1
2
B.

Obviously, we compute
1
2
B = 1

2

( 1
2k+t+1 + 1

2
1

2k+t+2 + 1
22

1
2k+t+3 + 1

23
1

2k+t+4 + . . .

)
= 1

2k+t+2

(
1 + 1

4
+ 1

42 + 1
43 + . . .

)
= 1

3.2k+t

and

d(X, Oσ) = A′′ + 1
2
B = A′′ + 1

3.2k+t
= 1

2t+k
+ 1

3.2k+t
,

we thus get
A′′ = 1

2t+k
.

It is impossible to satisfy this equation by using the Cases (i) and (ii) given in Theorem
1.1. This equality is only provided with the Case (iii) given in Theorem 1.1. That is, it is
possible with φi = 1 for i = k, k+1, k+2, . . . and thus we obtain xk = xk+1 = · · · = xi = · · ·
for xi ∈ {1, 2, 3} where i = k, k + 1, k + 2, . . .. As a result, we compute

S
(
Oσ,

1
2t+k

+ 1
3.2k+t

)
= {σ111 . . . , σ222 . . . , σ333 . . .} = {Pσ, Qσ, Rσ}.

Assume that n = 1. We now determine the code set for the circles with radii 1
2t+k+1 +

1
3.2k+t centered at Oσ. With calculations similar to the above, we get

A′′ = 1
2t+k+1 . (2.10)

To satisfy Equation (2.10), firstly we can use Case (i). It is possible with M = ∅ and
φi = 1 for i = k + 2, k + 3, k + 4, . . .. That is, it must be xk ̸= xk+1, xk+1 ̸= 0 where
xµ ̸= 0, xµ ̸= xk and xµ ̸= xk+1. This requires to be xi ̸= xµ for i = k + 2, k + 3, . . .. It
means that the code representations of X are the elements of the set

{σxkxk+1xk+2xk+3 . . . |xk ̸= 0 ̸= xk+1, xk ̸= xk+1, xk+i ∈ {xk, xk+1}, i = 2, 3, . . .}.
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To satisfy Equation (2.10), we can also use Case (ii). Assume that xk+1 = 0. It is
possible with M = {k + 2} and φi = 1 for i = k + 2, k + 3, k + 4, . . .. This requires xi = xk

for i = k + 2, k + 3, . . .. This shows that the code representations of X are the elements of
the set

{σxk0xkxk . . . |xk ∈ {1, 2, 3}}.

We now use Case (iii − a) to satisfy Equation (2.10) (Note that it is impossible to
satisfy Equation (2.10) by using Cases (iii − b) and (iii − c)). For this, it must be φi = 0
for i = k + 2, k + 3, k + 4, . . .. Therefore, we obtain either (xk = xk+1 and xi = xk+2 for
i = k + 3, k + 4, . . . where xk+2 ̸= xk and xk+2 ̸= 0) or (xk = xk+1 and xi = xk+3 for
i = k + 4, k + 5, . . . where xk+3 ̸= xk+2, xk+3 ̸= xk, xk+3 ̸= 0, xk+2 ̸= xk and xk+2 ̸= 0).
Consequently, the code representations of X are either the elements of the set

{σxkxkxk+2xk+2xk+2 . . . |xk, xk+2 ∈ {1, 2, 3}, xk ̸= xk+2}
or

{σxkxkxk+2xk+3xk+3xk+3 . . . |xk, xk+2, xk+3 ∈ {1, 2, 3} are different from each other}
respectively. Note that, the elements of these sets have different code representations as
follows:

{σxkxk+2xkxkxk . . . |xk, xk+2 ∈ {1, 2, 3}, xk ̸= xk+2}
and

{σxk0xkxkxk+xk . . . |xk ̸= 0}
respectively.

As a consequence, we get

S
(
Oσ,

1
2t+k+1 + 1

3.2k+t

)
= {σxkxk+1xk+2xk+3 . . . |xk ̸= xk+1, xk+i ∈ {xk, xk+1}, i = 2, 3, . . .}

∪{σxk0xkxk . . . | xk ̸= 0}
where xk ̸= 0 ̸= xk+1 for n = 1.

Finally, we will show the code set of the circles with radii 1
2n+t+k + 1

3.2k+t centered at

Oσ for n = 2, 3, 4, . . .. Since we compute 1
2
B as 1

3.2k+t in the same way, we have

A′′ = 1
2t+k+n

. (2.11)

 

Figure 4. The circles with radii 1
2n+t+k + 1

3.2k+t for n = 0, 1, 2, 3 centered at Oσ.
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To compute A′′ for n ≥ 2, we can’t use Case (iii) due to the fact that there is 1
2t+k+1 in

Formula (1.9).
To satisfy Equation (2.11), we can use Case (i). It is possible with φk+i = 0 for

i = 2, 3, 4, . . . , n and φk+i = 1 for i = n + 1, n + 2, . . .. To be clear, it must be xk ̸= xk+1,
xk+1 ̸= 0, xk ̸= xµ ̸= xk+1 and xµ ̸= 0. That requires to be xi = xµ for i = k + 2, k +
3, . . . , k + n and xi ∈ {xk, xk+1} for i = k + n + 1, k + n + 2, . . .. It means that the code
representations of X are the elements of the set

G = {σxkxk+1xµ . . . xµxk+n+1xk+n+2 . . . | xk+i ∈ {xk, xk+1}, i = n + 1, n + 2, . . .}.

For n ≥ 3, Equation (2.11) is also satisfied while φk+i = 0 for i = 2, 3, 4, . . . , n −
1, n + 1, n + 2, . . . and φk+n = 1. In this case, it must be xk+n ̸= xµ and xk+i = xµ for
i = 2, 3, 4, . . . , n − 1, n + 1, n + 2, . . .. Obviously, the code representations of these points
are of the form

σxkxk+1xµ . . . xµxk+nxµxµxµ . . .

which are the elements of the set G (that is, different code representations of the same
points).

Note that, to satisfy Equation (2.11), we can also use Case (ii) for n = 2. If xk+1 = 0,
then it is possible with φi = 0 for i = k + 2, k + 3, k + 4, . . .. This requires 0 ̸= xi ̸= xk for
i = k + 2, k + 3, . . . and xk+2 = xk+3 = xk+4 = · · · . It means that the code representation
of X is the element of the set

{σxk0xk+2xk+2xk+2 . . . |xk+2 ̸= xk, xk+2 ∈ {1, 2, 3}}.

Furthermore, the elements of this set are different code representations of the same
points in G. As a result, we obtain

S
(
Oσ,

1
2t+k+n

+ 1
3.2k+t

)
= {σxkxk+1xµ . . . xµxk+n+1xn+2 . . . |xk+n+i ∈ {xk, xk+1}, i = 1, 2, . . .}

where xk ̸= xk+1, xk ̸= 0 ̸= xk+1 and xµ ̸= xk, xµ ̸= xk+1, xµ ̸= 0, for n = 2, 3, 4, . . . (see
Figure 4).

Therefore, the proof is completed. □
Corollary 2.6. Let Oσ be a point of S̃ with the code representation σ000 . . .. In this case,
the code sets of closed discs with radii 1

2n+t+k + 1
3.2k+t centered at Oσ can be expressed as

follows:

i) For n = 0,

D
(
Oσ,

1
2t+k

+ 1
3.2k+t

)
= {σxkxk+1xk+2xk+3 . . . |xk+i ∈ {0, 1, 2, 3}, i = 0, 1, 2, . . .} = S̃σ.

ii) For n = 1 and xk ̸= xk+1 if xk ∈ {1, 2, 3},

D
(
Oσ,

1
2t+k+1 + 1

3.2k+t

)
= {σxkxk+1xk+2xk+3 . . . |xk+i ∈ {0, 1, 2, 3}, i = 0, 1, 2, . . .}.

iii) For n = 2, 3, 4, . . . and xk ̸= xk+1, xµ ̸= xk, xµ ̸= xk+1, xµ ̸= 0,

D
(
Oσ,

1
2t+k+n

+ 1
3.2k+t

)
=

{σxkxk+1xµ . . . xµxk+n+1xk+n+2 . . . |xk ̸= 0 ̸= xk+1, xk+n+i ∈ {0, 1, 2, 3}, i = 1, 2, . . .}
∪ {σ0xk+1xk+2xk+3 . . . |xk+i ∈ {0, 1, 2, 3}, i = 1, 2, 3, . . .}

(see Figure 5).

By making similar calculations, circles and closed disks with different centers and radii
can be obtained. For the diversity, we will give some specific examples and show the
obtained sets on the graphs without proofs.
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Figure 5. The closed discs with radii 1
2n+t+k + 1

3.2k+t for n = 0, 1, 2, 3 centered
at Oσ.

Example 2.7. Let A be a point of S̃, whose code representation is 0111 . . .. In this case,
the circles with radii 1

2n for n = 1, 2, 3 . . . centered at A are determined by the following
code sets:

i) For n = 1,
{30333 . . . , 31333 . . . , 111 . . . , 21222 . . . , 20222 . . .}

∪{x1x2x3x4x5 . . . |xi ∈ {2, 3}, i = 1, 2, 3, . . . and x1 ̸= x2}.

ii) For n = 2,
{10111 . . .} ∪ {13x3x4x5 . . . |xi ∈ {1, 3}, i = 3, 4, 5, . . .}

∪{12x3x4x5 . . . |xi ∈ {1, 2}, i = 3, 4, 5, . . .} ∪ {0x2 x3x4x5 . . . |xi ∈ {2, 3}, i = 2, 3, 4, . . .}.

iii) For n = 3, 4, 5, . . .,
{13x3 . . . xnxn+1 . . . |xi = 2, i = 3, 4, . . . , n and xj ∈ {1, 3}, j = n + 1, n + 2, . . .}

∪{12x3 . . . xnxn+1 . . . |xi = 3, i = 3, 4, 5, . . . , n and xj ∈ {1, 2}, j = n + 1, n + 2, n + 3, . . .}
∪{01x3 . . . xnxn+1 . . . |xi = 1, i = 3, 4, 5, . . . , n and xj ∈ {2, 3}, j = n + 1, n + 2, n + 3, . . .}
(see Figure 6).

Example 2.8. Let A be a point of S̃, whose code representation is 0111 . . .. In this
case, the closed discs with radii 1

2n for n = 1, 2, 3 . . . centered at A are determined by the
following code sets:

i) For n = 1,
{x1x2x3 . . . |xi ∈ {0, 1, 2, 3}, i = 1, 2, 3, . . . and x1 /∈ {2, 3} for x1 = x2}.

ii) For n = 2,
{0x2x3x4 . . . | xi ∈ {0, 1, 2, 3}, i = 2, 3, 4, . . .}∪{10x3x4x5 . . . |xi ∈ {0, 1, 2, 3}, i = 3, 4, 5, . . .}∪
{12x3x4x5 . . . |xi ∈ {0, 1, 2, 3}, i = 3, 4, 5, . . .}∪{13x3x4x5 . . . |xi ∈ {0, 1, 2, 3}, i = 3, 4, 5, . . .}.
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Figure 6. The circles with radii 1
2n for n = 1, 2, 3, 4 centered at 0111 . . ..

iii) For n = 3, 4, 5, . . .,

{13x3 . . . xnxn+1 . . . |xi = 2, i = 3, 4, . . . , n and xj ∈ {0, 1, 2, 3}, j = n + 1, n + 2, . . .}

∪{12x3 . . . xnxn+1 . . . |xi = 3, i = 3, 4, 5, . . . , n and xj ∈ {0, 1, 2, 3}, j = n+1, n+2, n+3, . . .}

∪{01x3 . . . xnxn+1 . . . |xi = 1, i = 3, 4, 5, . . . , n and xj ∈ {0, 1, 2, 3}, j = n+1, n+2, n+3, . . .}

(see Figure7).

  

 

Figure 7. The closed discs with radii 1
2n for n = 1, 2, 3, 4 centered at 0111 . . .

In the following, to increase the number of different examples we only give two figures
without defining code sets. Figure 8 and Figure 9 show the circles and closed discs with
radii 1

2n+t+k centered at the point with code representation σ01222 . . . for n = 0, 1, 2, 3,
respectively.
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Figure 8. The circles with radii 1
2n+t+k for n = 0, 1, 2, 3 centered at the point

with code representation σ01222 . . ..

  

 

 

 

Figure 9. The closed discs with radii 1
2n+t+k n = 0, 1, 2, 3 centered at the point

with the code representation σ01222 . . ..

3. Conclusions
In this paper, we compute some code sets of the added Sierpinski triangle by using the

intrinsic metric and depict them. As seen in these figures and computations, some code
sets are more understandable, while others can be more complex. Furthermore, a general
formula cannot be obtained, especially for circles and closed sets of S̃ as the code sets. As
a result, one can obtain many different and interesting code sets of S̃ in the light of the
present paper.
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