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Abstract
Let R be a commutative semiring with 1 6= 0. In this paper, we study the concept of weakly 1-absorbing primary
ideal which is a generalization of 1-absorbing ideal over commutative semirings . A proper ideal I of a semiring
R is called a weakly 1-absorbing primary ideal if whenever nonunit elements a,b,c ∈ R and 0 6= abc ∈ I, then
ab ∈ I, or c ∈

√
I. A number of results concerning weakly 1-absorbing primary ideals and examples of weakly

1-absorbing primary ideals are given. An ideal is called a subtractive ideal I of a semiring R is an ideal such that
if x,x+ y ∈ I, then y ∈ I. Subtractive ideals or k-ideals are helpful in proving in many results related to ideal theory
over semirings.
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1. Introduction
The algebraic structure of semirings, that are considered as a generalization of rings, plays an important role in different
branches of mathematics, especially in applied sciences and computer engineering. For general references on semiring theory
one may refer to [1],[4],[13] and [16].
The first formal definition of semirings was introduced by H.S Vandiver in 1934 [20] ”Note on a simple type of algebra in
which cancelation law of addition does not holds”.
In this paper we need a special kind of ideals that was defined by Henriksen [14] in 1958 which is called k-ideal or subtractive
ideals. A subtractive ideal I of a semiring R is an ideal such that if x,x+ y ∈ I, then y ∈ I.

Since prime and primary ideals have key roles in commutative semiring theory, many authors have studied generalizations
of prime and primary ideals. One of the generalization of that concept is 2-absorbing ideals.
In 2012, Darani [12] introduced the connotation of a 2-absorbing ideal of a commutative semiring. A proper ideal I of a
semiring R is said to be a 2-absorbing primary ideal if whenever a,b,c ∈ R and abc ∈ I, then ab ∈ I, or bc ∈ I, or ac ∈ I.
In [8], the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing ideal was introduced. A proper
ideal I of a ring R is called a weakly 1-absorbing primary ideal if whenever nonunit elements a,b,c ∈ R and 0 6= abc ∈ I, then
ab ∈ I, or c ∈

√
I and studied n number of results concerning weakly 1-absorbing primary ideals and examples of weakly
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1-absorbing primary ideals .
We assume throughout this paper that all semirings are commutative with unity 1 6= 0. We start by recalling some background
material. By a proper ideal I of R, we mean an ideal I of R with I 6= R. Let I be a proper ideal of R. Before we state some
results, let us introduce some notation and terminology. By

√
I, we mean the radical of R, that is, {a ∈ R | an ∈ I} for some

positive integer n}. In particular,
√

0 denotes the set of all nilpotent elements of R. We define ZI(R) = {r ∈ R | rs ∈ I for some
s ∈ R\ I}. A semiring R is called a reduced semiring if it has no non-zero nilpotent elements; i.e.,

√
0 = 0. For two ideals

I and J of R, the residual division of I and J is defined to be the ideal (I : J) = {a ∈ R | aJ ⊆ I}. Let R be a commutative
semiring with identity and M a unitary R-semimodule. Then R(+)M = R

⊕
M(direct sum) with coordinate-wise addition and

multiplication (a,m)(b,n) = (ab,an+bm) is a commutative semiring with identity called the idealization of M. A semiring R
is called a quasilocal semiring if R has exactly one maximal ideal. As usual we denote Z and Zn by the semiring of integers and
the semiring of integers modulo n.
In this paper, we introduce the concept of (weakly) 1-absorbing ideal of a semiring R. A proper ideal I of a semiring R is
called a weakly 1-absorbing primary ideal of R if whenever nonunit elements a,b,c ∈ R, and 0 6= abc ∈ I, then ab ∈ I, or
c ∈
√

I. A proper ideal I of a semiring R is called 1-absorbing primary ideal of R if whenever nonunit elements a,b,c ∈ R, and
abc ∈ I, then ab ∈ I, or c ∈

√
I. It is clear that a 1-absorbing primary ideal of R is a weakly 1-absorbing primary ideal of R.

However, since 0 is always weakly 1-absorbing primary, a weakly 1-absorbing primary ideal of R needs not be a 1-absorbing
primary ideal of R. Among many results, we show (Theorem 2.5) that if a proper ideal I of R is a weakly 1-absorbing ideal
of R such that

√
I is a maximal ideal of R, then I is a primary ideal of R, and hence I is 1-absorbing primary ideal of R. We

show (Theorem 2.6 ) that if R is a reduced semiring, and I is a weakly 1-absorbing primary ideal of R, then
√

I is a prime ideal
of R. If I is a proper nonzero ideal of a von-Neumann regular semiring R, then we show (Theorem 2.7 ) that I is a weakly 1-
absorbing primary ideal of R if and only if I is a 1-absorbing primary ideal of R if and only if I is a primary ideal of R. We
show (Theorem 2.8) that if R is a nonquasilocal semiring, and I be a proper ideal of R such that ann(i) = {r ∈ R | ri = 0} is not
a maximal ideal of R for every element i ∈ I, then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly
primary ideal of R. If I is a proper ideal of a reduced divided semiring R, then we show (Theorem 2.11) that I is a weakly
1-absorbing primary ideal of R if and only if I is a weakly primary ideal of R. If I is a weakly 1-absorbing primary of a semiring
R that is not a 1-absorbing primary ideal of R, then we give (Theorem 3.4) sufficient conditions so that I3 = 0 (i.e., I ⊆

√
I). In

Theorem 3.2, we obtain some equivalent conditions for weakly 1-absorbing primary ideals of u-semirings. In (Theorem4.1
), a characterization of weakly 1-absorbing primary ideals in R = R1×R2, where R1 and R2 are commutative semirings with
identity that are not semifields is given. If R1,R2, ...,Rn are commutative semirings with identity for some 2≤ n < ∞, and let
R = R1× .....×Rn, then it is shown in (Theorem 4.2 ) that every proper ideal of R is a weakly 1-absorbing primary ideal of R if
and only if n = 2 and R1,R2 are semifields. For a weakly 1-absorbing primary ideal of a semiring R, we show (Theorem 4.8)
that S(−1)I is a weakly 1-absorbing primary ideal of S(−1)R for every multiplicatively closed subset S of R that is disjoint from
I, and we show that the converse holds if S∩Z(R) = φ and S∩ZI(R) = φ .

2. Properties of Weakly 1 -absorbing Primary Ideals
In this section, we will define some basic properties of weakly 1-absorbing primary ideals in a commutative semi-ring R.

Definition 2.1. Let R be a commutative semiring, and I a proper ideal of R. We call I a weakly 1-absorbing primary ideal of R
if whenever nonunit elements a,b,c ∈ R and 0 6= abc ∈ I, then ab ∈ I, or c ∈

√
I.

Definition 2.2. Let R be a commutative semiring, and I a proper ideal of R. We call I a 1-absorbing primary ideal of R if
whenever nonunit elements a,b,c ∈ R and abc ∈ I, then ab ∈ I, or c ∈

√
I.

It is clear that every 1-absorbing primary ideal of a semiring R is a weakly 1-absorbing primary ideal of R.
The following example shows that the converse is not true.

Example 2.3. 1. I = {0} is a weakly 1-absorbing primary ideal of R = Z6 that is not a 1-absorbing primary of R. Indeed,
2.2.3 ∈ I, but neither 2.2 ∈ I nor 3 ∈

√
I.

2. Let J = {0,6} as an ideal of Z12, and let R = Z12(+)J. Then an ideal I = {(0,0),(0,6)} is a weakly 1-absorbing primary
ideal of R. Observe that abc ∈ I for some a,b,c ∈ R | I if and only if abc = (0,0). However, it is not a 1-absorbing
primary ideal of R. Indeed; (2,0)(2,0)(3,0) ∈ I, but neither (2,0)(2,0) ∈ I nor (3,0) ∈

√
I.

We begin with the following trivial result:

Theorem 2.4. Let be a proper ideal of a commutative semiring R. Then the following statements hold.

1. If I is a weakly prime ideal, then I is a weakly 1-absorbing primary ideal.
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2. If I is a weakly primary ideal, then I is a weakly 1-absorbing primary ideal.

3. If I is a 1-absorbing primary ideal, then I is a weakly 1-absorbing primary ideal.

4. If I is a weakly 1-absorbing primary ideal, then I is a weakly 2-absorbing primary ideal.

5. If R/I is an semi-integral domain, then I is a weakly 1-absorbing primary ideal if and only if I is a 1-absorbing primary
ideal of R.

6. Let R be a quasilocal semiring with maximal ideal
√

0. Then every proper ideal of R is a weakly 1-absorbing primary
ideal of R.

Theorem 2.5. Let R be a semiring and I be a weakly 1-absorbing primary ideal of R. If
√

I is a maximal ideal of R, then I is a
primary ideal of R, and hence I is a 1-absorbing ideal primary of R.
In particular, If I a weakly 1-absorbing primary ideal of R that is not a 1-absorbing ideal primary of R, then is not a maximal
ideal of R.

Proof. Suppose that
√

I is a maximal ideal of R. Then I is a semiprimary ideal of R. by [21] since I. Now, assume nonunit
elements a,b,c ∈ R and abc ∈ I. Assume ab not belong I . Since I is primary ideal, we have for some positive integer m, we
have c ∈

√
I. Hence, I is 1-absorbing primary ideal.

Theorem 2.6. Let R be a reduced semiring. If I is a nonzero weakly 1-absorbing primary ideal of R, then
√

I is a prime ideal of
R. In particular, if

√
Ii is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing primary ideal of R.

Proof. Proof: Suppose that 0 6= ab ∈
√

I f , for some a,b ∈ R. We may assume that a,b are nonunit. Then there exists an
even positive integer n = 2m(m≥ 1) such that (ab)n ∈ I. Since

√
0 = {0}, we have (ab)n 6= 0. Hence, 0 6= amambn ∈ I. Thus,

amam = an ∈ I or bn ∈
√

I, and therefore
√

I is a weakly prime ideal of R. Since R is reduced and I 6= {0}, we conclude that
√

I
is a prime ideal of R by [2] . The proof of the ”in particular” statement : by Theorem 2,

√
I is a maximal ideal of R, then I is a

primary ideal of R, and hence I is a 1-absorbing ideal primary of R.

Recall that a commutative semiring R is called a von-Neumann regular semiring if and only if for every x ∈ R, there is a
Y ∈ y such that x2y = x. It is known that a commutative semiring R is a von-Neumann regular semiring if and only if for each
x ∈ R, there is an idempotent e ∈ R and a unit u ∈ R such that x = eu. We have the following result.

Theorem 2.7. Let R be a von-Neumann regular semiring and I be a nonzero ideal of R. Then the following statements are
equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. I is a primary ideal of R.

3. I is a 1-absorbing ideal primary of R.

Proof. (1)⇒ (2). R is a von-Neumann regular semiring, we know that R is reduced. Hence
√

I is a prime ideal of R by
Theorem 2.6. Since every prime ideal of a von-Neumann regular semiring is maximal, we conclude that

√
I is a maximal ideal

of R. Hence I is a primary ideal of R by Theorem 2.5.
(2)⇒ (3). Let nonunit elements a,b,c ∈ R, and abc ∈ I. Assume ab not belong I. Since I is a primary ideal, we have cm ∈ I
for some positive integer m, so c ∈

√
I. Thus, I is a 1-absorbing primary ideal.

(3)⇒ (1). Let nonunit elements a,b,c ∈ R, and 0 6= abc ∈ I. Since I is a 1-absorbing primary ideal, we have ab ∈ I, or c ∈
√

I.
Now, if a,b and c 6= 0, then 0 6= abc ∈ I. As a result I is a weakly 1-absorbing primary ideal.

Theorem 2.8. Let R be a non-quasilocal semiring and I be a k-ideal of R such that ann(i) = {r ∈ R | ri = 0} is not a maximal
ideal of R for every element i ∈ I. Then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly primary ideal of
R.

Proof. If I is a weakly primary ideal of R, then I is a weakly 1-absorbing primary ideal of R by Theorem 2.4. Now, suppose
that I is a weakly 1-absorbing primary k-ideal of R and suppose that 0 6= ab ∈ I for some elements a,b ∈ R. We show that a ∈ I
or b ∈

√
I. We may assume that a,b are nonunit elements of R. Let ann(ab) = {c ∈ R | cab = 0}. Since ab 6= 0, ann(ab) is

a proper ideal of R. Let L be a maximal ideal of R such that ann(ab) ⊆ L. Since R is a non-quasilocal semiring, there is a
maximal ideal M of R such that M 6= L. Let m ∈M \L. Hence m not belong to ann(ab), and 0 6= mab ∈ I. Since I is a weakly
1-absorbing primary ideal of R, we have ma ∈ I or b ∈

√
I. If b ∈

√
I, then we are done. Hence assume that b not belong to

√
I.
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Hence ma ∈ I. Since m not belong to L and L is a maximal ideal of R, we conclude that m not belong to J(R). Hence there exists
an r ∈ R such that 1+ rm is a nonunit element of R. Suppose that 1+ rm not belong to ann(ab). Hence 0 6= (1+ rm)ab ∈ I.
Since I is a weakly 1-absorbing primary k-ideal of R and b not belong to

√
I, we conclude that (1+ rm)a = a+ rma ∈ I. Since

rma ∈ I, we have a ∈ I and we are done. Suppose that 1+ rm ∈ ann(ab). Since ann(ab) is not a maximal ideal of R and
ann(ab)⊆ L, there is a w ∈ L\ann(ab). Hence 0 6= wab ∈ I. Since I is a weakly 1-absorbing primary k-ideal of R and b not
belong to

√
I, we conclude that wa ∈ I. Since 1+ rm ∈ ann(ab)⊆ L and w ∈ L\ann(ab), we have 1+ rm+w is a nonzero

nonunit element of L. Hence 0 6= (1+ rm+w)ab ∈ I. Since I is a weakly 1-absorbing primary k-ideal of R and b not belong√
I, we conclude that (1+ rm+w)a = a+ rma+wa ∈ I. Since rma,wa ∈ I, we conclude that a ∈ I.

In light of the proof of Theorem 2.8, we have the following result.

Theorem 2.9. Let I be a weakly 1-absorbing primary k-ideal of R such that for every nonzero element i ∈ I, there exists a
nonunit w ∈ R such that wi 6= 0, and w+u is a nonunit element of R for some unit u ∈ R. Then I is a weakly primary k-ideal of
R.

Proof. Suppose that 0 6= ab ∈ I and b not belong to
√

I for some a,b ∈ R. We may assume that a,b are nonunit elements of R.
Hence there is a nonunit w ∈ R such that wab 6= 0 and w+u is a nonunit element of R for some unit u ∈ R. Since 0 6= wab ∈ I
and b not belong to

√
I and I is a weakly 1-absorbing primary k-ideal of R, we conclude that wa ∈ I.

Since (w+u)ab ∈ I and I is a weakly 1-absorbing primary k-ideal of R and b not belong
√

I, we conclude that (w+u)a =
wa+ua ∈ I. Since wa ∈ I and wa+ua ∈ I, we conclude that ua ∈ I. Since u is a unit, we have a ∈ I.

Corollary 2.10. Let R be a semiring and A = R[x]. Suppose that I is a weakly 1-absorbing primary k-ideal of A. Then I is a
weakly primary k-ideal of A.

Proof. Since xi 6= 0 for every nonzero i ∈ I and x+1 is a nonunit element of A, we are done by Theorem 2.9.

Recall that a semiring R is called divided if for every prime ideal P of R and for every x ∈ R\P, we have x | p for every
p ∈ P. We have the following result.

Theorem 2.11. Let R be a reduced divided semiring and I be a proper ideal of R. Then the following statements are equivalent:

1. I is a weakly 1-absorbing primary ideal of R.

2. I is a weakly primary ideal of R.

Proof. (1)⇒ (2). Suppose that 0 6= ab ∈ I for some a,b ∈ R and b not belong to
√

I. We may assume that a,b are nonunit
elements of R. Since

√
I is a prime ideal of R by Theorem 2.6, we conclude that a ∈

√
I. Since R is divided, we conclude

that b | a. Thus a = bc for some c ∈ R. Observe that c is a nonunit element of R as b not belong to
√

I and a ∈
√

I. Since
0 6= ab = bcb ∈ I and I is weakly 1-absorbing primary, and b not belong to

√
I, we conclude that bc = a ∈ I. Thus I is a weakly

primary ideal of R.
(2)⇒ (1). It is clear by Theorem 2.4.

Recall that a semiring R is called a chained semiring if for every x,y ∈ R, we have x | y or y | x. Every chained semiring is
divided. So, if R is a reduced chained semiring, then a proper ideal I of R is a weakly 1-absorbing primary ideal if and only if it
is a weakly primary ideal of R.

Theorem 2.12. Let R be a semiDedekind domain and I be a nonzero proper ideal of R. Then I is a weakly 1-absorbing primary
ideal of R if and only if

√
I is a prime ideal of R.

Proof. (→). Suppose that I is a weakly 1-absorbing primary ideal of R. Then
√

I is a prime ideal of R by Theorem 2.6.
(←). Suppose

√
I is a prime ideal of R. Since R is a semiDedekind domain, it is well known that every nonzero prime

ideal of R is a maximal ideal of R. Thus
√

I is a maximal ideal of R. Hence I is a primary ideal of R, and thus I is 1-absorbing
primary ideal of R.



On Weakly 1-Absorbing Primary Ideals of Commutative Semirings — 203/208

3. Characterizations of Weakly 1-absorbing Primary Ideals in u-semirings
In this section, we will study some characterizations of weakly 1-absorbing primary ideals in u-semirings

Definition 3.1. If an ideal of R contained in a finite union of ideals must be contained in one of those ideals, then R is said to
be a u-semiring.

Theorem 3.2. Let R be a commutative u-semiring, and I a proper ideal of R. Then the following statements are equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. For every nonunit elements a,b ∈ R with ab not belong to I, (I : ab) = (0 : ab), or (I : ab)⊆
√

I.

3. For every nonunit element a ∈ R, and every ideal I1 of R with I1 *
√

I. If (I : aI1) is a proper ideal of R, then
(I : aI1) = (0 : aI1), or (I : aI1)⊆ (I : a).

4. For every ideals I1, I2 of R with I1 *
√

I. If (I : I1I2) is a proper ideal of R, then (I : I1I2) = (0 : I1I2), or (I : I1I2)⊆ (I : I2).

5. For every ideals I1, I2, I3 of R with 0 6= I1I2I3 ⊆ II1I2 ⊆ I or I3 ⊆
√

I.

Proof. (1)⇒ (2). Suppose that I is a weakly 1-absorbing primary ideal of R, ab not belong to I for some nonunit elements
a,b ∈ R and c ∈ (I : ab). Then abc ∈ I. Since ab not belong to I, c is nonunit. If abc = 0, then c ∈ (0 : ab). Assume that
0 6= abc ∈ I. Since I is weakly 1-absorbing primary, we have c ∈

√
I. Hence we conclude that (I : ab)⊆ (0 : ab)∪

√
I. Since R

is a u-semiring, we obtain that (I : ab) = (0 : ab) or (I : ab)⊆
√

I.
(2)⇒ (3). If aI1 ⊆ I, then we are done. Suppose that aI1 * I for some nonunit element a ∈ R and c ∈ (I : aI1). It is clear that c
is nonunit. Then acI1 ⊆ I. Now I1 ⊆ (I : ac). If ac∈ I, then c∈ (I : a). Suppose that ac not belong to I. Hence (I : ac) = (0 : ac)
or (I : ac)⊆

√
I by 2. Thus I1 ⊆ (0 : ac) or I1 ⊆

√
I. Since I1 * I by hypothesis, we conclude I1 ⊆ (0 : ac); i.e. c ∈ (0 : aI1).

Thus (I : aI1)⊆ (0 : aI1)∪ (I : a). Since R is a u-semiring, we have (I : aI1) = (0 : aI1) or (I : aI1)⊆ (I : a).
(3)⇒ (4). If I1 ⊆

√
I, then we are done. Suppose that I1 *

√
I and c ∈ (I : I1I2). Then I2 ⊆ (I : cI1). Since (I : I1I2) is

proper, c is nonunit. Hence I2 ⊆ (0 : cI1) or I2 ⊆ (I : c) by 2.6. If I2 ⊆ (0 : cI1), then c ∈ (I : I1I2). If I2 ⊆ (I : c), then c ∈ (I : I2).
So, (I : I1I2)⊆ (0 : I1I2)∪ (I : I2) which implies that (I : I1I2) = (0 : I1I2), or (I : I1I2)⊆ (I : I2), as needed.

(4)⇒ (5). It is clear.
(5)⇒ (1). Let a,b,c ∈ R be nonunit elements and 0 6= abc ∈ I. Put I1 = aR, I2 = bR, and I3 = cR. Then 1 is now clear by

5

Definition 3.3. Let I be a weakly 1-absorbing primary ideal of R and a,b,c be nonunit elements of R. We call (a,b,c) a
1-triple-zero of I if abc = 0, ab not belong to I, and c not belong to

√
I.

Observe that if I is a weakly 1-absorbing primary ideal of R that is not 1- absorbing primary, then there exists a 1-triple-zero
(a,b,c) of I for some nonunit elements a,b,c ∈ R.

Theorem 3.4. Let I be a weakly 1-absorbing primary k-ideal of R, and (a,b,c) be a 1-triple-zero of I. Then

1. abI = 0.

2. If a,b not belong to (I : c), then bcI = acI = aI2 = bI2 = cI2 = 0.

3. If a,b not belong to (I : c), then I3 = 0.

Proof. 1. Suppose that abI 6= 0. Then abx 6= 0 for some nonunit x ∈ I. Hence 0 6= ab(c+ x) ∈ I. Since ab not belong to I,
(c+x) is nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and ab not belong to I, we conclude
that (c+ x) ∈

√
I. Since x ∈ I, we have c ∈

√
I, a contradiction. Thus abI = 0.

2. Suppose that bcI 6= 0. Then bcy 6= 0 for some nonunit element y ∈ I. Hence 0 6= bcy = b(a+ y)c ∈ I. Since b not belong
to (I : c), we conclude that a+ y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and
ab ∈ I and by ∈ I, we conclude that b(a+ y) not belong to I, and hence c ∈

√
I, a contradiction. Thus bcI = 0. We show

that acI = 0. Suppose that acI 6= 0. Then acy 6= 0 for some nonunit element y ∈ I. Hence 0 6= acy = a(b+ y)c ∈ I. Since
a not belong to (I : c), we conclude that b+ y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal
of R and ab not belong to I and ay ∈ I, we conclude that a(b+ y) not belong to I, and hence c ∈

√
I, a contradiction.

Thus bcI = 0. We show that acI = 0. Suppose that acI 6= 0. Then acy 6= 0 for some nonunit element y ∈ I. Hence
0 6= acy = a(b+ y)c ∈ I. Since a not belong to (I : c), we conclude that b+ y is a nonunit element of R. Since I is a
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weakly 1-absorbing primary k-ideal of R and ab not belong to I and ay ∈ I, we conclude that a(b+ y) not belong to I,
and hence c ∈

√
I, a contradiction.

Thus acI = 0. Now we prove that aI2 = 0. Suppose that axy 6= 0 for some x,y ∈ I. Since abI = 0 by (1) and acI = 0 by
(2), 0 6= axy = a(b+ x)(c+ y) ∈ I.

Since ab not belong to I, we conclude that c+ y is a nonunit element of R. Since a not belong to (I : c), we conclude
that b+ x is a nonunit element of R. Since I is a weakly 1-absorbing Primary k-ideal of R, we have a(b+ x) ∈ I or
(c+y)∈

√
I. Since x,y ∈ I, we conclude that ab ∈ I or c ∈

√
I, a contradiction. Thus aI2 = 0. We show bI2 = 0. Suppose

that bxy 6= 0 for some x,y ∈ I. Since abI = 0 by (1) and bcI = 0 by (2), bxy = b(a+ x)(c+ y) ∈ I. Since ab not belong
to I, we conclude that c+ y is a nonunit element of R. Since b not belong to (I : c), we conclude that a+ xis a nonunit
element of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have b(a+ x) ∈ I or (c+ y) ∈

√
I. Since x,y ∈ I,

we conclude that ab ∈ I or c ∈
√

I, a contradiction.Thus bI2 = 0. We show cI2 = 0.

Suppose that cxy 6= 0 for some x,y ∈ I . Since acI = bcI = 0 by (2), 0 6= cxy = (a+ x)(b+ y)c ∈ I. Since a,b not belong
to (I : c), we conclude that a+ x and b+ y are nonunit elements of R. Since I is a weakly 1-absorbing primary k-ideal of
R, we have (a+ x)(b+ y) ∈ I or c ∈

√
I. Since x,y ∈ I, we conclude that ab ∈ I or c ∈

√
I, a contradiction. Thus cI2 = 0.

3. Assume that xyz 6= 0 for some x,y,z ∈ I. Then 0 6= xyz = (a+ x)(b+ y)(c+ z) ∈ I by (1) and (2). Since ab not belong
to I, we conclude c+ z is a nonunit element of R. Since a,b not belong to (I : c), we conclude that a+ x and b+ y are
nonunit elements of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have (a+ x)(b+ y) ∈ I or c+ z ∈

√
I.

Since x,y,z ∈ I, we conclude that ab ∈ I or c ∈
√

I, a contradiction. Thus I3 = 0.

Theorem 3.5. 1. Let I be a weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing
ideal primary ideal of R and (a,b,c) is a 1-triple-zero of I such that a,b not belong to (I : c). Then I = 0.

2. Let I be a nonzero weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing
ideal primary ideal of R and (a,b,c) is a 1-triple-zero of I. Then ac ∈ I or bc ∈ I.

Proof. 1. Since a,b not belong to (I : c), then I3 = 0 by Theorem 3.4. Since R is reduced, we conclude that I = 0.

2. Suppose that neither ac ∈ I nor bc = 0. Then I = 0 by (1), a contradiction, since I is a nonzero ideal of R by hypothesis.
Hence if (a,b,c) is a 1-triple-zero of I, then ac ∈ I or bc ∈ I.

Theorem 3.6. Let I be a weakly 1-absorbing primary ideal of R. If I is not a weakly primary ideal of R, then there exist an
irreducible element x ∈ R and a nonunit element y ∈ R such that xy ∈ I, but neither x ∈ I nor y ∈

√
I. Furthermore, if ab ∈ I for

some nonunit elements a,b ∈ R such that neither a ∈ I nor b ∈
√

I, then a is an irreducible element of R.

Proof. Suppose that I is not a weakly primary ideal of R. Then there exist nonunit elements x,y ∈ R such that 0 6= xy ∈ I with x
not belong to I, y not belong to

√
I. Suppose that x is not an irreducible element of R. Then x = cd for some nonunit elements

c,d ∈ R. Since 0 6= xy = cdy ∈ I and I is weakly 1-absorbing primary and y not belong to
√

I, we conclude that cd = x ∈ I, a
contradiction. Hence x is an irreducible element of R.

In general, the intersection of a family of weakly 1-absorbing primary ideals need not be a weakly 1-absorbing primary
ideal.

Example 3.7. consider the semiring R = Z6. Then I = (2) and J = (3) are clearly weakly 1-absorbing primary ideals of Z6
but I∩ J = 0 is not a weakly 1-absorbing primary ideal of R.

However, we have the following result.

Proposition 3.8. Let {Ii : i ∈ ∧} be a collection of weakly 1-absorbing primary ideals of R such that Q =
√

Ii =
√

I j for every
distinct i, j ∈ ∧. Then I = ∩i∈∧Ii is a weakly 1-absorbing primary ideal of R.

Proof. Suppose that 0 6= abc ∈ I = ∩i∈∧Ii for nonunit elements a,b,c ∈ R and ab not belong to I. Then for some k ∈ ∧,
0 6= abc ∈ Ik and ab not belong to Ik. It implies that c ∈

√
Ik = Q =

√
I.

Proposition 3.9. Let I be a weakly 1-absorbing primary ideal of R and c be a nonunit element of R\ I. Then (I : c) is a weakly
primary ideal of R.
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Proof. Suppose that 0 6= ab ∈ (I : c) for some nonunit c ∈ R\ I and assume that a not belong to (I : c). Hence b is a nonunit
element of R. If a is unit, then b ∈ (I : c) ⊆

√
(I : c), and we are done. So assume that a is a nonunit element of R. Since

0 6= abc = acb ∈ I and ac not belong to I and I is a weakly 1-absorbing primary ideal of R, we conclude that b ∈
√

I ⊆
√
(I : c).

Thus, (I : c) is a weakly primary ideal of R.

4. Characterization for Weakly 1-absorbing Primary Ideal of R = R1×R2

The next theorem gives a characterization for weakly 1-absorbing primary ideals of R = R1 × R2 where R1 and R2 are
commutative semirings with identity that are not semifields

Theorem 4.1. Let R1 and R2 be commutative semirings with identity that are not semifields, and let R = R1×R2 and I be a a
nonzero proper ideal of R. Then the following statements are equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. I = I1×R2 for some primary ideal I1 of R1 or I = R1× I2 for some primary ideal I2 of R2.

3. I is a 1-absorbing primary ideal of R.

4. I is a primary ideal of R1.

Proof. (1)⇒ (2). Suppose that I is a weakly 1-absorbing primary ideal of R. Then I is of the form I1× I2 for some ideals
I1 and I2 of R1 and R2, respectively. Assume that both I1 and I2 are proper. Since I is a nonzero ideal of R, we conclude
that I1 6= 0 or I2 6= 0. We may assume that I1 6= 0. Let 0 6= c ∈ I1 Then 0 6= (1,0)(1,0)(c,1) = (c,0) ∈ I1× I2. It implies that
(1,0)(1,0) ∈ I1× I2 or (c,1) ∈

√
(I1× I2) =

√
I1×
√

I2, that is I1 = R1 or I2 = R2, a contradiction. Thus either I1 or I2 is a
proper ideal. Without loss of generality, assume that I = I1×R2 for some proper ideal I1 of R1. We show that I1 is a primary
ideal of R1. Let ab ∈ I1 for some a,b ∈ R1. We can assume that a and b are nonunit elements of R1. Since R2 is not a semifield,
there exists a nonunit nonzero element x ∈ R2. Then 0 6= (a,1)(1,x)(b,1) I1×R2 which implies that either (a,1)(1,x) ∈ I1×R2
or (b,1)in

√
I1×R2 =

√
I1×R2; i.e., a ∈ I1 or b ∈

√
I1.

(2)⇒ (3). Since I is a primary ideal of R, I is a 1-absorbing primary ideal of R by [ [9], Theorem (1)].
(3)⇒ (4) Since I a 1-absorbing primary ideal of R and R is not a quasilocal semring, we conclude that I is a primary ideal of R
by [9, Theorem(3)].
(4)⇒ (1) Let nonunit elements a,b,c ∈ R, and 0 6= abc ∈ I. Assume ab not belong to I. Since I is primary ideal, we have
cm ∈ I for some positive integer m, so c ∈

√
I. So I is a weakly 1-absorbing primary ideal.

Theorem 4.2. Let R1, ...,Rn be commutative semirings with 1 6= 0 for some 2≤ n < ∞, and let R = R1× ......×Rn. Then the
following statements are equivalent.

1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.

2. n = 2 and R1,R2 are semifields.

Proof. (1)⇒ (2). Suppose that every proper ideal of R is a weakly 1-absorbing primary ideal. Without loss of generality, we
may assume that n = 3. Then I = R1×{0}×{0} is a weakly 1-absorbing primary ideal of R. However, for a nonzero a ∈ R1,
we have(0,0,0) 6= (1,0,1)(1,0,1)(a,1,0) = (a,0,0) ∈ I, but neither (1,0,1)(1,0,1) ∈ I nor (a,1,0) ∈

√
I, a contradiction.

Thus n = 2. Assume that R1 is not a semifield. Then there exists a nonzero proper ideal A of R1. Hence I = A×{0} is a
weakly 1-absorbing primary ideal of R. However, for a nonzero a ∈ A, we have (0,0) 6= (1,0)(1,0)(a,1) = (a,0) ∈ I, but
neither(1,0)(1,0) ∈ I nor (a,1) ∈

√
I, a contradiction. And, assume that R2 is not a semifield. Then there exists a nonzero

proper ideal B of R2. Hence I = B×{0} is a weakly 1-absorbing primary ideal of R. However, for a nonzero b ∈ B, we have
(0,0) 6= (1,0)(1,0)(b,1) = (a,0) ∈ I, but neither (1,0)(1,0) ∈ I nor (a,1) ∈

√
I, a contradiction. Hence n = 2 and R1,R2 are

semifields.
(2)⇒ (1). Suppose that n = 2 and R1,R2 are semifields. Then R has exactly three proper ideals, i.e., {(0,0)},{0}×R2 and

R1×{0} are the only proper ideals of R. Hence it is clear that each proper ideal of R is a weakly 1-absorbing primary ideal of
R.

Since every semiring that is a product of a finite number of fields is a von-Neumann regular semiring, in light of Theorem 4
and Theorem 14 we have the following result.

Corollary 4.3. Let R1, ...,Rn be commutative semirings with 1 6= 0 for some 2≤ n < ∞, and let R = R1× .....×Rn. Then the
following statements are equivalent.
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1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.

2. Every proper ideal of R is a weakly primary ideal of R.

3. n = 2 and R1,R2 are semifields, and hence R = R1×R2 is a von-Neumann regular semiring.

Theorem 4.4. Let R1 and R2 be commutative semirings and f : R1→ R2 be a semiring homomorphism with f (1) = 1. Then
the following statements hold:

1. Suppose that f is a monomorphism and f (a) is a nonunit element of R2 for every nonunit element a ∈ R1 and J is a
weakly 1-absorbing primary ideal of R2. Then f (−1)(J) is a weakly 1-absorbing primary ideal of R1.

2. If f is an epimorphism and I is a weakly 1-absorbing primary ideal of R1 such that Ker( f )⊆ I, then f (I) is a weakly
1-absorbing primary ideal of R2.

Proof. . (1) Let 0 6= abc ∈ f (−1)(J) for some nonunit elements a,b,c ∈ R. Since Ker( f ) = 0, we have 0 6= f (abc) =
f (a) f (b) f (c) ∈ J, where f (a), f (b), f (c) are nonunit elements of R2 by hypothesis. Hence f (a) f (b) ∈ J or f (c) ∈

√
J. Hence

ab ∈ f (−1)(J) or c ∈
√
( f (−1)(J)) = f (−1)(

√
J). Thus f (−1)(J) is a weakly 1-absorbing primary ideal of R1.

Let 0 6= xyz ∈ f (I) for some nonunit elements x,y,z ∈ R. Since f is onto, there exists nonunit elements a,b,c ∈ I such that
x = f (a),y = f (b),z = f (c). Then f (abc) = f (a) f (b) f (c) = xyz ∈ f (I). Since Ker( f )⊆ I, we have 0 6= abc ∈ I. It follows
ab ∈ I or c ∈

√
I. Thus xy ∈ f (I) or z ∈ f (

√
I). Since f is onto and Ker( f )⊆ I, we have f (

√
I) =

√
( f (I)). Thus we are done.

Example 4.5. LetA = K[x,y], where K is a semifield, M = (x,y)A, and B = AM . Note that B is a quasilocal semiring with
maximal ideal MM . Then I = xMM = (x2,xy)B is a 1-absorbing primary ideal of B and

√
I = xB. However xy ∈ I, but

neither x ∈ I nor y ∈
√

I. Thus I is not a primary ideal of B. Let f : B×B→ B such that f (x,y) = x. Then f is a semiring
homomorphism from B×B onto B such that f (1,1) = 1. However, (1,0) is a nonunit element of B×B and f (1,0) = 1 is a unit
of B. Thus f does not satisfy the hypothesis of 4.4. Now f (−1)(I) = I×B is not a weakly 1-absorbing ideal of B×B by 4.1.

Theorem 4.6. Let I be a proper ideal of R. Then the following statements hold.

1. If J is a proper ideal of a semiring R with J ⊆ I and I is a weakly 1-absorbing primary ideal of R, then I/J is a weakly
1-absorbing primary ideal of R/J.

2. If J is a proper ideal of a semiring R with J ⊆ I such that U(R/J) = {a+ J | a ∈U(R)}. If J is a 1-absorbing primary
ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a 1-absorbing primary ideal of R.

3. If {0} is a 1-absorbing primary ideal of R and I is a weakly 1-absorbing primary ideal of R, then I is a 1-absorbing
primary ideal of R.

4. If J is a proper ideal of a ring R with J ⊆ I such that U(R/J) = {a+J | a ∈U(R)}. If J is a weakly 1-absorbing primary
ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a weakly 1-absorbing primary ideal of R.

Proof. 1. Consider the natural epimorphism π : R→ R/J. Then π(I) = I/J. So we are done by Theorem 1.

2. Suppose that abc ∈ I for some nonunit elements a,b,c ∈ R. If abc ∈ J, then ab ∈ J ⊆ I or c ∈
√

J ⊆
√

I as J is a
1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J 6= (a+ J)(b+ J)(c+ J) ∈ I/J, where
a+ J,b+ J,c+ J are nonunit elements of R/J by hypothesis. Thus (a+ J)(b+ J) ∈ I/J or (c+ J) ∈

√
(I/J). Hence

ab ∈ I or c ∈
√

I.

3. The proof follows from (2).

4. Suppose that 0 6= abc ∈ I for some nonunit elements a,b,c ∈ R. If abc ∈ J, then ab ∈ J ⊆ I or c ∈
√

J ⊆
√

I as J is a
weakly 1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J 6= (a+ J)(b+ J)(c+ J) ∈ I/J,
where a+ J,b+ J,c+ J are nonunit elements of R/J by hypothesis. Thus (a+ J)(b+ J) ∈ I/J or (c+ J) ∈

√
(I/J).

Hence ab ∈ I or c ∈
√

I.

Proposition 4.7. 1. Let R1 and R2 be commutative semirings and f : R1→ R2 be a ring homomorphism with f (1) = 1
such that R2 is not a quasilocal semiring, then f (a) is a nonunit element of R2 for every nonunit element a ∈ R1 and J is
a 1-absorbing primary ideal of R2. Then f (−1)(J) is a 1-absorbing primary ideal of R1.
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2. Let I and J be proper ideals of a semiring R with I ⊆ J. If J is a 1-absorbing primary ideal of R, then J/I is a 1-absorbing
primary ideal of R/I. Furthermore, assume that if R/I is a quasilocal semiring, then U(R/I) = a+ I | a ∈U(R). If J/I
is a 1-absorbing primary ideal of R/I, then J is a 1-absorbing primary ideal of R.

3. Let R be a semiring and A = R[x]. Then a proper ideal I of R is a 1-absorbing primary ideal of R if and only if
(I[x]+ xA)/xA is a 1-absorbing primary ideal of A/xA, since R is semiring-isomorphic to A/xA.

Theorem 4.8. Let S be a multiplicatively closed subset of R, and I a proper ideal of R. Then the following statements hold.

1. If I is a weakly 1-absorbing primary ideal of R such that I∩S = φ , then S(−1)I is a weakly 1-absorbing primary ideal of
S(−1)R.

2. If S(−1)I is a weakly 1-absorbing primary ideal of S(−1)R such that S∩Z(R) = φ and S∩ZI(R) = φ , then I is a weakly
1-absorbing primary ideal of R.

Proof. 1. Suppose that 0 6= a
s1

b
s2

c
s3
∈ S(−1)I for some nonunit a,b,c ∈ R \ S, s1,s2,s3 ∈ S and a

s1
b
s2

not belong to S(−1)I.

Then 0 6= uabc ∈ I for some u ∈ S. Since I is weakly 1-absorbing primary and uab not belong to I, we conclude c ∈
√

I.
Thus c

s3
∈ S(−1)

√
I =

√
(S(−1)I). Thus S(−1)I is a weakly 1-absorbing primary ideal of S(−1)R.

2. Suppose that 0 6= abc ∈ I for some nonunit elements a,b,c ∈ R. Hence 0 6= abc
1 = a

1
b
1

c
1 ∈ S(−1)I as S∩Z(R) = φ . Since

S(−1)I is weakly 1-absorbing primary, we have either a
1

b
1 ∈ S(−1)I, or c

1 ∈
√

S(−1)I = S−1
√

I. If a
1

b
1 ∈ S(−1)I, then uab∈ I

for some u ∈ S. Since S∩ZI(R) = φ , we conclude that ab ∈ I. If c
1 ∈ S−1

√
I, then (tc)n ∈ I for some positive integer

n≥ 1 and t ∈ S. Since tn not belong to ZI(R), we have cn ∈ I, i.e., c ∈
√

I. Thus I is a weakly 1-absorbing primary ideal
of R.

Definition 4.9. Let I be a weakly 1-absorbing primary ideal of R and I1I2I3 ⊆ I for some proper ideals I1, I2, I3 of R. If (a,b,c)
is not 1-triple zero of I for every a ∈ I1, b ∈ I2,c ∈ I3, then we call I a free 1-triple zero with respect to I1I2I3.

Theorem 4.10. Let I be a weakly 1-absorbing primary ideal of R and J be a proper ideal of R with abJ ⊆ I for some a,b ∈ R.
If (a,b, j) is not a 1-triple zero of I for all j ∈ Jand ab not belong to I, then J ⊆

√
I.

Proof. Suppose that J *
√

I. Then there exists c ∈ J \
√

I. Then abc ∈ abJ ⊆ I. If abc 6= 0, then it contradicts our assumption
that ab not belong to I and c not belong to

√
I. Thus abc = 0. Since (a,b,c) is not a 1-triple zero of I and ab not belong to I,

we conclude c ∈
√

I, a contradiction. Thus J ⊆
√

I.

Theorem 4.11. Let I be a weakly 1-absorbing primary ideal of R and 0 6= I1I2I3 ⊆ I for some proper ideals I1, I2, I3 of R. If I is
free 1-triple zero with respect to I1I2I3, then I1I2 ⊆ I or I3 ⊆

√
I.

Proof. Suppose that I is free 1-triple zero with respect to I1I2I3, and 0 6= I1I2I3 ⊆ I. Assume that I1I2 * I. Then there exist
a ∈ I1,b ∈ I2 such that ab not belong to I. Since I is a free 1-triple zero with respect to I1I2I3, we conclude that (a,b,c) is not a
1-triple zero of I for all c ∈ I3. Thus I3 ⊆

√
I by Theorem 4.10.
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