

Communications in Advanced Mathematical Sciences Vol. 5, No. 4, 199-208, 2022 Research Article e-ISSN: 2651-4001 DOI: 10.33434/cams.1195074

On Weakly 1-Absorbing Primary Ideals of Commutative Semirings

Mohammad Saleh¹*, Ibaa Murra²

Abstract

Let *R* be a commutative semiring with $1 \neq 0$. In this paper, we study the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing ideal over commutative semirings. A proper ideal *I* of a semiring *R* is called a weakly 1-absorbing primary ideal if whenever nonunit elements $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$, or $c \in \sqrt{I}$. A number of results concerning weakly 1-absorbing primary ideals and examples of weakly 1-absorbing primary ideals are given. An ideal is called a subtractive ideal *I* of a semiring *R* is an ideal such that if $x, x + y \in I$, then $y \in I$. Subtractive ideals or k-ideals are helpful in proving in many results related to ideal theory over semirings.

Keywords:

1-absorbing primary ideal, 2-absorbing primary ideal, Prime ideal, Weakly 1-absorbing primary ideal, Weakly 2-absorbing primary ideal, Weakly prime ideal, Weakly primary, Weakly primary ideal **2010 AMS:** 13A02, 13A15, 13F05, 13G05, 16W50

¹ Department of Mathematics, Birzeit University, P.O.Box 14, West Bank, Palestine, ORCID: 0000-0002-4254-2540
² Department of Mathematics, Birzeit University, Ramalla, West Bank, Palestine, ORCID: xxxxxx
*Corresponding author: msaleh@birzeit.edu
Received: 26 October 2022, Accepted: 29 December 2022, Available online: 30 December 2022

1. Introduction

The algebraic structure of semirings, that are considered as a generalization of rings, plays an important role in different branches of mathematics, especially in applied sciences and computer engineering. For general references on semiring theory one may refer to [1],[4],[13] and [16].

The first formal definition of semirings was introduced by H.S Vandiver in 1934 [20] "Note on a simple type of algebra in which cancelation law of addition does not holds".

In this paper we need a special kind of ideals that was defined by Henriksen [14] in 1958 which is called k-ideal or subtractive ideals. A subtractive ideal *I* of a semiring *R* is an ideal such that if $x, x + y \in I$, then $y \in I$.

Since prime and primary ideals have key roles in commutative semiring theory, many authors have studied generalizations of prime and primary ideals. One of the generalization of that concept is 2-absorbing ideals.

In 2012, Darani [12] introduced the connotation of a 2-absorbing ideal of a commutative semiring. A proper ideal *I* of a semiring *R* is said to be a 2-absorbing primary ideal if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$, or $bc \in I$, or $ac \in I$.

In [8], the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing ideal was introduced. A proper ideal *I* of a ring *R* is called a weakly 1-absorbing primary ideal if whenever nonunit elements $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$, or $c \in \sqrt{I}$ and studied n number of results concerning weakly 1-absorbing primary ideals and examples of weakly

1-absorbing primary ideals .

We assume throughout this paper that all semirings are commutative with unity $1 \neq 0$. We start by recalling some background material. By a proper ideal *I* of *R*, we mean an ideal *I* of *R* with $I \neq R$. Let *I* be a proper ideal of *R*. Before we state some results, let us introduce some notation and terminology. By \sqrt{I} , we mean the radical of *R*, that is, $\{a \in R \mid an \in I\}$ for some positive integer *n*}. In particular, $\sqrt{0}$ denotes the set of all nilpotent elements of *R*. We define $Z_I(R) = \{r \in R \mid rs \in I \text{ for some } s \in R \setminus I\}$. A semiring *R* is called a reduced semiring if it has no non-zero nilpotent elements; i.e., $\sqrt{0} = 0$. For two ideals *I* and *J* of *R*, the residual division of *I* and *J* is defined to be the ideal $(I : J) = \{a \in R \mid aJ \subseteq I\}$. Let *R* be a commutative semiring with identity and *M* a unitary *R*-semimodule. Then $R(+)M = R \bigoplus M(\text{direct sum})$ with coordinate-wise addition and multiplication (a,m)(b,n) = (ab, an + bm) is a commutative semiring with identity called the idealization of *M*. A semiring *R* is called a quasilocal semiring if *R* has exactly one maximal ideal. As usual we denote *Z* and *Z_n* by the semiring of integers and the semiring of integers modulo *n*.

In this paper, we introduce the concept of (weakly) 1-absorbing ideal of a semiring R. A proper ideal I of a semiring R is called a weakly 1-absorbing primary ideal of R if whenever nonunit elements $a, b, c \in R$, and $0 \neq abc \in I$, then $ab \in I$, or $c \in \sqrt{I}$. A proper ideal I of a semiring R is called 1-absorbing primary ideal of R if whenever nonunit elements $a, b, c \in R$, and $abc \in I$, then $ab \in I$, or $c \in \sqrt{I}$. It is clear that a 1-absorbing primary ideal of R is a weakly 1-absorbing primary ideal of R. However, since 0 is always weakly 1-absorbing primary, a weakly 1-absorbing primary ideal of R needs not be a 1-absorbing primary ideal of R. Among many results, we show (Theorem 2.5) that if a proper ideal I of R is a weakly 1-absorbing ideal of R such that \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R, and hence I is 1-absorbing primary ideal of R. We show (Theorem 2.6) that if R is a reduced semiring, and I is a weakly 1-absorbing primary ideal of R, then \sqrt{I} is a prime ideal of R. If I is a proper nonzero ideal of a von-Neumann regular semiring R, then we show (Theorem 2.7) that I is a weakly 1absorbing primary ideal of R if and only if I is a 1-absorbing primary ideal of R if and only if I is a primary ideal of R. We show (Theorem 2.8) that if R is a nonquasilocal semiring, and I be a proper ideal of R such that $ann(i) = \{r \in R \mid ri = 0\}$ is not a maximal ideal of R for every element $i \in I$, then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly primary ideal of R. If I is a proper ideal of a reduced divided semiring R, then we show (Theorem 2.11) that I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly primary ideal of R. If I is a weakly 1-absorbing primary of a semiring R that is not a 1-absorbing primary ideal of R, then we give (Theorem 3.4) sufficient conditions so that $I^3 = 0$ (i.e., $I \subseteq \sqrt{I}$). In Theorem 3.2, we obtain some equivalent conditions for weakly 1-absorbing primary ideals of u-semirings. In (Theorem4.1), a characterization of weakly 1-absorbing primary ideals in $R = R_1 \times R_2$, where R_1 and R_2 are commutative semirings with identity that are not semifields is given. If $R_1, R_2, ..., R_n$ are commutative semirings with identity for some $2 \le n < \infty$, and let $R = R_1 \times \dots \times R_n$, then it is shown in (Theorem 4.2) that every proper ideal of R is a weakly 1-absorbing primary ideal of R if and only if n = 2 and R_1, R_2 are semifields. For a weakly 1-absorbing primary ideal of a semiring R, we show (Theorem 4.8) that $S^{(-1)}I$ is a weakly 1-absorbing primary ideal of $S^{(-1)}R$ for every multiplicatively closed subset S of R that is disjoint from *I*, and we show that the converse holds if $S \cap Z(R) = \phi$ and $S \cap Z_I(R) = \phi$.

2. Properties of Weakly 1 -absorbing Primary Ideals

In this section, we will define some basic properties of weakly 1-absorbing primary ideals in a commutative semi-ring R.

Definition 2.1. Let *R* be a commutative semiring, and *I* a proper ideal of *R*. We call *I* a weakly 1-absorbing primary ideal of *R* if whenever nonunit elements $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$, or $c \in \sqrt{I}$.

Definition 2.2. Let *R* be a commutative semiring, and *I* a proper ideal of *R*. We call *I* a 1-absorbing primary ideal of *R* if whenever nonunit elements $a, b, c \in R$ and $abc \in I$, then $ab \in I$, or $c \in \sqrt{I}$.

It is clear that every 1-absorbing primary ideal of a semiring R is a weakly 1-absorbing primary ideal of R. The following example shows that the converse is not true.

- **Example 2.3.** *1.* $I = \{0\}$ is a weakly 1-absorbing primary ideal of $R = Z_6$ that is not a 1-absorbing primary of R. Indeed, 2.2.3 $\in I$, but neither 2.2 $\in I$ nor $3 \in \sqrt{I}$.
 - 2. Let $J = \{0, 6\}$ as an ideal of Z_{12} , and let $R = Z_{12}(+)J$. Then an ideal $I = \{(0,0), (0,6)\}$ is a weakly 1-absorbing primary ideal of R. Observe that $abc \in I$ for some $a, b, c \in R \mid I$ if and only if abc = (0,0). However, it is not a 1-absorbing primary ideal of R. Indeed; $(2,0)(2,0)(3,0) \in I$, but neither $(2,0)(2,0) \in I$ nor $(3,0) \in \sqrt{I}$.

We begin with the following trivial result:

Theorem 2.4. Let be a proper ideal of a commutative semiring R. Then the following statements hold.

1. If I is a weakly prime ideal, then I is a weakly 1-absorbing primary ideal.

- 2. If I is a weakly primary ideal, then I is a weakly 1-absorbing primary ideal.
- 3. If I is a 1-absorbing primary ideal, then I is a weakly 1-absorbing primary ideal.
- 4. If I is a weakly 1-absorbing primary ideal, then I is a weakly 2-absorbing primary ideal.
- 5. If *R*/*I* is an semi-integral domain, then *I* is a weakly 1-absorbing primary ideal if and only if *I* is a 1-absorbing primary ideal of *R*.
- 6. Let *R* be a quasilocal semiring with maximal ideal $\sqrt{0}$. Then every proper ideal of *R* is a weakly 1-absorbing primary ideal of *R*.

Theorem 2.5. Let *R* be a semiring and *I* be a weakly 1-absorbing primary ideal of *R*. If \sqrt{I} is a maximal ideal of *R*, then *I* is a primary ideal of *R*, and hence *I* is a 1-absorbing ideal primary of *R*.

In particular, If I a weakly 1-absorbing primary ideal of R that is not a 1-absorbing ideal primary of R, then is not a maximal ideal of R.

Proof. Suppose that \sqrt{I} is a maximal ideal of *R*. Then *I* is a semiprimary ideal of *R*. by [21] since *I*. Now, assume nonunit elements $a, b, c \in R$ and $abc \in I$. Assume *ab* not belong *I*. Since *I* is primary ideal, we have for some positive integer *m*, we have $c \in \sqrt{I}$. Hence, *I* is 1-absorbing primary ideal.

Theorem 2.6. Let R be a reduced semiring. If I is a nonzero weakly 1-absorbing primary ideal of R, then \sqrt{I} is a prime ideal of R. In particular, if \sqrt{Ii} is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing primary ideal of R.

Proof. Proof: Suppose that $0 \neq ab \in \sqrt{I}f$, for some $a, b \in R$. We may assume that a, b are nonunit. Then there exists an even positive integer $n = 2m(m \ge 1)$ such that $(ab)^n \in I$. Since $\sqrt{0} = \{0\}$, we have $(ab)^n \neq 0$. Hence, $0 \neq a^m a^m b^n \in I$. Thus, $a^m a^m = a^n \in I$ or $b^n \in \sqrt{I}$, and therefore \sqrt{I} is a weakly prime ideal of R. Since R is reduced and $I \neq \{0\}$, we conclude that \sqrt{I} is a prime ideal of R by [2]. The proof of the "in particular" statement : by Theorem 2, \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing ideal primary of R.

Recall that a commutative semiring *R* is called a von-Neumann regular semiring if and only if for every $x \in R$, there is a $Y \in y$ such that $x^2y = x$. It is known that a commutative semiring *R* is a von-Neumann regular semiring if and only if for each $x \in R$, there is an idempotent $e \in R$ and a unit $u \in R$ such that x = eu. We have the following result.

Theorem 2.7. Let *R* be a von-Neumann regular semiring and *I* be a nonzero ideal of *R*. Then the following statements are equivalent.

- 1. I is a weakly 1-absorbing primary ideal of R.
- 2. I is a primary ideal of R.
- 3. I is a 1-absorbing ideal primary of R.

Proof. (1) \Rightarrow (2). *R* is a von-Neumann regular semiring, we know that *R* is reduced. Hence \sqrt{I} is a prime ideal of *R* by Theorem 2.6. Since every prime ideal of a von-Neumann regular semiring is maximal, we conclude that \sqrt{I} is a maximal ideal of *R*. Hence *I* is a primary ideal of *R* by Theorem 2.5.

 $(2) \Rightarrow (3)$. Let nonunit elements $a, b, c \in R$, and $abc \in I$. Assume *ab* not belong *I*. Since *I* is a primary ideal, we have $c^m \in I$ for some positive integer *m*, so $c \in \sqrt{I}$. Thus, *I* is a 1-absorbing primary ideal.

 $(3) \Rightarrow (1)$. Let nonunit elements $a, b, c \in R$, and $0 \neq abc \in I$. Since *I* is a 1-absorbing primary ideal, we have $ab \in I$, or $c \in \sqrt{I}$. Now, if a, b and $c \neq 0$, then $0 \neq abc \in I$. As a result *I* is a weakly 1-absorbing primary ideal.

Theorem 2.8. Let *R* be a non-quasilocal semiring and *I* be a *k*-ideal of *R* such that $ann(i) = \{r \in R \mid ri = 0\}$ is not a maximal ideal of *R* for every element $i \in I$. Then *I* is a weakly 1-absorbing primary ideal of *R* if and only if *I* is a weakly primary ideal of *R*.

Proof. If *I* is a weakly primary ideal of *R*, then *I* is a weakly 1-absorbing primary ideal of *R* by Theorem 2.4. Now, suppose that *I* is a weakly 1-absorbing primary k-ideal of *R* and suppose that $0 \neq ab \in I$ for some elements $a, b \in R$. We show that $a \in I$ or $b \in \sqrt{I}$. We may assume that a, b are nonunit elements of *R*. Let $ann(ab) = \{c \in R \mid cab = 0\}$. Since $ab \neq 0$, ann(ab) is a proper ideal of *R*. Let *L* be a maximal ideal of *R* such that $ann(ab) \subseteq L$. Since *R* is a non-quasilocal semiring, there is a maximal ideal *M* of *R* such that $M \neq L$. Let $m \in M \setminus L$. Hence *m* not belong to ann(ab), and $0 \neq mab \in I$. Since *I* is a weakly 1-absorbing primary ideal of *R*, we have $ma \in I$ or $b \in \sqrt{I}$. If $b \in \sqrt{I}$, then we are done. Hence assume that *b* not belong to \sqrt{I} .

Hence $ma \in I$. Since *m* not belong to *L* and *L* is a maximal ideal of *R*, we conclude that *m* not belong to J(R). Hence there exists an $r \in R$ such that 1 + rm is a nonunit element of *R*. Suppose that 1 + rm not belong to ann(ab). Hence $0 \neq (1 + rm)ab \in I$. Since *I* is a weakly 1-absorbing primary k-ideal of *R* and *b* not belong to \sqrt{I} , we conclude that $(1 + rm)a = a + rma \in I$. Since $rma \in I$, we have $a \in I$ and we are done. Suppose that $1 + rm \in ann(ab)$. Since ann(ab) is not a maximal ideal of *R* and $ann(ab) \subseteq L$, there is a $w \in L \setminus ann(ab)$. Hence $0 \neq wab \in I$. Since *I* is a weakly 1-absorbing primary k-ideal of *R* and *b* not belong to \sqrt{I} , we conclude that $wa \in I$. Since $1 + rm \in ann(ab) \subseteq L$ and $w \in L \setminus ann(ab)$, we have 1 + rm + w is a nonzero nonunit element of *L*. Hence $0 \neq (1 + rm + w)ab \in I$. Since *I* is a weakly 1-absorbing primary k-ideal of *R* and *b* not belong to \sqrt{I} , we conclude that $(1 + rm + w)a = a + rma + wa \in I$. Since *I* is a weakly 1-absorbing primary k-ideal of *R* and *b* not belong to \sqrt{I} , we conclude that $(1 + rm + w)a = a + rma + wa \in I$. Since *I* is a weakly 1-absorbing primary k-ideal of *R* and *b* not belong \sqrt{I} , we conclude that $(1 + rm + w)a = a + rma + wa \in I$. Since *rma*, $wa \in I$, we conclude that $a \in I$.

In light of the proof of Theorem 2.8, we have the following result.

Theorem 2.9. Let I be a weakly 1-absorbing primary k-ideal of R such that for every nonzero element $i \in I$, there exists a nonunit $w \in R$ such that $wi \neq 0$, and w + u is a nonunit element of R for some unit $u \in R$. Then I is a weakly primary k-ideal of R.

Proof. Suppose that $0 \neq ab \in I$ and *b* not belong to \sqrt{I} for some $a, b \in R$. We may assume that a, b are nonunit elements of *R*. Hence there is a nonunit $w \in R$ such that $wab \neq 0$ and w + u is a nonunit element of *R* for some unit $u \in R$. Since $0 \neq wab \in I$ and *b* not belong to \sqrt{I} and *I* is a weakly 1-absorbing primary k-ideal of *R*, we conclude that $wa \in I$.

Since $(w+u)ab \in I$ and I is a weakly 1-absorbing primary k-ideal of R and b not belong \sqrt{I} , we conclude that $(w+u)a = wa + ua \in I$. Since $wa \in I$ and $wa + ua \in I$, we conclude that $ua \in I$. Since u is a unit, we have $a \in I$.

Corollary 2.10. Let R be a semiring and A = R[x]. Suppose that I is a weakly 1-absorbing primary k-ideal of A. Then I is a weakly primary k-ideal of A.

Proof. Since $xi \neq 0$ for every nonzero $i \in I$ and x + 1 is a nonunit element of A, we are done by Theorem 2.9.

Recall that a semiring *R* is called divided if for every prime ideal *P* of *R* and for every $x \in R \setminus P$, we have $x \mid p$ for every $p \in P$. We have the following result.

Theorem 2.11. Let *R* be a reduced divided semiring and *I* be a proper ideal of *R*. Then the following statements are equivalent:

- 1. I is a weakly 1-absorbing primary ideal of R.
- 2. I is a weakly primary ideal of R.

Proof. (1) \Rightarrow (2). Suppose that $0 \neq ab \in I$ for some $a, b \in R$ and b not belong to \sqrt{I} . We may assume that a, b are nonunit elements of R. Since \sqrt{I} is a prime ideal of R by Theorem 2.6, we conclude that $a \in \sqrt{I}$. Since R is divided, we conclude that $b \mid a$. Thus a = bc for some $c \in R$. Observe that c is a nonunit element of R as b not belong to \sqrt{I} and $a \in \sqrt{I}$. Since $0 \neq ab = bcb \in I$ and I is weakly 1-absorbing primary, and b not belong to \sqrt{I} , we conclude that $bc = a \in I$. Thus I is a weakly primary ideal of R.

 $(2) \Rightarrow (1)$. It is clear by Theorem 2.4.

Recall that a semiring *R* is called a chained semiring if for every $x, y \in R$, we have x | y or y | x. Every chained semiring is divided. So, if *R* is a reduced chained semiring, then a proper ideal *I* of *R* is a weakly 1-absorbing primary ideal if and only if it is a weakly primary ideal of *R*.

Theorem 2.12. Let *R* be a semiDedekind domain and *I* be a nonzero proper ideal of *R*. Then *I* is a weakly 1-absorbing primary ideal of *R* if and only if \sqrt{I} is a prime ideal of *R*.

Proof. (\rightarrow). Suppose that *I* is a weakly 1-absorbing primary ideal of *R*. Then \sqrt{I} is a prime ideal of *R* by Theorem 2.6.

 (\leftarrow) . Suppose \sqrt{I} is a prime ideal of *R*. Since *R* is a semiDedekind domain, it is well known that every nonzero prime ideal of *R* is a maximal ideal of *R*. Thus \sqrt{I} is a maximal ideal of *R*. Hence *I* is a primary ideal of *R*, and thus *I* is 1-absorbing primary ideal of *R*.

3. Characterizations of Weakly 1-absorbing Primary Ideals in u-semirings

In this section, we will study some characterizations of weakly 1-absorbing primary ideals in u-semirings

Definition 3.1. If an ideal of *R* contained in a finite union of ideals must be contained in one of those ideals, then *R* is said to be a *u*-semiring.

Theorem 3.2. Let R be a commutative u-semiring, and I a proper ideal of R. Then the following statements are equivalent.

- 1. I is a weakly 1-absorbing primary ideal of R.
- 2. For every nonunit elements $a, b \in R$ with ab not belong to I, (I : ab) = (0 : ab), or $(I : ab) \subseteq \sqrt{I}$.
- 3. For every nonunit element $a \in R$, and every ideal I_1 of R with $I_1 \nsubseteq \sqrt{I}$. If $(I : aI_1)$ is a proper ideal of R, then $(I : aI_1) = (0 : aI_1)$, or $(I : aI_1) \subseteq (I : a)$.
- 4. For every ideals I_1 , I_2 of R with $I_1 \not\subseteq \sqrt{I}$. If $(I : I_1I_2)$ is a proper ideal of R, then $(I : I_1I_2) = (0 : I_1I_2)$, or $(I : I_1I_2) \subseteq (I : I_2)$.
- 5. For every ideals I_1, I_2, I_3 of R with $0 \neq I_1 I_2 I_3 \subseteq II_1 I_2 \subseteq I$ or $I_3 \subseteq \sqrt{I}$.

Proof. $(1) \Rightarrow (2)$. Suppose that *I* is a weakly 1-absorbing primary ideal of *R*, *ab* not belong to *I* for some nonunit elements $a, b \in R$ and $c \in (I : ab)$. Then $abc \in I$. Since *ab* not belong to *I*, *c* is nonunit. If abc = 0, then $c \in (0 : ab)$. Assume that $0 \neq abc \in I$. Since *I* is weakly 1-absorbing primary, we have $c \in \sqrt{I}$. Hence we conclude that $(I : ab) \subseteq (0 : ab) \cup \sqrt{I}$. Since *R* is a u-semiring, we obtain that (I : ab) = (0 : ab) or $(I : ab) \subseteq \sqrt{I}$.

 $(2) \Rightarrow (3)$. If $aI_1 \subseteq I$, then we are done. Suppose that $aI_1 \nsubseteq I$ for some nonunit element $a \in R$ and $c \in (I : aI_1)$. It is clear that c is nonunit. Then $acI_1 \subseteq I$. Now $I_1 \subseteq (I : ac)$. If $ac \in I$, then $c \in (I : a)$. Suppose that ac not belong to I. Hence (I : ac) = (0 : ac) or $(I : ac) \subseteq \sqrt{I}$ by 2. Thus $I_1 \subseteq (0 : ac)$ or $I_1 \subseteq \sqrt{I}$. Since $I_1 \nsubseteq I$ by hypothesis, we conclude $I_1 \subseteq (0 : ac)$; i.e. $c \in (0 : aI_1)$. Thus $(I : aI_1) \subseteq (0 : aI_1) \cup (I : a)$. Since R is a u-semiring, we have $(I : aI_1) = (0 : aI_1) \cup (I : a)$.

 $(3) \Rightarrow (4)$. If $I_1 \subseteq \sqrt{I}$, then we are done. Suppose that $I_1 \not\subseteq \sqrt{I}$ and $c \in (I : I_1I_2)$. Then $I_2 \subseteq (I : cI_1)$. Since $(I : I_1I_2)$ is proper, *c* is nonunit. Hence $I_2 \subseteq (0 : cI_1)$ or $I_2 \subseteq (I : c)$ by 2.6. If $I_2 \subseteq (0 : cI_1)$, then $c \in (I : I_1I_2)$. If $I_2 \subseteq (I : c)$, then $c \in (I : I_2)$. So, $(I : I_1I_2) \subseteq (0 : I_1I_2) \cup (I : I_2)$ which implies that $(I : I_1I_2) = (0 : I_1I_2)$, or $(I : I_1I_2) \subseteq (I : I_2)$, as needed.

 $(4) \Rightarrow (5)$. It is clear.

 $(5) \Rightarrow (1)$. Let $a, b, c \in R$ be nonunit elements and $0 \neq abc \in I$. Put $I_1 = aR$, $I_2 = bR$, and $I_3 = cR$. Then 1 is now clear by

Definition 3.3. Let I be a weakly 1-absorbing primary ideal of R and a,b,c be nonunit elements of R. We call (a,b,c) a 1-triple-zero of I if abc = 0, ab not belong to I, and c not belong to \sqrt{I} .

Observe that if *I* is a weakly 1-absorbing primary ideal of *R* that is not 1- absorbing primary, then there exists a 1-triple-zero (a,b,c) of *I* for some nonunit elements $a,b,c \in R$.

Theorem 3.4. Let I be a weakly 1-absorbing primary k-ideal of R, and (a,b,c) be a 1-triple-zero of I. Then

- 1. abI = 0.
- 2. If *a*, *b* not belong to (I : c), then $bcI = acI = aI^2 = bI^2 = cI^2 = 0$.
- 3. If a, b not belong to (I:c), then $I^3 = 0$.
- *Proof.* 1. Suppose that $abI \neq 0$. Then $abx \neq 0$ for some nonunit $x \in I$. Hence $0 \neq ab(c+x) \in I$. Since ab not belong to I, (c+x) is nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and ab not belong to I, we conclude that $(c+x) \in \sqrt{I}$. Since $x \in I$, we have $c \in \sqrt{I}$, a contradiction. Thus abI = 0.
 - Suppose that bcI ≠ 0. Then bcy ≠ 0 for some nonunit element y ∈ I. Hence 0 ≠ bcy = b(a+y)c ∈ I. Since b not belong to (I:c), we conclude that a+y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and ab ∈ I and by ∈ I, we conclude that b(a+y) not belong to I, and hence c ∈ √I, a contradiction. Thus bcI = 0. We show that acI = 0. Suppose that acI ≠ 0. Then acy ≠ 0 for some nonunit element y ∈ I. Hence 0 ≠ acy = a(b+y)c ∈ I. Since a not belong to (I:c), we conclude that b + y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and ab not belong to I and ay ∈ I, we conclude that a(b+y) not belong to I, and hence c ∈ √I, a contradiction. Thus bcI = 0. We show that acI = 0. Suppose that acI ≠ 0. Then acy ≠ 0 for some nonunit element y ∈ I. Hence c ∈ √I, a contradiction. Thus bcI = 0. We show that acI = 0. Suppose that acI ≠ 0. Then acy ≠ 0 for some nonunit element y ∈ I. Hence c ∈ √I, a contradiction. Thus bcI = 0. We show that acI = 0. Suppose that acI ≠ 0. Then acy ≠ 0 for some nonunit element y ∈ I. a contradiction. Thus bcI = 0. We show that acI = 0. Suppose that acI ≠ 0. Then acy ≠ 0 for some nonunit element y ∈ I. Hence 0 ≠ acy = a(b+y)c ∈ I. Since a not belong to (I:c), we conclude that b + y is a nonunit element y ∈ I. Hence 0 ≠ acy = a(b+y)c ∈ I. Since a not belong to (I:c), we conclude that b + y is a nonunit element y ∈ I. Hence 0 ≠ acy = a(b+y)c ∈ I. Since a not belong to (I:c), we conclude that b + y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of p = acy = a(b+y)c ∈ I. Since a not belong to (I:c), we conclude that b + y is a nonunit element of R. Since I is a weakly 1-absorbing p = acy = a(b+y)c ∈ I. Since a not belong to (I:c), we conclude that b + y is a nonunit element of R. Since I is a nonun

weakly 1-absorbing primary k-ideal of R and *ab* not belong to *I* and $ay \in I$, we conclude that a(b+y) not belong to *I*, and hence $c \in \sqrt{I}$, a contradiction.

Thus acI = 0. Now we prove that $aI^2 = 0$. Suppose that $axy \neq 0$ for some $x, y \in I$. Since abI = 0 by (1) and acI = 0 by (2), $0 \neq axy = a(b+x)(c+y) \in I$.

Since *ab* not belong to *I*, we conclude that c + y is a nonunit element of *R*. Since *a* not belong to (I : c), we conclude that b + x is a nonunit element of *R*. Since *I* is a weakly 1-absorbing Primary k-ideal of *R*, we have $a(b+x) \in I$ or $(c+y) \in \sqrt{I}$. Since $x, y \in I$, we conclude that $ab \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $aI^2 = 0$. We show $bI^2 = 0$. Suppose that $bxy \neq 0$ for some $x, y \in I$. Since abI = 0 by (1) and bcI = 0 by (2), $bxy = b(a+x)(c+y) \in I$. Since *ab* not belong to *I*, we conclude that c + y is a nonunit element of *R*. Since *b* not belong to (I : c), we conclude that a + x is a nonunit element of *R*. Since *b* not belong to (I : c), we conclude that a + x is a nonunit element of *R*. Since *I* is a weakly 1-absorbing primary k-ideal of *R*, we have $b(a+x) \in I$ or $(c+y) \in \sqrt{I}$. Since $x, y \in I$, we conclude that $ab \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $bI^2 = 0$. We show $cI^2 = 0$.

Suppose that $cxy \neq 0$ for some $x, y \in I$. Since acI = bcI = 0 by (2), $0 \neq cxy = (a+x)(b+y)c \in I$. Since a, b not belong to (I : c), we conclude that a + x and b + y are nonunit elements of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have $(a+x)(b+y) \in I$ or $c \in \sqrt{I}$. Since $x, y \in I$, we conclude that $ab \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $cI^2 = 0$.

3. Assume that $xyz \neq 0$ for some $x, y, z \in I$. Then $0 \neq xyz = (a+x)(b+y)(c+z) \in I$ by (1) and (2). Since *ab* not belong to *I*, we conclude c+z is a nonunit element of *R*. Since *a*, *b* not belong to (I : c), we conclude that a+x and b+y are nonunit elements of *R*. Since *I* is a weakly 1-absorbing primary k-ideal of *R*, we have $(a+x)(b+y) \in I$ or $c+z \in \sqrt{I}$. Since $x, y, z \in I$, we conclude that $ab \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $I^3 = 0$.

- **Theorem 3.5.** 1. Let I be a weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing ideal primary ideal of R and (a,b,c) is a 1-triple-zero of I such that a,b not belong to (I : c). Then I = 0.
 - 2. Let I be a nonzero weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing ideal primary ideal of R and (a,b,c) is a 1-triple-zero of I. Then $ac \in I$ or $bc \in I$.

Proof. 1. Since *a*, *b* not belong to (I:c), then $I^3 = 0$ by Theorem 3.4. Since *R* is reduced, we conclude that I = 0.

2. Suppose that neither $ac \in I$ nor bc = 0. Then I = 0 by (1), a contradiction, since *I* is a nonzero ideal of *R* by hypothesis. Hence if (a, b, c) is a 1-triple-zero of I, then $ac \in I$ or $bc \in I$.

$$\square$$

Theorem 3.6. Let *I* be a weakly 1-absorbing primary ideal of *R*. If *I* is not a weakly primary ideal of *R*, then there exist an irreducible element $x \in R$ and a nonunit element $y \in R$ such that $xy \in I$, but neither $x \in I$ nor $y \in \sqrt{I}$. Furthermore, if $ab \in I$ for some nonunit elements $a, b \in R$ such that neither $a \in I$ nor $b \in \sqrt{I}$, then *a* is an irreducible element of *R*.

Proof. Suppose that *I* is not a weakly primary ideal of *R*. Then there exist nonunit elements $x, y \in R$ such that $0 \neq xy \in I$ with *x* not belong to *I*, *y* not belong to \sqrt{I} . Suppose that *x* is not an irreducible element of *R*. Then x = cd for some nonunit elements $c, d \in R$. Since $0 \neq xy = cdy \in I$ and *I* is weakly 1-absorbing primary and *y* not belong to \sqrt{I} , we conclude that $cd = x \in I$, a contradiction. Hence *x* is an irreducible element of *R*.

In general, the intersection of a family of weakly 1-absorbing primary ideals need not be a weakly 1-absorbing primary ideal.

Example 3.7. consider the semiring $R = Z_6$. Then I = (2) and J = (3) are clearly weakly 1-absorbing primary ideals of Z_6 but $I \cap J = 0$ is not a weakly 1-absorbing primary ideal of R.

However, we have the following result.

Proposition 3.8. Let $\{I_i : i \in \Lambda\}$ be a collection of weakly 1-absorbing primary ideals of R such that $Q = \sqrt{I_i} = \sqrt{I_j}$ for every distinct $i, j \in \Lambda$. Then $I = \bigcap_{i \in \Lambda} I_i$ is a weakly 1-absorbing primary ideal of R.

Proof. Suppose that $0 \neq abc \in I = \bigcap_{i \in \Lambda} I_i$ for nonunit elements $a, b, c \in R$ and ab not belong to I. Then for some $k \in \Lambda$, $0 \neq abc \in I_k$ and ab not belong to I_k . It implies that $c \in \sqrt{I_k} = Q = \sqrt{I}$.

Proposition 3.9. Let *I* be a weakly 1-absorbing primary ideal of *R* and *c* be a nonunit element of $R \setminus I$. Then (I : c) is a weakly primary ideal of *R*.

Proof. Suppose that $0 \neq ab \in (I:c)$ for some nonunit $c \in R \setminus I$ and assume that *a* not belong to (I:c). Hence *b* is a nonunit element of *R*. If *a* is unit, then $b \in (I:c) \subseteq \sqrt{(I:c)}$, and we are done. So assume that *a* is a nonunit element of *R*. Since $0 \neq abc = acb \in I$ and *ac* not belong to *I* and *I* is a weakly 1-absorbing primary ideal of *R*, we conclude that $b \in \sqrt{I} \subseteq \sqrt{(I:c)}$. Thus, (I:c) is a weakly primary ideal of *R*.

4. Characterization for Weakly 1-absorbing Primary Ideal of $R = R_1 \times R_2$

The next theorem gives a characterization for weakly 1-absorbing primary ideals of $R = R_1 \times R_2$ where R_1 and R_2 are commutative semirings with identity that are not semifields

Theorem 4.1. Let R_1 and R_2 be commutative semirings with identity that are not semifields, and let $R = R_1 \times R_2$ and I be a a nonzero proper ideal of R. Then the following statements are equivalent.

- 1. I is a weakly 1-absorbing primary ideal of R.
- 2. $I = I_1 \times R_2$ for some primary ideal I_1 of R_1 or $I = R_1 \times I_2$ for some primary ideal I_2 of R_2 .
- 3. I is a 1-absorbing primary ideal of R.
- 4. *I* is a primary ideal of R_1 .

Proof. (1) \Rightarrow (2). Suppose that *I* is a weakly 1-absorbing primary ideal of *R*. Then *I* is of the form $I_1 \times I_2$ for some ideals I_1 and I_2 of R_1 and R_2 , respectively. Assume that both I_1 and I_2 are proper. Since *I* is a nonzero ideal of *R*, we conclude that $I_1 \neq 0$ or $I_2 \neq 0$. We may assume that $I_1 \neq 0$. Let $0 \neq c \in I_1$ Then $0 \neq (1,0)(1,0)(c,1) = (c,0) \in I_1 \times I_2$. It implies that $(1,0)(1,0) \in I_1 \times I_2$ or $(c,1) \in \sqrt{(I_1 \times I_2)} = \sqrt{I_1} \times \sqrt{I_2}$, that is $I_1 = R_1$ or $I_2 = R_2$, a contradiction. Thus either I_1 or I_2 is a proper ideal. Without loss of generality, assume that $I = I_1 \times R_2$ for some proper ideal I_1 of R_1 . We show that I_1 is a primary ideal of R_1 . Let $ab \in I_1$ for some $a, b \in R_1$. We can assume that a and b are nonunit elements of R_1 . Since R_2 is not a semifield, there exists a nonunit nonzero element $x \in R_2$. Then $0 \neq (a, 1)(1, x)(b, 1)$ $I_1 \times R_2$ which implies that either $(a, 1)(1, x) \in I_1 \times R_2$ or $(b, 1)in\sqrt{I_1 \times R_2} = \sqrt{I_1} \times R_2$; i.e., $a \in I_1$ or $b \in \sqrt{I_1}$.

 $(2) \Rightarrow (3)$. Since *I* is a primary ideal of *R*, *I* is a 1-absorbing primary ideal of *R* by [[9], Theorem (1)].

 $(3) \Rightarrow (4)$ Since *I* a 1-absorbing primary ideal of *R* and *R* is not a quasilocal semring, we conclude that *I* is a primary ideal of *R* by [9, Theorem(3)].

(4) \Rightarrow (1) Let nonunit elements $a, b, c \in R$, and $0 \neq abc \in I$. Assume *ab* not belong to *I*. Since *I* is primary ideal, we have $c^m \in I$ for some positive integer *m*, so $c \in \sqrt{I}$. So *I* is a weakly 1-absorbing primary ideal.

Theorem 4.2. Let $R_1, ..., R_n$ be commutative semirings with $1 \neq 0$ for some $2 \leq n < \infty$, and let $R = R_1 \times ... \times R_n$. Then the following statements are equivalent.

- 1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.
- 2. n = 2 and R_1, R_2 are semifields.

Proof. $(1) \Rightarrow (2)$. Suppose that every proper ideal of *R* is a weakly 1-absorbing primary ideal. Without loss of generality, we may assume that n = 3. Then $I = R_1 \times \{0\} \times \{0\}$ is a weakly 1-absorbing primary ideal of *R*. However, for a nonzero $a \in R_1$, we have $(0,0,0) \neq (1,0,1)(1,0,1)(a,1,0) = (a,0,0) \in I$, but neither $(1,0,1)(1,0,1) \in I$ nor $(a,1,0) \in \sqrt{I}$, a contradiction. Thus n = 2. Assume that R_1 is not a semifield. Then there exists a nonzero proper ideal *A* of R_1 . Hence $I = A \times \{0\}$ is a weakly 1-absorbing primary ideal of *R*. However, for a nonzero $a \in A$, we have $(0,0) \neq (1,0)(1,0)(a,1) = (a,0) \in I$, but neither $(1,0)(1,0) \neq (1,0)(1,0)(a,1) = (a,0) \in I$, but neither $(1,0)(1,0) \in I$ nor $(a,1) \in \sqrt{I}$, a contradiction. And, assume that R_2 is not a semifield. Then there exists a nonzero proper ideal *B* of R_2 . Hence $I = B \times \{0\}$ is a weakly 1-absorbing primary ideal of *R*. However, for a nonzero $b \in B$, we have $(0,0) \neq (1,0)(1,0)(b,1) = (a,0) \in I$, but neither $(1,0)(1,0) \in I$ nor $(a,1) \in \sqrt{I}$, a contradiction. And, assume that R_2 is not a semifield. Then there exists a nonzero proper ideal *B* of R_2 . Hence $I = B \times \{0\}$ is a weakly 1-absorbing primary ideal of *R*. However, for a nonzero $b \in B$, we have $(0,0) \neq (1,0)(1,0)(b,1) = (a,0) \in I$, but neither $(1,0)(1,0) \in I$ nor $(a,1) \in \sqrt{I}$, a contradiction. Hence n = 2 and R_1, R_2 are semifields.

 $(2) \Rightarrow (1)$. Suppose that n = 2 and R_1, R_2 are semifields. Then *R* has exactly three proper ideals, i.e., $\{(0,0)\}, \{0\} \times R_2$ and $R_1 \times \{0\}$ are the only proper ideals of *R*. Hence it is clear that each proper ideal of *R* is a weakly 1-absorbing primary ideal of *R*. \Box

Since every semiring that is a product of a finite number of fields is a von-Neumann regular semiring, in light of Theorem 4 and Theorem 14 we have the following result.

Corollary 4.3. Let $R_1, ..., R_n$ be commutative semirings with $1 \neq 0$ for some $2 \leq n < \infty$, and let $R = R_1 \times \times R_n$. Then the following statements are equivalent.

- 1. Every proper ideal of *R* is a weakly 1-absorbing primary ideal of *R*.
- 2. Every proper ideal of *R* is a weakly primary ideal of *R*.
- 3. n = 2 and R_1, R_2 are semifields, and hence $R = R_1 \times R_2$ is a von-Neumann regular semiring.

Theorem 4.4. Let R_1 and R_2 be commutative semirings and $f : R_1 \to R_2$ be a semiring homomorphism with f(1) = 1. Then the following statements hold:

- 1. Suppose that f is a monomorphism and f(a) is a nonunit element of R_2 for every nonunit element $a \in R_1$ and J is a weakly 1-absorbing primary ideal of R_2 . Then $f^{(-1)}(J)$ is a weakly 1-absorbing primary ideal of R_1 .
- 2. If f is an epimorphism and I is a weakly 1-absorbing primary ideal of R_1 such that $Ker(f) \subseteq I$, then f(I) is a weakly 1-absorbing primary ideal of R_2 .

Proof. (1) Let $0 \neq abc \in f^{(-1)}(J)$ for some nonunit elements $a, b, c \in R$. Since Ker(f) = 0, we have $0 \neq f(abc) = f(a)f(b)f(c) \in J$, where f(a), f(b), f(c) are nonunit elements of R_2 by hypothesis. Hence $f(a)f(b) \in J$ or $f(c) \in \sqrt{J}$. Hence $ab \in f^{(-1)}(J)$ or $c \in \sqrt{(f^{(-1)}(J))} = f^{(-1)}(\sqrt{J})$. Thus $f^{(-1)}(J)$ is a weakly 1-absorbing primary ideal of R_1 .

Let $0 \neq xyz \in f(I)$ for some nonunit elements $x, y, z \in R$. Since f is onto, there exists nonunit elements $a, b, c \in I$ such that x = f(a), y = f(b), z = f(c). Then $f(abc) = f(a)f(b)f(c) = xyz \in f(I)$. Since $Ker(f) \subseteq I$, we have $0 \neq abc \in I$. It follows $ab \in I$ or $c \in \sqrt{I}$. Thus $xy \in f(I)$ or $z \in f(\sqrt{I})$. Since f is onto and $Ker(f) \subseteq I$, we have $f(\sqrt{I}) = \sqrt{(f(I))}$. Thus we are done.

Example 4.5. Let A = K[x,y], where K is a semifield, M = (x,y)A, and $B = A_M$. Note that B is a quasilocal semiring with maximal ideal M_M . Then $I = xM_M = (x^2, xy)B$ is a 1-absorbing primary ideal of B and $\sqrt{I} = xB$. However $xy \in I$, but neither $x \in I$ nor $y \in \sqrt{I}$. Thus I is not a primary ideal of B. Let $f : B \times B \to B$ such that f(x,y) = x. Then f is a semiring homomorphism from $B \times B$ onto B such that f(1,1) = 1. However, (1,0) is a nonunit element of $B \times B$ and f(1,0) = 1 is a unit of B. Thus f does not satisfy the hypothesis of 4.4. Now $f^{(-1)}(I) = I \times B$ is not a weakly 1-absorbing ideal of $B \times B$ by 4.1.

Theorem 4.6. Let I be a proper ideal of R. Then the following statements hold.

- 1. If J is a proper ideal of a semiring R with $J \subseteq I$ and I is a weakly 1-absorbing primary ideal of R, then I/J is a weakly 1-absorbing primary ideal of R/J.
- 2. If J is a proper ideal of a semiring R with $J \subseteq I$ such that $U(R/J) = \{a+J \mid a \in U(R)\}$. If J is a 1-absorbing primary ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a 1-absorbing primary ideal of R.
- 3. If {0} is a 1-absorbing primary ideal of R and I is a weakly 1-absorbing primary ideal of R, then I is a 1-absorbing primary ideal of R.
- 4. If *J* is a proper ideal of a ring *R* with $J \subseteq I$ such that $U(R/J) = \{a+J \mid a \in U(R)\}$. If *J* is a weakly 1-absorbing primary ideal of *R* and *I*/*J* is a weakly 1-absorbing primary ideal of *R*/*J*, then *I* is a weakly 1-absorbing primary ideal of *R*.
- *Proof.* 1. Consider the natural epimorphism $\pi : R \to R/J$. Then $\pi(I) = I/J$. So we are done by Theorem 1.
 - 2. Suppose that $abc \in I$ for some nonunit elements $a, b, c \in R$. If $abc \in J$, then $ab \in J \subseteq I$ or $c \in \sqrt{J} \subseteq \sqrt{I}$ as J is a 1-absorbing primary ideal of R. Now assume that abc not belong to J. Then $J \neq (a+J)(b+J)(c+J) \in I/J$, where a+J, b+J, c+J are nonunit elements of R/J by hypothesis. Thus $(a+J)(b+J) \in I/J$ or $(c+J) \in \sqrt{(I/J)}$. Hence $ab \in I$ or $c \in \sqrt{I}$.
 - 3. The proof follows from (2).
 - 4. Suppose that 0 ≠ abc ∈ I for some nonunit elements a,b,c ∈ R. If abc ∈ J, then ab ∈ J ⊆ I or c ∈ √J ⊆ √I as J is a weakly 1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J ≠ (a+J)(b+J)(c+J) ∈ I/J, where a+J,b+J,c+J are nonunit elements of R/J by hypothesis. Thus (a+J)(b+J) ∈ I/J or (c+J) ∈ √(I/J). Hence ab ∈ I or c ∈ √I.

Proposition 4.7. 1. Let R_1 and R_2 be commutative semirings and $f : R_1 \to R_2$ be a ring homomorphism with f(1) = 1 such that R_2 is not a quasilocal semiring, then f(a) is a nonunit element of R_2 for every nonunit element $a \in R_1$ and J is a 1-absorbing primary ideal of R_2 . Then $f^{(-1)}(J)$ is a 1-absorbing primary ideal of R_1 .

- 2. Let I and J be proper ideals of a semiring R with $I \subseteq J$. If J is a 1-absorbing primary ideal of R, then J/I is a 1-absorbing primary ideal of R/I. Furthermore, assume that if R/I is a quasilocal semiring, then $U(R/I) = a + I | a \in U(R)$. If J/I is a 1-absorbing primary ideal of R/I, then J is a 1-absorbing primary ideal of R.
- 3. Let R be a semiring and A = R[x]. Then a proper ideal I of R is a 1-absorbing primary ideal of R if and only if (I[x] + xA)/xA is a 1-absorbing primary ideal of A/xA, since R is semiring-isomorphic to A/xA.
- **Theorem 4.8.** Let S be a multiplicatively closed subset of R, and I a proper ideal of R. Then the following statements hold.
 - 1. If *I* is a weakly 1-absorbing primary ideal of *R* such that $I \cap S = \phi$, then $S^{(-1)}I$ is a weakly 1-absorbing primary ideal of $S^{(-1)}R$.
 - 2. If $S^{(-1)}I$ is a weakly 1-absorbing primary ideal of $S^{(-1)}R$ such that $S \cap Z(R) = \phi$ and $S \cap Z_I(R) = \phi$, then I is a weakly 1-absorbing primary ideal of R.
- *Proof.* 1. Suppose that $0 \neq \frac{a}{s_1} \frac{b}{s_2} \frac{c}{s_3} \in S^{(-1)}I$ for some nonunit $a, b, c \in R \setminus S$, $s_1, s_2, s_3 \in S$ and $\frac{a}{s_1} \frac{b}{s_2}$ not belong to $S^{(-1)}I$. Then $0 \neq uabc \in I$ for some $u \in S$. Since *I* is weakly 1-absorbing primary and *uab* not belong to *I*, we conclude $c \in \sqrt{I}$. Thus $\frac{c}{s_3} \in S^{(-1)}\sqrt{I} = \sqrt{(S^{(-1)}I)}$. Thus $S^{(-1)}I$ is a weakly 1-absorbing primary ideal of $S^{(-1)}R$.
 - 2. Suppose that $0 \neq abc \in I$ for some nonunit elements $a, b, c \in R$. Hence $0 \neq \frac{abc}{1} = \frac{a}{1}\frac{b}{1}\frac{c}{1} \in S^{(-1)}I$ as $S \cap Z(R) = \phi$. Since $S^{(-1)}I$ is weakly 1-absorbing primary, we have either $\frac{a}{1}\frac{b}{1} \in S^{(-1)}I$, or $\frac{c}{1} \in \sqrt{S^{(-1)}I} = S^{-1}\sqrt{I}$. If $\frac{a}{1}\frac{b}{1} \in S^{(-1)}I$, then $uab \in I$ for some $u \in S$. Since $S \cap Z_I(R) = \phi$, we conclude that $ab \in I$. If $\frac{c}{1} \in S^{-1}\sqrt{I}$, then $(tc)^n \in I$ for some positive integer $n \ge 1$ and $t \in S$. Since t^n not belong to $Z_I(R)$, we have $c^n \in I$, i.e., $c \in \sqrt{I}$. Thus I is a weakly 1-absorbing primary ideal of R.

Definition 4.9. Let *I* be a weakly 1-absorbing primary ideal of *R* and $I_1I_2I_3 \subseteq I$ for some proper ideals I_1, I_2, I_3 of *R*. If (a, b, c) is not 1-triple zero of *I* for every $a \in I_1$, $b \in I_2$, $c \in I_3$, then we call *I* a free 1-triple zero with respect to $I_1I_2I_3$.

Theorem 4.10. Let *I* be a weakly 1-absorbing primary ideal of *R* and *J* be a proper ideal of *R* with $abJ \subseteq I$ for some $a, b \in R$. If (a, b, j) is not a 1-triple zero of *I* for all $j \in J$ and ab not belong to *I*, then $J \subseteq \sqrt{I}$.

Proof. Suppose that $J \nsubseteq \sqrt{I}$. Then there exists $c \in J \setminus \sqrt{I}$. Then $abc \in abJ \subseteq I$. If $abc \neq 0$, then it contradicts our assumption that *ab* not belong to *I* and *c* not belong to \sqrt{I} . Thus abc = 0. Since (a, b, c) is not a 1-triple zero of *I* and *ab* not belong to *I*, we conclude $c \in \sqrt{I}$, a contradiction. Thus $J \subseteq \sqrt{I}$.

Theorem 4.11. Let *I* be a weakly 1-absorbing primary ideal of *R* and $0 \neq I_1I_2I_3 \subseteq I$ for some proper ideals I_1, I_2, I_3 of *R*. If *I* is free 1-triple zero with respect to $I_1I_2I_3$, then $I_1I_2 \subseteq I$ or $I_3 \subseteq \sqrt{I}$.

Proof. Suppose that *I* is free 1-triple zero with respect to $I_1I_2I_3$, and $0 \neq I_1I_2I_3 \subseteq I$. Assume that $I_1I_2 \nsubseteq I$. Then there exist $a \in I_1, b \in I_2$ such that *ab* not belong to *I*. Since *I* is a free 1-triple zero with respect to $I_1I_2I_3$, we conclude that (a, b, c) is not a 1-triple zero of *I* for all $c \in I_3$. Thus $I_3 \subseteq \sqrt{I}$ by Theorem 4.10.

Acknowledgements

The authors would like to thank the referees for their valuable comments.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] D. D. Anderson, Some remarks on multiplication ideals, Math. Japon, 25 (1980), 463-469.
- ^[2] D. D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math., 229 (4), 831-840.
- ^[3] R. E. Atani, *The ideal theory in quotients of commutative semirings*, Glas. Math., 42 (2007), 301-308.
- ^[4] S. E. Atani, R. E. Atani, *Ideal theory in commutative semirings*, Bu. Acad. Stiinte Repub. Mold. Mat., 2 (2009), 14-23.
- ^[5] S. E. Atani, R. E. Atani, Some remarks on partitioning semirings, An. St. Univ. Ovidius Constants, 18 (2010), 49-62.
- ^[6] M. F. Atiyah, I. G. Mac Donalel, An Intoduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
- [7] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75(3) (2007), 417-429.
- [8] A. Badawi, E. Y. Celikel, On weakly 1-absorbing primary ideals of commutative rings, Algebra Colloq., 29(2), 189-202.
- ^[9] A. Badawi, E. Y. Celikel, On 1-absorbing primary ideals of a commutative ring, J. Algebra Its Appl., **19**(6), 050111.
- [10] S. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J., 52 (2012), 91-97.
- ^[11] J. N. Ghaudhari, V. Gupta, Prime ideals in semirings, Bull. Malaysian Math. Sci. Soc., 34 (2011), 415-421.
- ^[12] J. N. Ghaudhari, 2-absorbing ideals in semirings, Int. J. Algebra, 6 (2012), 265-270.
- ^[13] J. S. Golan, *Semirings and Their Applications*, Kluwer Acadimic Publisher's, Dordrecht, 1999.
- ^[14] M. Henricksen, *Ideals in semirings with commutative addition*, American Mathematics Society, 6 (1958), 3-12.
- [15] P. Kumar. M. K. Dubey, P. Sarohe, On 2-absorbing primary ideals in commutative semirings, Eur. J. Pure Appl. Math., 9 (2016), 186-195.
- ^[16] P. Nasehpour, Some remarks on semirings and their ideals, Asian-Eur. J. Math., 12(7), 2050002.
- ^[17] R. J. Nezhad, A note on divided ideals, Pure Math. A, 22, 61-64.
- [18] L. Sawalmeh, M. Saleh, On 2-absorbing ideals of commutative semirings, J. Algebra Its Appl., To appear.
- ^[19] D. A. Smith, On semigroups, semirings and rings of quotients, J. Sci. Hirshimo Univ. Ser. Math., 2 (1966), 123-130.
- [20] H. S. Vandiver, *Note on a simple of algebra in which the cancellation law of addition dose not hold*, Bull. Amer. Math. Soc., 40, 914-920.
- ^[21] O. Zariski, P. Samuel, *Commutative Algebra*, V.I. Princeton, 1958.