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Research Article

Abstract − Uncertain data is a challenge to decision-making (DM) problems. Multi-criteria
group decision-making (MCGDM) problems are among these problems that have received
much attention. MCGDM is difficult because the existing alternatives frequently conflict with
each other. In this article, we suggest a novel hybrid model for an MCGDM approach based on
modified rough bipolar soft sets (MRBSs) using a well-known method of technique for order
of preference by similarity to ideal solution (TOPSIS), which combines MRBSs theory and
TOPSIS for the prioritization of alternatives in an uncertain environment. In this technique,
we first introduce an aggregated parameter matrix with the help of modified bipolar soft
lower and upper matrices to identify the positive and negative ideal solutions. After that, we
define the separation measurements of these two solutions and compute relative closeness to
choose the best alternative. Next, an application of the proposed technique in the MCGDM
problem is introduced. Afterward, an algorithm for this application is developed, which is
illustrated by a case study. The application demonstrates the usefulness and efficiency of the
proposal. Compared to some existing studies, we additionally present several merits of our
proposed technique. Eventually, the paper handles whether additional studies on these topics
are needed.

Keywords Bipolar soft sets, bipolar soft rough sets, MRBSs, TOPSIS, MCGDM

Mathematics Subject Classification (2020) 03B52, 68T27

1. Introduction

Various issues in social sciences, engineering, medical sciences, economics, and other domains include
uncertainty. It is impossible to address these issues using traditional mathematical approaches. The
traditional mathematical model is a rational model of decision-making (DM) that depends on the
hypothesis that decision-makers have access to complete knowledge and can make the best decision by
weighing every alternative. Due to this, the mathematical model is highly complicated, and an accurate
solution cannot be obtained. To overcome this trouble, scholars are endeavoring to discover suitable
methodologies and mathematical theories to address data uncertainty. These theories include fuzzy
sets (FSs), rough set (RS) theory, vague set theory, automata theory, etc., but they have only partially
been successful in solving the problems. These theories diminished the space between traditional
mathematical concepts and ambiguous real-world data.

Zadeh [1] developed the FS theory to characterize fuzzy data mathematically. But, in FSs, finding
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the membership function might sometimes be challenging. Consequently, Molodtsov [2] developed
the soft set (SS) concept as a new strategy for modeling uncertainty, liberated from this trouble.
SS theory needs an approximate description of an object as its initial viewpoint. The selection of
suitable parameters like numbers, functions, words, etc., makes SS theory very advantageous and
straightforward to use in reality. Maji et al. [3] established several operations on SS. Ali et al. [4]
offered a variety of novel operations on SS. Çağman et al. [5] projected the idea of fuzzy SS theory.
Al-Shami and Mhemdi [6] offered to belong and non-belong relations on double-framed SS.

The RS theory [7, 8] is an effective mathematical strategy for handling uncertainties. In RSs, uncer-
tainty is characterized by a set’s boundary region. Pawlak examined how close a bunch of objects are
to the information associated with them using their lower and upper approximations.

The connections between SS theory, RSs, and FSs were provided by Feng et al. [9,10], leading to three
kinds of hybrid models: rough SS (RSS), soft RSs (SRSs), and soft-rough FSs (SRFSs). Shabir et
al. [11] redefined a version of an SRS called a modified SRS (MSRS). Shaheen et al. [12] established
the concept of dominance-based SRSs.

Bipolarity is critical in various kinds of data when establishing mathematical modeling for specific
problems. Bipolarity takes both the positive and negative characteristics of the data into account.
The positive data delivers what is conceivable, whereas the negative data emphasizes the impossibility.
The idea behind the existence of bipolar information is that a large variety of human DM relies upon
bipolar judgmental cognition.

Shabir and Naz [13] put the groundwork for bipolar SSs (BSSs) due to the significance of bipolarity.
Following this research, the BSS theory gained much fame among scholars. Karaaslan and Karataş [14]
reformulate BSS with a novel approximation, offering a prospect to explore the topological structures
of BSS. Mahmood [15] redesigned a form of BSS, known as T-BSS, and employed this concept for
DM problems. Moreover, Naz and Shabir [16] established the idea of fuzzy BSS and investigated
their algebraic structures. Al-Shami [17] came up with the idea of bipolar soft sets and the relations
between them and ordinary points, along with applications.

Karaaslan and Çağman [18] originally suggested bipolar SRSs (BSRSs) tackle the roughness of BSS,
which was then changed and improved by establishing the conception of MRBSs by Shabir and Gul [19].
Gul et al. [20] established a new strategy of the roughness for BSS with applications in MCGDM. Gul
and Shabir [21] pioneered the concept (α, β)-bipolar fuzzified RS using bipolar fuzzy tolerance relation.

In decision analysis, several multi-criteria DM (MCDM) frameworks have been carried out in the
literature. TOPSIS is one of the classical MCDM methods offered by Hwang and Yoon [22] in 1981.
The fundamental notion of TOPSIS is to measure the distance between every alternative and ideal
solution. The optimal alternative should be the one that has to have the shortest distance from
the positive ideal solution (PIS) and the farthest distance from the negative ideal solution (NIS).
PIS addresses the scenario for the best possible decision, whereas NIS shows the scenario for the
worst. Chen [23] generalized the TOPSIS approach for taking the MCDM problem in a fuzzy context.
Afterward, Chen and Tsao [24] proposed the interval-valued fuzzy TOPSIS. Boran et al. [25] fostered
the TOPSIS for MCDM problems based on intuitionistic FS. Ali et al. [26] offered the TOPSIS model
for probabilistic interval-valued hesitant fuzzy sets with application to healthcare facilities in public
hospitals. Eraslan [27] gave a DM method using TOPSIS on SS theory. Eraslan and Karaaslan [28]
gave a group DM method based on TOPSIS under a fuzzy SS environment.

Shabir et al. [29] proposed an algebraic approach to N-SS with application in DM via TOPSIS. Akram
et al. [30] generalize the TOPSIS and ELECTRE-I methods in a bipolar fuzzy framework. Akram
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and Adeel [31] extended the TOPSIS for MCGDM via an interval-valued hesitant fuzzy N-SS context.
Xu and Zhang [32] constructed a strategy based on maximizing deviation and the TOPSIS to explain
multi-attribute DM problems. In 2014, Zhang and Xu [33] extended the TOPSIS in MCDM using
Pythagorean FSs. Mousavi-Nasab and Sotoudeh-Anvari [34] gave an MCDM-based method using
TOPSIS, COPRAS, and DEA for material selection problems. Mahmood et al. [35] pioneered a novel
TOPSIS method based on lattice-ordered T-BSS with applications in DM.

Inspired by the previously mentioned earlier studies and the basic principle of MRBSs, we have
observed that the BSS can manage the bipolarity of the data concerning specific alternatives with
the assistance of two mappings. The positive side of the data is addressed by one mapping, whereas
the other mapping measures the negative side. Keeping in mind the relationship between RSs and
BSS, Karaaslan and Çağman [18] attempted to explore the roughness of BSS, which has certain
shortcomings. To overcome these shortcomings, Shabir and Gul [19] pioneered the idea of MRBSs.

Moreover, to per best of our knowledge, there does not exist any investigation on the appropriate
fusion of TOPSIS with MRBSs. This gap motivates the current research to propose a novel TOPSIS
approach using MRBSs and discuss their application in DM.

In a nutshell, to expand the theory of MRBSs, the primary goal of this study is to establish a novel
TOPSIS approach for MCGDM problems via the MRBSs environment. We introduce a DM algorithm
that determines the best and worst decision among some alternatives, with implementation on selecting
the optimal candidate for a particular post.

This article is structured as follows: Section 2 introduces basic notations related to RS, SS, BSS,
BSRS, and MRBSs. These notions will assist us in discussing our work and suffice the paper for the
reader. After this, we give the general procedure of the TOPSIS technique. Section 3 puts forward
the new TOPSIS-based strategy for addressing MCGDM problems using MRBSs. Section 4 states our
suggested algorithm for choosing the optimal alternative, which we validate through a fully developed
case study in Section 5. Section 6 represents a comparative analysis between the proposed technique
and the other existing methods in solving MCGDM problems. Finally, Section 7 ends with an outline
of the current work and a few perspectives for the future.

2. Preliminaries

In this section, we recapitulate a few essential notions associated with the background of this study.
Throughout this article, unless stated otherwise, we will use 0 for an initial universe, A for the set of
all the parameters related to the objects in 0, and 20 for the power set of 0.

Definition 2.1. [7] Let ∅ ̸= 0 be a finite universe, and σ be an equivalence relation of 0×0. Then,
(0, σ) is stated to be an approximation space.

If ∅ ̸= Q ⊆ 0, then Q may or may not be expressed as a union of some equivalence classes of 0. If Q
is expressed as a union of some equivalence classes, then Q is said to be σ-definable; in any other case,
it is referred to as σ-undefinable. If Q is σ-undefinable, then the lower and upper approximations of
Q concerning σ are given as follows:

apr
σ
(Q) =

{
q ∈ 0 : [q]σ ⊆ Q

}
(1)

and
aprσ(Q) =

{
q ∈ 0 : [q]σ ∩ Q ≠ ∅

}
(2)

where
[q]σ =

{
r ∈ 0 : (q, r) ∈ σ

}



Journal of New Theory 42 (2023) 55-73 / A Hybridization of Modified Rough Bipolar Soft Sets and TOPSIS for MCGDM 58

The boundary region of the RS is characterized as:

Bndσ(Q) = aprσ(Q) − apr
σ
(Q)

From Equations (1) and (2) we can see that

i. An element q belongs to the lower approximation apr
σ
(Q) if all elements equivalent to q belong to

Q.

ii. An element q belongs to the upper approximation aprσ(Q) if at least one element equivalent to q

belongs to Q.

Let 0 be a non-void universe and A be a set of parameters. Then, an SS is defined through a set-valued
map, as described below.

Definition 2.2. [2] A pair (f̂ ,A) is called an SS over 0, where f̂ : A −→ 20 is a set-valued map.

In other words, an SS over 0 gives a parameterized collection of subsets of 0. An SS over 0 may also
be represented as:

(f̂ ,A) =
{(

℘, f̂(℘)
)

: ℘ ∈ A, f̂(℘) ∈ 20
}

A BSS is obtained through two set-valued maps by considering not only a set of parameters but also
an associated set of parameters with an opposite meaning known as “not set of parameters”.

Definition 2.3. [3] By a “NOT set of parameters” of A, we mean a set having the form Ã =
{¬℘ : ℘ ∈ A} where ¬℘ = not ℘, for all ℘ ∈ A.

Definition 2.4. [13] A triplet (f̂ , ĝ : A) is termed as a BSS over 0 where f̂ : A −→ 20 and
ĝ : Ã −→ 20 such that, for all ℘ ∈ A, f̂(℘) ∩ ĝ(¬℘) = ∅.

In other words, a BSS over 0 offers a couple of parameterized families of subsets of 0 and f̂(℘)∩ĝ(¬℘) =
∅, for all ℘ ∈ A, is used as a consistency constraint. A BSS might be characterized as:

(f̂ , ĝ : A) =
{(

℘, f̂(℘), ĝ(¬℘)
)

: ℘ ∈ A, ¬℘ ∈ Ã and f̂(℘) ∩ ĝ(¬℘) = ∅
}

After this, the collection of all the BSSs over 0 will be denoted by BSS0.

Definition 2.5. [18] Let (f̂ , ĝ : A) ∈ BSS0. Then, β =
〈
0, (f̂ , ĝ : A)

〉
is termed as a BSAs (bipolar

soft approximation space). For any Q ⊆ 0, the bipolar soft rough approximations based on β are
defined:

BSβ(Q) =
(
SβP (Q), SβN (Q)

)
and

BSβ(Q) =
(
SβP (Q), SβN (Q)

)
where

SβP (Q) =
{

q ∈ 0 : ∃ ℘ ∈ A,
[
q ∈ f̂(℘) ⊆ Q

]}
SβN (Q) =

{
q ∈ 0 : ∃ ¬℘ ∈ Ã,

[
q ∈ ĝ(¬℘), ĝ(¬℘) ∩ Qc ̸= ∅

]}
SβP (Q) =

{
q ∈ 0 : ∃ ℘ ∈ A,

[
q ∈ f̂(℘), f̂(℘) ∩ Q ≠ ∅

]}
and

SβN (Q) =
{

q ∈ 0 : ∃ ¬℘ ∈ Ã,
[
q ∈ ĝ(¬℘) ⊆ Qc]}

Moreover, if BSβ(Q) ̸= BSβ(Q), then Q is called a BSRS; else Q is called bipolar soft β-definable.
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The boundary region of a BSRS is described as:

BNDβ(Q) =
(
SβP (Q) \ SβP (Q), SβN (Q) \ SβN (Q)

)
BSRSs were originally initiated by Karaaslan and Çağman [18] to manage the roughness of BSSs,
which was subsequently altered and improved by Shabir and Gul [19] by launching the idea of MRBSs.
MRBSs are characterized as follows:

Definition 2.6. [19] Let (f̂ , ĝ : A) ∈ BSS0 such that f̂ : A −→ 20 and ĝ : Ã −→ 20. Construct two
different maps as follows:

Φ : 0 −→ 2A

q 7−→ Φ(q) =
{
℘ : q ∈ f̂(℘)

}
and

Ψ : 0 −→ 2Ã

q 7−→ Ψ(q) =
{
¬℘ : q ∈ ĝ(¬℘)

}
Then, Ω =

〈
0, (Φ, Ψ)

〉
is called a modified rough bipolar soft approximation space (MRBS-AS).

For any ∅ ̸= Q ⊆ 0, the lower modified bipolar pair (LMBP) and the upper modified bipolar pair
(UMBP) concerning Ω are defined in the following manner, respectively:

MBSΩ(Q) =
(
QΦ+ , QΨ−

)
and

MBSΩ(Q) =
(
QΦ+

, QΨ−)
where

QΦ+ =
{
p ∈ Q : Φ(p) ̸= Φ(r), for all r ∈ Qc}

QΦ+
=

{
p ∈ 0 : Φ(p) = Φ(r), for some r ∈ Q

}
QΨ− =

{
p ∈ 0 : Ψ(p) = Ψ(r), for some r ∈ Q

}
and

QΨ−
=

{
p ∈ Q : Ψ(p) ̸= Ψ(r), for all r ∈ Qc}

Here, Qc = 0 − Q. Generally, QΦ+ , QΦ+
, QΨ− , and QΨ−

will be called Φ-lower positive, Φ-upper
positive, Ψ-lower negative, and Ψ-upper negative MRBS-approximations of Q ⊆ 0, respectively. If
MBS
˜Ω

(Q) ̸= M̃BSΩ(Q), then Q is said to be an MRBSs; otherwise, Q is said to be MRBS-definable.

The corresponding positive, boundary, and negative regions under MRBSs are listed as follows:

PosΩ(Q) =
(
QΦ+ , QΨ−)

BndΩ(Q) =
(
QΦ+

\ QΦ+ , QΨ− \ QΨ−

)
and

NegΩ(Q) =
((

QΦ+)c
,
(
QΨ−

)c)

TOPSIS is one of the most frequently utilized techniques for MCDM because it ranks alternatives and
chooses optimal alternatives in the concept evaluation procedure using Euclidean distances. Suppose
that for any DM problem, there are n criteria and m alternatives. Then, a decision matrix is described
as D = [δij ]m×n where i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}, and δij demonstrates the preference value
of an alternative for design criteria.
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The procedure of TOPSIS described in [36] is as follows:

i. Construct the normalized decision matrix Dnor = [rij ]m×n where rij = δij√∑m
i=1 δ2

ij

and weighted

normalized decision matrix. Here, vij = ωjrij is a weighted normalized value where ωj is the weight
of a criteria.

ii. Evaluate the positive ideal solution (PIS) and negative ideal solution (NIS) as:

v+
i =

{( ∨
i

(vij) | j ∈ I
)
,
( ∧

i

(vij) | j ∈ J
)}

and
v−
i =

{( ∧
i

(vij) | j ∈ I
)
,
( ∨
i

(vij) | j ∈ J
)}

where I and J are related to the benefit and cost criterion, respectively.

iii. Determine the separation measure of each alternative from PIS and NIS by using n-dimensional
Euclidean distance:

δ+
i =

√√√√ n∑
j=1

(
vij − v+

i

)2
, i ∈ {1, 2, · · · , m}

and

δ−
i =

√√√√ n∑
j=1

(
vij − v−

i

)2
, i ∈ {1, 2, · · · , m}

iv. Evaluate the relative closeness coefficient of each alternative to the ideal solution, given as:

C∗
i = δ−

i

δ−
i + δ+

i

, i ∈ {1, 2, · · · , m}

v. Sort the alternative concerning the value of C∗
i . The optimal alternative is the object with the

highest value of C∗
i . That alternative would have the least distance from the PIS and the largest

distance from the NIS.

3. An Integrated Model of MCGDM using TOPSIS Technique and MRBSs

The MCGDM is one of the substantial components of modern decision theory. MCGDM aims to select
the optimal from finite alternatives by incorporating the evaluation information of various alternatives
acquired from a group of experts(decision-makers). It is instrumental in economic evaluation, clus-
tering analysis, site selection, medical diagnosis, etc. In MCGDM, the primary step is to consider
a finite number of alternatives in terms of multiple conflicting criteria based on the experts’ opin-
ions. Characterizing the evaluation information for several attributes is a significant problem in the
MCGDM. In real-life MCGDM problems, uncertainty is inevitable because of imprecise judgment by
decision-makers. TOPSIS is a practical and extensively used multi-criteria DM (MCDM) technique
for sorting alternatives and determining the optimal alternative in the concept evaluation procedure.
The aggregating function computed in TOPSIS indicates “closeness to ideal solution”. To make cri-
teria with the same units, TOPSIS employs vector normalization. The critical concept of TOPSIS is
that the alternative that has been selected as the optimal should have the smallest distance from the
PIS and the greatest from the NIS.

In this section, we utilize the TOPSIS technique for MCGDM based on the MRBSs. The systematic
procedure of the TOPSIS under the MRBSs is explained as follows:
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3.1. Description of Problem

In this subsection, we first give the essential explanation of the MCGDM problem under consideration.
Suppose that 0 = {µ1, µ2, . . . , µn} be the set consisting of n alternatives in which the best object is to
be selected and A = {℘1, ℘2, . . . , ℘m} be the set of parameters (criterion) of objects. Assume that we
have a group of independent experts G = {P1, P2, . . . , Pk} consisting of k decision-makers to evaluate
the objects in 0. Each expert needs to review all the objects of 0 and will be requested to only
choose “the optimal alternatives” as their evaluation result. Hence each expert’s primary evaluation
result is a subset of 0. For the sake of simplicity, we assume that the evaluations of these experts
in G are of the same importance. Let Q1, Q2, . . . , Qk are non-void subsets of 0, indicate primary
evaluations of experts P1, P2, . . . , Pk, about n alternatives concerning m parameters, respectively, and
B1, B2, . . . , Br ∈ BSS0 are the real results previously captured for the same problems in various lo-
cations or various periods. Specifically, we can take the MRBS-approximations of the expert Pi’s
primary evaluation result Qi concerning the MRBS-AS Ω =

〈
0, (Φ, Ψ)

〉
. The Φ-lower positive ap-

proximation QiΦ+ can be interpreted as the set consisting of the objects which are undoubtedly the
optimum candidates according to the expert Pi’s primary evaluation. Similarly, the Φ-upper positive
approximation Qi

Φ+
can be interpreted as the set consisting of the objects which are possibly the opti-

mum candidates according to the expert Pi’s primary evaluation. The Ψ-lower positive approximation
QiΨ− can be interpreted as the set consisting of the objects which are possibly the worst candidates
according to the expert Pi’s primary evaluation. Likewise, the Ψ-upper negative approximation Qi

Ψ−

can be interpreted as the set consisting of the objects which are surely the worst candidates according
to the expert Pi’s primary evaluation. Then, the DM for this MCGDM problem is: “how to resolve
differences of the evaluation conveyed by the individual experts to determine the object which is highly
favorable by the entire group of experts”.

3.2. Methodology

Here, we present the step-by-step mathematical formulation and process of the TOPSIS technique
under the framework of MRBSs for the MCGDM problem.

Definition 3.1. Let MBSBq
(Qj) =

(
QjΦ+

q
, QjΨ−

q

)
be the LMBP and MBSBq (Qj) =

(
Qj

Φ+
q , Qj

ψ−
q

)
be UMBP of Qj such that j ∈ {1, 2, · · · , k} concerning Bq = (f̂q, ĝq : A) ∈ BSS0, for q ∈ {1, 2, . . . , r}.
Then,

M =



〈
Q1Φ+

1
, Q1Ψ−

1

〉 〈
Q2Φ+

1
, Q2Ψ−

1

〉
· · ·

〈
QkΦ+

1
, QkΨ−

1

〉
〈
Q1Φ+

2
, Q1Ψ−

2

〉 〈
Q2Φ+

2
, Q2Ψ−

2

〉
· · ·

〈
QkΦ+

2
, QkΨ−

2

〉
...

... . . . ...〈
Q1Φ+

r
, Q1Ψ−

r

〉 〈
Q2Φ+

r
, Q2Ψ−

r

〉
· · ·

〈
QkΦ+

r
, QkΨ−

r

〉


r×k

and

M =



〈
Q1

Φ+
1 , Q1

Ψ−
1

〉 〈
Q2

Φ+
1 , Q2

Ψ−
1

〉
· · ·

〈
Qk

Φ+
1 , Qk

Ψ−
1

〉
〈
Q1

Φ+
2 , Q1

Ψ−
2

〉 〈
Q2

Φ+
2 , Q2

Ψ−
2

〉
· · ·

〈
Qk

Φ+
2 , Qk

Ψ−
2

〉
...

... . . . ...〈
Q1

Φ+
r , Q1

Ψ−
r

〉 〈
Q2

Φ+
r , Q2

Ψ−
r

〉
· · ·

〈
Qk

Φ+
r , Qk

Ψ−
r

〉


r×k

are stated to be modified bipolar soft lower and upper approximation matrices, respectively, where

QjΦ+
q

=
(
µ1jΦ+

q
, µ2jΦ+

q
, . . . , µnjΦ+

q

)



Journal of New Theory 42 (2023) 55-73 / A Hybridization of Modified Rough Bipolar Soft Sets and TOPSIS for MCGDM 62

QjΨ−
q

=
(
µ1jΨ−

q
, µ2jΨ−

q
, . . . , µnjΨ−

q

)
Qj

Φ+
q =

(
µ1j

Φ+
q , µ2j

Φ+
q , . . . , µnj

Φ+
q

)
and

Qj
Ψ−

q =
(
µ1j

Ψ−
q , µ2j

Ψ−
q , . . . , µnj

Ψ−
q

)
Here,

µijΦ+
q

=

 1, µi ∈ XjΦ+
q

0, µi /∈ XjΦ+
q

µijΨ−
q

=

 −1
2 , µi ∈ XjΨ−

q

0, µi /∈ XjΨ−
q

µij
Φ+

q =


1
2 , µi ∈ Xj

Φ+
q

0, µi /∈ Xj
Φ+

q

and

µij
Ψ−

q =

 −1, µi ∈ Xj
Ψ−

q

0, µi /∈ Xj
Ψ−

q

Remark 3.2. From Definition 3.1, we have

i. QjΦ+
q

and Qj
Φ+

q show the Φ-lower and Φ-upper positive MRBS-approximation of the evaluation

Qj ⊆ 0 by the jth expert related to qth actual result represented by the BSS Bq = (f̂q, ĝq : A).

ii. QjΨ−
q

and Qj
Ψ−

q show the Ψ-lower and Ψ-upper negative MRBS-approximation of the evaluation

Qj ⊆ 0 by the jth expert related to qth actual result represented by the BSS Bq = (f̂q, ĝq : A).

Definition 3.3. Let M and M be modified bipolar soft lower and upper approximation matrices
concerning MBSBq

(Qj) and MBSBq (Qj). Then,

A = M + M =
(
αij

)
r×k =


α11 α12 · · · α1k

α21 α22 · · · α2k
...

... . . . ...
αr1 αr2 · · · αrk


is regarded as aggregated parameter matrix, where every element has the form:

αij =
〈
αΦ+
ij , αΨ−

ij

〉
=

〈
XjΦ+

q
⊕ XjΦ+

q
, XjΨ−

q
⊕ XjΨ−

q

〉
such that αΦ+

ij = XjΦ+
q

⊕XjΦ+
q

=
(

. . . , µmjΦ+
i

+µmj
Φ+

i , . . .
)

and αΨ−
ij = XjΨ−

q
⊕XjΨ−

q
=

(
. . . , µmjΨ−

i

+

µmj
Ψ−

i , . . .
)
. Here, the operation ⊕ stands for the vector addition.

Definition 3.4. Assume that A is an aggregated parameter matrix. Then,

S =
(〈

sΦ+
ij , sΨ−

ij

〉)
r×k

is said to be a standardized decision matrix where sΦ+
ij =

( k∑
m=1

αΦ+
im

)
j

and sΨ−
ij =

( k∑
m=1

αΨ−
im

)
j

such

that i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , n}.
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Remark 3.5. From Definition 3.4, we have noticed that sΦ+
ij is the positive information for the jth

coordinate of the vector sum of the ith row of the matrix A and sΨ−
ij is the negative information for the

jth coordinate of the vector sum of the ith row of the matrix A. ın other words, each row in the matrix
S is a vector obtained by taking the column sum of A. Thus,

〈
sΦ+
ij , sΨ−

ij

〉
represents the standardized

MRBS-approximation of alternative ui under the scenario of jth real result previously acquired for the
same problems in various locations or various periods.

Definition 3.6. Let S be a standardized decision matrix. Then,

ℵ =
(
nij

)
r×k =


n11 n12 · · · n1k

n21 n22 · · · n2k
...

... . . . ...
nr1 nr2 · · · nrk


is called a normalized decision matrix where each entry is of the form nij =

〈
ηΦ+
ij , ηΨ−

ij

〉
with the

following conditions:

ηΦ+
ij =

sΦ+
ij√√√√ r∑

ℓ=1

(
sΦ+
ℓj

)2

and

ηΨ−
ij =

sΨ−
ij√√√√ r∑

ℓ=1

(
sΨ−
ℓj

)2

Definition 3.7. Let ℵ be a normalized decision matrix. Then,

D =
(
δij

)
r×k =


δ11 δ12 · · · δ1k

δ21 δ22 · · · δ2k
...

... . . . ...
δr1 δr2 · · · δrk


is called an average weighted normalized decision matrix where each entry is of the form:

δij =

∣∣∣ηΦ+
ij

∣∣∣ +
∣∣∣ηΨ−
ij

∣∣∣
2

Definition 3.8. Let D be an average weighted normalized decision matrix. Then, the expressions:

MPIS =
{
δΦ+

1 , δΦ+
2 , · · · , δΦ+

k

}
=

{
max(δij) : i ∈ Ir

}
such that Ir = {1, 2, · · · , r}

and

MNIS =
{
δΨ−

1 , δΨ−
2 , · · · , δΨ−

k

}
=

{
min(δij) : i ∈ Ir

}
such that Ir = {1, 2, · · · , r}

are called modified PIS and modified NIS, respectively.

Definition 3.9. Let MPIS and MNIS be positive and negative ideal solutions. Then, the separation
measurement of each alternative to MPIS is determined as follows:

SΦ+
i =

√√√√√ k∑
j=1

(
δij − δΦ+

j

)2
, i ∈ {1, 2, · · · , r}
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Similarly, the separation measurement of each alternative to MNIS is evaluated as follows:

SΨ−
i =

√√√√√ k∑
j=1

(
δij − δΨ−

j

)2
, i ∈ {1, 2, · · · , r}

Definition 3.10. Let SΦ+
i and SΨ−

i be separation measurements of MPIS and MNIS, respectively.
The relative closeness of alternatives to the ideal solution is defined as:

C
(Φ+,Ψ−)
i = SΨ−

i

SΨ−
i + SΦ+

i

, i ∈ {1, 2, · · · , r}

Here, 0 ≤ C
(Φ+,Ψ−)
i ≤ 1, for all i ∈ {1, 2, · · · , r}. The larger value of C

(Φ+,Ψ−)
i corresponds to the

most desirable alternative. It has the least distance from the MPIS and the highest distance from the
MNIS.

4. An Algorithm for the Proposed MCGDM Problem

In this section, we present an algorithm for the developed TOPSIS-based MCGDM problem considered
in Section 3. The related steps are outlined as follows:

Step 1. Take primary evaluations Qi of experts Pi such that i ∈ {1, 2, · · · , k}.

Step 2. Construct B1, B2, . . . , Br using the real results.

Step 3. Determine MBSBq
(Qj) and MBSBq (Qj), for j ∈ {1, 2, · · · , k} and q ∈ {1, 2, · · · , r}, from

Definition 2.6.

Step 4. Construct M and M according to Definition 3.1.

Step 5. Construct the aggregated parameter matrix from Definition 3.3.

Step 6. Compute the standardized decision matrix using Definition 3.4.

Step 7. Compute the normalized decision matrix according to Definition 3.6.

Step 8. Construct the average weighted normalized decision matrix using Definition 3.7.

Step 9. Determine the MPIS and the MNIS using Definition 3.8.

Step 10. According to Definition 3.9, calculate separation measurements of MPIS and MNIS for
every alternative.

Step 11. Determine relative closeness of alternatives to ideal solutions using Definition 3.10.

Step 12. Ranking the preference order.

The flowchart of the above algorithm is displayed in Figure 1.
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Figure 1. Flowchart of TOPSIS using MRBSs

5. Case Study

In this section, we discuss a design example of the MCGDM problem in MRBSs to illustrate the
potential of the above-formulated TOPSIS method.

Example 5.1. Due to globalization’s growing competition and mechanical upgrades, global markets
are forcing companies to deliver top-quality things and services. This must be achieved through
the participation of suitable employees. Employee selection is a procedure selection of people with
the essential capabilities to perform a specific job at best. It chooses the information nature of
employees and performs a crucial role in personnel management. Growing rivalry in worldwide markets
encourages organizations to put greater emphasize on the recruitment process. Several companies
determine the best job-hunter using rigorous and expensive identification methodologies. A candidate
may be judged by various parameters such as managerial skills, ability to work under pressure, fluency
in English, etc. It is wise to consult experts to accurately judge the candidates based on these
parameters.



Journal of New Theory 42 (2023) 55-73 / A Hybridization of Modified Rough Bipolar Soft Sets and TOPSIS for MCGDM 66

Assume that a production corporation wants to hire a marketing manager for a vacant post. Let
0 = {µ1, µ2, µ3, µ4, µ5} be the set of five candidates who might fit the marketing manager position
at the production company. A panel of experts G = {P1, P2, P3} is set up to hire the most suitable
candidate for this job. The panel will evaluate the candidates according to the set of parameters
A = {℘1, ℘2, ℘3} such that ℘1 = managerial skills, ℘2 = ability to work under pressure, and ℘3 =
fluency in English. The following calculations are performed to solve the MCGDM problem using the
proposed methodology.

Step 1. The panel of experts G = {P1, P2, P3} gives their primary evaluations for the candidates as:

Q1 = {µ1, µ2, µ5}, Q2 = {µ1, µ3, µ5}, and Q3 = {µ2, µ4, µ5}

Step 2. Real results in three various times and places are displayed as BSSs B1 = (f̂1, ĝ1 : A),
B2 = (f̂2, ĝ2 : A), and B3 = (f̂3, ĝ3 : A) as follows:

f̂1 : A −→ 20 ĝ1 : Ã −→ 20

℘ 7−→ f̂1(℘) =


{µ1}, ℘ = ℘1

{µ1, µ5}, ℘ = ℘2

{µ4, µ5}, ℘ = ℘3

¬℘ 7−→ ĝ1(¬℘) =


{µ3, µ5}, ¬℘ = ¬℘1

{µ3}, ¬℘ = ¬℘2

{µ1, µ3}, ¬℘ = ¬℘3

f̂2 : A −→ 20 ĝ2 : Ã −→ 20

℘ 7−→ f̂2(℘) =


{µ2}, ℘ = ℘1

{µ2, µ4}, ℘ = ℘2

{µ3, µ4}, ℘ = ℘3

¬℘ 7−→ ĝ2(¬℘) =


{µ1, µ4}, ¬℘ = ¬℘1

{µ5}, ¬℘ = ¬℘2

{µ1, µ5}, ¬℘ = ¬℘3

and

f̂3 : A −→ 20 ĝ3 : Ã −→ 20

℘ 7−→ f̂3(℘) =


{µ3, µ5}, ℘ = ℘1

{µ2}, ℘ = ℘2

{µ2, µ5}, ℘ = ℘3

¬℘ 7−→ ĝ3(℘) =


{µ1, µ2}, ¬℘ = ¬℘1

{µ4}, ¬℘ = ¬℘2

{µ1, µ3}, ¬℘ = ¬℘3

Step 3. Using Definition 2.6, the LMBP and the UMBP for Q1, Q2, and Q3 concerning B1, B2, and
B3 are as follows:

MBSB1(Q1) =
(
{µ1, µ5}, {µ1, µ2, µ4, µ5}

)
MBSB1(Q1) =

(
{µ1, µ2, µ3, µ5}, {µ1, µ5}

)
MBSB1(Q2) =

(
{µ1, µ5}, {µ1, µ3, µ5}

)
MBSB1(Q2) =

(
{µ1, µ2, µ3, µ5}, {µ1, µ3, µ5}

)
MBSB1(Q3) =

(
{µ4, µ5}, {µ2, µ4, µ5}

)
MBSB1(Q3) =

(
{µ2, µ3, µ4, µ5}, {µ2, µ4, µ5}

)
MBSB2(Q1) =

(
{µ1, µ2, µ5}, {µ1, µ5}

)
MBSB2(Q1) =

(
{µ1, µ2, µ5}, {µ1, µ2, µ3, µ5}

)
MBSB2(Q2) =

(
{µ1, µ3, µ5}, {µ1, µ2, µ3, µ5}

)
MBSB2(Q2) =

(
{µ1, µ3, µ5}, {µ1, µ5}

)
MBSB2(Q3) =

(
{µ2, µ4}, {µ2, µ3, µ4, µ5}

)
MBSB2(Q3) =

(
{µ1, µ2, µ4, µ5}, {µ4, µ5}

)
and

MBSB3(Q1) =
(
{µ2, µ5}, {µ2, µ4, µ5}

)
MBSB3(Q1) =

(
{µ1, µ2, µ4, µ5}, {µ2, µ4, µ5}

)
MBSB3(Q2) =

(
{µ3, µ5}, {µ1, µ3, µ5}

)
MBSB3(Q2) =

(
{µ1, µ3, µ4, µ5}, {µ1, µ3, µ5}

)
MBSB3(Q3) =

(
{µ2, µ5}, {µ2, µ4, µ5}

)
MBSB3(Q3) =

(
{µ1, µ2, µ4, µ5}, {µ2, µ4, µ5}

)
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Step 4. Using Definition 3.1, the modified bipolar soft lower upper approximation matrices are ob-
tained as:

M =


〈

(1, 0, 0, 0, 1), (−
1
2
,−

1
2
, 0,−

1
2
,−

1
2

)
〉 〈

(1, 0, 0, 0, 1), (−
1
2
, 0,−

1
2
, 0,−

1
2

)
〉 〈

(0, 0, 0, 1, 1), (0,−
1
2
, 0,−

1
2
,−

1
2

)
〉

〈
(1, 1, 0, 0, 1), (−

1
2
, 0, 0, 0,−

1
2

)
〉 〈

(1, 0, 1, 0, 1), (−
1
2
,−

1
2
,−

1
2
, 0,−

1
2

)
〉 〈

(0, 1, 0, 1, 0), (0,−
1
2
,−

1
2
,−

1
2
,−

1
2

)
〉

〈
(0, 1, 0, 0, 1), (0,−

1
2
, 0,−

1
2
,−

1
2

)
〉 〈

(0, 0, 1, 0, 1), (−
1
2
, 0,−

1
2
, 0,−

1
2

)
〉 〈

(0, 1, 0, 0, 1), (0,−
1
2
, 0,−

1
2
,−

1
2

)
〉


and

M =


〈

(
1
2
,

1
2
,

1
2
, 0,

1
2

), (−1, 0, 0, 0,−1)
〉 〈

(
1
2
,

1
2
,

1
2
, 0,

1
2

), (−1, 0,−1, 0,−1)
〉 〈

(0,
1
2
,

1
2
,

1
2
,

1
2

), (0,−1, 0,−1,−1)
〉

〈
(

1
2
,

1
2
, 0, 0,

1
2

), (−1,−1,−1, 0,−1)
〉 〈

(
1
2
, 0,

1
2
, 0,

1
2

), (−1, 0, 0, 0,−1)
〉 〈

(
1
2
,

1
2
, 0,

1
2
,

1
2

), (0, 0, 0,−1,−1)
〉

〈
(

1
2
,

1
2
, 0,

1
2
,

1
2

), (0,−1, 0,−1,−1)
〉 〈

(
1
2
, 0,

1
2
,

1
2
,

1
2

), (−1, 0,−1, 0,−1)
〉 〈

(
1
2
,

1
2
, 0,

1
2
,

1
2

), (0,−1, 0,−1,−1)
〉


Step 5. According to Definition 3.3, the aggregated parameter matrix is constructed as:

A=


〈

(1.5, 0.5, 0.5, 0, 1.5), (−1.5, −0.5, 0, −0.5, −1.5)
〉 〈

(1.5, 0.5, 0.5, 0, 1.5), (−1.5, 0, −1.5, 0, −1.5)
〉 〈

(0, 0.5, 0.5, 1.5, 1.5), (0, −1.5, 0, −1.5, −1.5)
〉〈

(1.5, 1.5, 0, 0, 1.5), (−1.5, −1, −1, 0, −1.5)
〉 〈

(1.5, 0, 1.5, 0, 1.5), (−1.5, −0.5, −0.5, 0, −1.5)
〉 〈

(0.5, 1.5, 0, 1.5, 0.5), (0, −0.5, −0.5, −1.5, −1.5)
〉〈

(0.5, 1.5, 0, 0.5, 1.5), (0, −1.5, 0, −1.5, −1.5)
〉 〈

(0.5, 0, 1.5, 0.5, 1.5), (−1.5, 0, −1.5, 0, −1.5)
〉 〈

(0.5, 1.5, 0, 0.5, 1.5), (0, −1.5, 0, −1.5, −1.5)
〉


Step 6. Compute standardized decision matrix using Definition 3.4, we have

S =



〈
3, −3

〉 〈
1.5, −2

〉 〈
1.5, −1.5

〉 〈
1.5, −2

〉 〈
4.5, −4.5

〉
〈
3.5, −3

〉 〈
3, −2

〉 〈
1.5, −2

〉 〈
1.5, −1.5

〉 〈
3.5, −4.5

〉
〈
1.5, −1.5

〉 〈
3, −3

〉 〈
1.5, −1.5

〉 〈
1.5, −3

〉 〈
4.5, −4.5

〉


Step 7. According to Definition 3.6, the normalized decision matrix can be determined as:

ℵ =



〈
0.619, −0.666

〉 〈
0.333, −0.485

〉 〈
0.577, −0.514

〉 〈
0.577, −0.512

〉 〈
0.620, −0.577

〉
〈
0.722, −0.666

〉 〈
0.666, −0.485

〉 〈
0.577, −0.686

〉 〈
0.577, −0.384

〉 〈
0.482, −0.577

〉
〈
0.309, −0.333

〉 〈
0.666, −0.728

〉 〈
0.577, −0.514

〉 〈
0.577, −0.768

〉 〈
0.620, −0.577

〉


Step 8. Using Definition 3.7, the weighted normalized decision matrix is obtained as follows:

D =


0.643 0.818 0.546 0.545 0.599

0.694 0.576 0.632 0.481 0.530

0.321 0.697 0.546 0.673 0.599


Step 9. According to Definition 3.8, MPIS and MNIS are obtained as follows:

MPIS =
{
0.818, 0.694, 0.697

}
and

MNIS =
{
0.545, 0.481, 0.321

}
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Step 10. By Definition 3.9, the separation measurements of MPIS and MNIS for every parameter
are calculated as:

SΦ+
1 = 0.415 SΨ−

1 = 0.234

SΦ+
2 = 0.118 SΨ−

2 = 0.474

SΦ+
3 = 0.317 SΨ−

3 = 0.271

SΦ+
4 = 0.347 SΨ−

4 = 0.352

and
SΦ+

5 = 0.291 SΨ−
5 = 0.287

Step 11. The relative closeness of each alternative to the ideal solution according to Definition 3.10
can be calculated as:

C
(Φ+,Ψ−)
1 = 0.361

C
(Φ+,Ψ−)
2 = 0.801

C
(Φ+,Ψ−)
3 = 0.461

C
(Φ+,Ψ−)
4 = 0.465

and
C

(Φ+,Ψ−)
5 = 0.497

Step 12. Ranking the preference order is given as:

µ2 ⪰ µ5 ⪰ µ4 ⪰ µ3 ⪰ µ1

This indicates that µ2 is the optimal candidate for the marketing manager position. We also note
that although the initial selection of three experts favored candidate µ5 more, considering the previous
three evaluations regarding BSS and the proposed TOPSIS method revealed a different ranking with
more intelligence and insight into the given scenario. Note that “⪰” is the symbol of the preference
order of alternatives. The graphical display for the ranking of the candidates is also given in Figure 2.
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Figure 2. Graph for the ranking of candidates
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6. Comparative Analysis and Discussion

In this section, we discuss the merits and drawbacks of the proposed technique and compare the
suggested study with a few existing approaches.

6.1. Merits of the Proposed Model

Real-world MCGDM issues typically arise in a complex environment under ambiguous and imprecise
data, which is tough to handle. The suggested model is highly appropriate for the considered problem
when the information is complicated and uncertain, especially when the current information depends
on the bipolar data by experts. Some advantages of the suggested approach are summarized as follows:

i. The suggested technique replicates each alternative’s positive and negative characteristics as BSS.
To manage aggressive DM, this integrated model is more comprehensive and suitable.

ii. This approach is also preferable because, in this method, the experts are free from any external
constraints and requirements.

iii. There is no possibility of losing collective information throughout the process since aggregation is
done in the final step.

iv. The established strategy not only takes experts’ assessments but also integrates the previous
experiences by the MRBS-approximations in real circumstances. Therefore, it is a more generalized
approach for a better understanding available data and using artificial intelligence to make decisions.

6.2. Drawbacks of the Proposed Model

The suggested model has a few minor shortcomings, including its complicated structure and the
massive information in the form of BSS. Such huge information is challenging to address because of
enormous calculations, which are difficult to handle. However, one may establish MATLAB program-
ming to ease these calculations simpler. Moreover, in the proposed model, parameters are independent
of the environment. Therefore it cannot produce a ranking result when the parameters are dependent.

6.3. Comparison with Other Models

In this subsection, we compare the suggested strategy with TOPSIS approaches in fuzzy and bipolar
fuzzy settings. Among the various MCDM approaches, the TOPSIS technique is the most favored
one.

In the fuzzy TOPSIS technique, linguistic evaluations are used instead of numerical values. That
is, the rating of the objects and the weights of criteria within the problem are evaluated utilizing
fuzzy linguistic variables. Although the TOPSIS technique is the most effective approach in a fuzzy
setting, it just gives us a mechanism to estimate the truth membership. On the other hand, the
suggested TOPSIS technique offers a modified method for coping with MCGDM problems in which
the subjective data is provided via a decision-maker in the form of BSS.

The researchers initiated and investigated bipolar fuzzy TOPSIS [30, 37] and extended the TOPSIS
method based on IVHFNSSs [31]. It is generally known that the models can manage some DM
problems to convey the idea of experts by using a crisp number. But, due to the uncertainty of the
objective world and the complexity of the decision problems, they cannot address some group DM
problems. For instance, some experts argue the membership degree of an object to a set and cannot
compromise each other. One wants to assign 0.3, but the other prefers to choose 0.5. In this situation,
MRBSs can be a perfect solution to this problem.
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We explore the following points if we compare our proposed model with the TOPSIS techniques
described in [27, 28, 38]. Firstly, these methods cannot address the bipolarity in the DM process,
which is a critical feature of human cognition. Secondly, these techniques do not ensure harmony in
decision-makers’ opinions. Applying the most recent techniques presented in [18, 19] to Example 5.1
yields the following ranking results among the alternatives, displayed in Table 1.

Table 1. The ranking results of various methods to Example 5.1
Current Methods Ranking Orders

Karaaslan and Çağman [18] µ5 ⪰ µ2 ⪰ µ3 ≈ µ4 ⪰ µ1

Shabir and Gul [19] µ2 ≈ µ1 ≈ µ3 ⪰ µ5 ⪰ µ4

Our proposed approach µ2 ⪰ µ5 ⪰ µ4 ⪰ µ3 ⪰ µ1

A characteristics comparison of various approaches with suggested technique is given in Table 2. The
comparison is evaluated with features: membership function (MF), non-membership function (NMF),
parametrization, number of decision-makers, and ranking of alternatives.

Table 2. Characteristics comparison of different methods with proposed method

Methods Characteristics
Handle MF Handle NMF Manage parametrization Decision-makers Ranking

Akram et al. [30] Yes Yes No One Yes
Alghamdi et al. [37] Yes Yes No One Yes

Eraslan and Karaaslan [28] Yes No Yes More than one Yes
Feng [39] Yes No Yes More than one Yes

Saeed et al. [40] Yes No Yes More than one Yes
Sarwar [41] Yes No No More than one Yes

Proposed Method Yes Yes Yes More than one Yes

7. Conclusion

MRBSs are treated as practical tools for portraying the uncertainties and vagueness involved with the
MCGDM problems. Thus decision-makers become more flexible in representing their judgment using
MRBSs. In this work, we have presented a novel application of the MCGDM problem with the data
having bipolarity and uncertainty. The framework is based on the TOPSIS method and MRBSs. We
have defined a detailed mathematical procedure for the TOPSIS-based MRBSs method. The proposed
approach integrates the strength of MRBSs theory in handling uncertainty and the advantage of the
TOPSIS evaluation technique in MCGDM. An algorithm of DM is also established, which has two key
benefits. Firstly, it evaluates the bipolarity of the data, containing uncertainty. Secondly, it considers
the opinions of any (finite) number of experts about any (finite) number of objects. Additionally,
we provide an application to demonstrate that the proposed strategy can effectively apply to specific
issues, including uncertainty. At last, a comparative study of the suggested approach is conducted.

Numerous topics require further investigation. Bearing in mind the above, future perspectives will
focus on the following:

i. The hybridization of the MRBS theory and more comprehensive selection models, such as VIKOR,
ELECTRE, AHP, COPRAS, and PROMETHEE.

ii. The proposed method can be generalized to a fuzzy environment, and useful DM methods could
be established.
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