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Abstract: The propagation of emerging diseases and the expensive cost and time lost by using the classic 

methods, especially in the current scenario with the world being plagued by SARS-CoV-2 and Chlamydia 

trachomatis diseases, make finding another way to invent new medication very important. That's why we 

used computational approaches to predict protein-ligand interactions of thiazolino 2-pyridone amide 

derivatives. The high-throughput virtual screening requires extensive combing through existing datasets in 

the hope of finding possible matches to screen for new molecules able to inhibit SARS-CoV-2 and 

Chlamydia trachomatis diseases. In this study, 46 thiazolino-2-pyridone amide derivatives were chosen for 

planning the powerful inhibitors by utilizing various strategies: QSAR analysis, phylogenetic analysis, 

homology modeling, docking simulation, molecular dynamics (MD) simulation, as well as ADMET 

Screening. The 2D QSAR investigation uncovers that these compounds show a satisfactory connection with 

bioactivity. From that point onward, phylogenetic analysis and homology modeling were used to model the 

selected receptors, which were then evaluated using both the SAVES and PROSA servers, indicating the 

best correctness of the modeled protein with the experimental results. Additionally, a docking simulation 

investigation was carried out to comprehend the 46 thiazolino-2-pyridone amide derivatives' interactions 

with homologous proteins. Additionally, MD simulations coupled with MM/GBSA verified the chosen 

complex systems' stability over 1000 ps. Two compounds were chosen as possible inhibitors based on these 

findings. The expected thiazolino-2-pyridone amide's oral bioavailability and toxicity have been discovered 

under the ADMET. Thus, these discoveries can be leveraged to develop novel molecules with the necessary 

action. 
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1. Introduction 

The current SARS-CoV-2 (Covid-19) emergency 

has demonstrated that the world is not equipped to 

answer with solutions for treating existing illnesses 

because no U.S. therapeutics have been approved 

by the Food and Drug Administration (FDA) or the 

European Medicines Agency (EMEA). This 

implies we ought to have been prepared for a 

sickness that has been recognized for nearly four 

decades. The ongoing SARS-CoV-2 episode is now 

being shown to be incredibly expensive in terms of 
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death and financial repercussions. As of August 7, 

2022, there had been over 200 million confirmed 

COVID-19 cases worldwide, with over four million 

deaths (WHO, https://covid19.who.int/) [1]. SARS-

CoV-2 has been spreading swiftly throughout the 

world since its discovery in December 2019. 

SARS-CoV-2 transmits through respiratory 

droplets from one individual to another, high 

concentrations of aerosols, and, on rare occasions, 

feces or urine [1, 2]. Although the number of deaths 

caused by SARS-CoV-2 is steadily increasing, a 
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powerful pharmacological treatment other than 

vaccines has not been developed at this time. 

Although immunizations are being investigated as 

a possible therapeutic approach for SARS-

coronavirus-2, vaccines can be ineffective when 

strains are constantly changing. New strains of 

coronaviruses seem to be emerging constantly, 

necessitating the pursuit of various treatment 

strategies in addition to vaccinations [2-4]. The 

SARS-CoV-2 major protease (Mpro) is commonly 

considered a target in studies of new drug 

development, drug screening, and therapeutic 

repurposing because of its critical role in viral 

replication and transcription [3, 5]. Thus, inhibiting 

this enzyme may be a potential treatment for 

COVID-19. Several investigations into SARS-

coronavirus-2 Mpro and its putative antagonists 

have been published in the existing literature [6-8]. 

According to the World Health Organization 

(WHO), more than a million people worldwide 

experience sexually transmitted illnesses regularly 

[9]. Infections such as Chlamydia trachomatis (C. 

trachomatis) can occur without causing any visible 

symptoms. In some cases, it is possible to be 

infected without realizing it [10, 11]. Any 

symptoms that do appear can be mistaken for those 

of other illnesses. C. trachomatis is known as a 

"silent" infection because many people are unaware 

that they have it [12]. Chlamydia was the most 

frequent sexually transmitted disease in 1994, 

according to the Centers for Disease Control and 

Prevention (CDC) [13]. In the United States alone, 

about 1.5 million cases of C. trachomatis were 

reported in 2015 [14]. A rate of 478.8 instances per 

100,000 has been gradually increasing since 2001 

[15]. C. trachomatis is multiple times more 

pervasive than syphilis and multiple times more 

predominant than gonorrhea [16]. Chlamydia has 

been documented to harm the reproductive system 

in severe and possibly irreversible ways [17]. If left 

untreated, chlamydia can result in (1) men suffering 

from chronic prostatitis, which causes pain and 

erectile dysfunction (ED); (2) a greater chance of 

contracting HIV/AIDS and SARS-CoV-2; and (3) 

infertility in women for the rest of their lives, as 

well as a painful condition known as a pelvic 

inflammatory disease [18-21]. Various causes of C. 

trachomatis and SARS-CoV-2 have been proposed. 

Because of the shortfall of medication that can 

eradicate SARS-CoV-2 and C. trachomatis, 

numerous researchers all over the planet have 

zeroed in their examination on finding new 

medications that are productive against these 

sicknesses. Many C. trachomatis and SARS-CoV-2 

antagonists have been documented in the literature 

[21-24]. Antibiotics and antivirals alone won't be 

enough to solve this issue because the setting for the 

spread of STIs and SARS-CoV-2 [25] varies widely 

based on social, economic, and geographic factors. 

Computer-Aided Drug Design (CADD) has 

emerged as a proficient method for recognizing 

potential lead compounds and helping the 

improvement of potential medications for many 

illnesses [26, 27]. The identification of prospective 

lead compounds from vast compound libraries is 

currently done using a variety of computational 

methods. Drug discovery applications using the 

CADD technique are improving constantly [28]. 

The current trend in drug design is to logically 

create powerful treatments with more targets, 

greater efficacy, and fewer side effects, particularly 

toxic ones. Computational modeling can help speed 

up the drug discovery process through simulation 

and modeling. Since theoretical research is 

progressing in the direction of rational drug design, 

understanding the relationship between 

physicochemical properties and molecular structure 

enables scientists to create new active molecules to 

a reasonable degree [29]. With the improvement of 

in silico techniques in recent years, the number of 

novel molecular entities endorsed by the U.S. Food 

and Drug Administration (FDA) has grown 

significantly One of the key strategies for modern 

pre-clinical drug discovery is computer-aided drug 

design (CADD), in which a variety of 

computational methods and software tools are often 

combined to produce the desired results. In the 

modern day, medicines and other physiologically 

active chemicals are discovered, developed, and 

analyzed using CADD methods including docking, 

MD simulation, and pharmacophore modeling 

perspectives. The CADD technique, which 

combines a structural and ligand-based 

pharmacophore model to identify similar active 

compounds against a specific target protein, may 

swiftly analyze a humongous compound's binding 

affinity to a target glycoprotein. A compound's 

bioactivity can be assessed anytime it attaches to a 

certain protein and causes a particular response. 

However, a molecular docking approach made the 
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process quicker. A CADD can predict 

pharmacokinetics and pharmacology properties 

such as absorption, distribution, metabolism, 

excretion (ADME), and even toxicity of a drug.  

Quantitative Structure-Activity Relationship 

(QSAR) modeling is a ligand-based drug design 

method for both exploring and exploiting the 

relationship between chemical structure and its 

biological activities. To predict the activities of 

anti-chlamydia trachomatis compounds, quantum 

chemical descriptors like molecular orbital, dipole 

moment, charge, etc. and molecular property 

descriptors like hydrophobic, steric coefficient, etc. 

have been applied to develop 2D QSAR models 

[30]. In the present research, we executed QSAR 

studies on some chemical libraries using genetic 

function approximation multiple linear regression 

(GFA-MLR). The best model out of the many 

generated model will be systematically analyzed. 

The results gained from these methods were 

equated for validation. This research primarily 

focused on CADD procedures such as virtual 

screening (docking simulation), ADMET, and MD 

simulation-MM/GBSA techniques to find potential 

oral medicines against C. trachomatis, as well as 

SARS-CoV-2 Mpro. 

 

2. Computational Method 

2.1 Data set  

In this research, a band of 46 thiazolino-2-pyridone 

amide derivatives was obtained from the PubChem 

database (https://pubchem.ncbi.nlm.nih.gov/AID 

1293489) and was chosen to build the QSAR 

models. These substances were created through 

exploration, and they display a variety of structural 

characteristics and biological activity levels as 

shown by their half-maximal inhibitory 

concentration (IC50). This QSAR strategy depends 

on the speculation that the action Y (subordinate 

variable, pIC50) is straightly reliant upon specific 

autonomous factors Xn (descriptors) as indicated 

by the following condition: 

 

𝑌 =  𝑎𝑋1 +  𝑏𝑋2 +  𝑐𝑋3 +  … … … . . + 𝑘       (1) 

 

Where 𝑎, 𝑏, 𝑐, and so on are the coefficients of the 

descriptors X and 𝑘 is the intercept in the linear 

QSAR model. The chemical names of the 46 

thiazolino 2-pyridone amide derivatives 

investigated, as well as their pIC50 (bioactivities), 

are shown in Table 1. The IC50 action values were 

recently estimated in μM/mL, and afterward, we 

changed them to pIC50 with the usage of the 

subsequent expression pIC50 = -log IC50 to work 

with the computation. Table 1 shows the pIC50 

results that were obtained. One of the chemical 

structure of thiazolino-2-pyridone amide 

derivatives is presented in Fig. 1. 

 

 

Figure 1. Molecular structure of thiazolino 2-pyridone amide. 
Table 1. Compounds used in the generation of the 2D-QSAR models and docking simulation. 

S/N Compound Name pIC50 A* B* 

1 (S)-6-amino-7-(4-chlorobenzyl)-8-cyclopropyl-5-oxo-N-(p-tolyl)-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.1 -7.7 

2 (S)-6-amino-8-cyclopropyl-7-(2,3-dimethylbenzyl)-5-oxo-N-(p-

tolyl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.0000 -7 -7.5 

3 (R)-8-cyclopropyl-6-(morpholinomethyl)-7-(naphthalen-1-

ylmethyl)-5-oxo-N-phenyl-2,3-dihydro-5H-thiazolo[3,2-

a]pyridine-3-carboxamide 

5.3010 -6.7 -8.3 

4 8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-phenyl-5H-

thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.5 -7.9 

https://pubchem.ncbi.nlm.nih.gov/AID%201293489
https://pubchem.ncbi.nlm.nih.gov/AID%201293489
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5 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-phenyl-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -8.1 -8.4 

6 (R)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-phenyl-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.1 -7.7 

7 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-phenyl-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -8.1 -8.5 

8 (S)-8-cyclopropyl-N-(2-fluorophenyl)-7-(naphthalen-1-ylmethyl)-

5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -8.1 -7.7 

9 (S)-8-cyclopropyl-7-methyl-5-oxo-N-phenyl-2,3-dihydro-5H-

thiazolo[3,2-a]pyridine-3-carboxamide 

5.0000 -6.4 -6.9 

10 (S)-3-(cyclohexylcarbamoyl)-8-cyclopropyl-7-(naphthalen-1-

ylmethyl)-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-6-

carboxylic acid 

5.0000 -7.7 -7.7 

11 (S)-6-amino-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-

phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.6201 -7.3 -8.2 

12 (S)-6-amino-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-

(m-tolyl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.0000 -7.3 -8 

13 (S)-6-amino-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-

(p-tolyl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.6201 -7.3 -7.9 

14 (S)-N-cyclohexyl-8-cyclopropyl-7-(2,3-dimethylbenzyl)-5-oxo-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.7 -8 

15 (S)-N-cyclohexyl-8-cyclopropyl-7-(2,3-dichlorobenzyl)-5-oxo-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.4 -7.9 

16 (S)-N-cyclohexyl-8-cyclopropyl-7-(3,4-dimethylbenzyl)-5-oxo-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.1 -7.2 

17 (S)-N-cyclohexyl-8-cyclopropyl-5-oxo-7-(quinolin-5-ylmethyl)-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.0000 -8.1 -8.2 

18 (S)-8-cyclopropyl-7-(2,3-dimethylbenzyl)-5-oxo-N-(p-tolyl)-2,3-

dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.0000 -7 -8 

19 (S)-7-(4-chlorobenzyl)-8-cyclopropyl-5-oxo-N-(p-tolyl)-2,3-

dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.0000 -7.1 -6.4 

20 (S)-6-amino-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-

(pyrimidin-4-yl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.6021 -7.6 -7.9 

21 (S)-7-benzyl-N-cyclohexyl-8-cyclopropyl-5-oxo-2,3-dihydro-5H-

thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7 -7.5 

22 (S)-N-cyclohexyl-8-cyclopropyl-7-(3-methylbenzyl)-5-oxo-2,3-

dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.1 -7.8 

23 (S)-7-((4-chlorocyclohexyl)methyl)-8-cyclopropyl-5-oxo-N-

phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -6.9 -6.3 

24 (S)-N-cyclohexyl-8-cyclopropyl-7-(4-methoxybenzyl)-5-oxo-2,3-

dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7 -7.4 

25 (S)-8-cyclopropyl-N-(3-fluorophenyl)-7-(naphthalen-1-ylmethyl)-

5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -8 -8.6 

26 (S)-N-(3-chlorophenyl)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-

5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.5 -8.6 

27 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(m-tolyl)-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

6.0000 -7.3 -8.5 

28 (S)-8-cyclopropyl-N-(3-ethylphenyl)-7-(naphthalen-1-ylmethyl)-

5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.1 -8.4 

29 (3S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(3-

(trifluoromethyl)cyclohexyl)-2,3-dihydro-5H-thiazolo[3,2-

a]pyridine-3-carboxamide 

5.6021 -7.6 -8.6 

30 (S)-8-cyclopropyl-N-(3-methoxyphenyl)-7-(naphthalen-1-

ylmethyl)-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.6021 -8.2 -8.2 
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31 (S)-8-cyclopropyl-N-(3-(methylcarbamoyl)phenyl)-7-(naphthalen-

1-ylmethyl)-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.0000 -8.1 -8.5 

32 (S)-8-cyclopropyl-N-(4-fluorocyclohexyl)-7-(naphthalen-1-

ylmethyl)-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.6021 -7.4 -8.6 

33 (S)-N-(4-chlorophenyl)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-

5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.5 -8.4 

34 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(p-tolyl)-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.6 -8.5 

35 (S)-8-cyclopropyl-N-(4-methoxyphenyl)-7-(naphthalen-1-

ylmethyl)-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.6021 -7.3 -8.6 

36 (S)-N-(4-carbamoylphenyl)-8-cyclopropyl-7-(naphthalen-1-

ylmethyl)-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.6021 -7.4 -8.7 

37 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(4-

sulfamoylphenyl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.0000 -7.6 -8.3 

38 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(pyridin-2-

yl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.0000 -7.7 -8.4 

39 (3S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(1l2-

piperidin-3-yl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.0000 -7.9 -8.3 

40 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(pyridin-4-

yl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.3010 -7.7 -8.3 

41 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-

(pyrimidin-4-yl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.6021 -7.1 -8.4 

42 (S)-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-(thiazol-2-

yl)-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.3010 -7.2 -8.2 

43 (3S)-8-cyclopropyl-7-((decahydronaphthalen-1-yl)methyl)-N-

methyl-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-

carboxamide 

5.0000 -7.1 -7.3 

44 (S)-N-cyclohexyl-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-

oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.0000 -7 -8 

45 (S)-N-benzyl-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-

2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.6021 -7.4 -7.9 

46 (S)-8-cyclopropyl-N-methyl-7-(naphthalen-1-ylmethyl)-5-oxo-N-

phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxamide 

5.3010 -7.3 -7.6 

Reference Drug 

47 (2R,5R,6S)-6-((S)-2-amino-2-cyclohexylacetamido)-3,3-

dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic 

acid 

Ampicillin -6 -7.2 

48 (2R,3S,4R,5R,8R,10S,11R,12R,13S,14R)-11-(((2S,3R,4S,6R)-4-

(dimethylamino)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-

yl)oxy)-2-ethyl-3,4,10-trihydroxy-13-(((2R,4R,5S,6S)-5-hydroxy-

4-methoxy-4,6-dimethyltetrahydro-2H-pyran-2-yl)oxy)-

3,5,6,8,10,12,14-heptamethyl-1-oxa-6-azacyclopentadecan-15-one 

Azithromy

cin 

-5.7 -6.3 

49 (4S,4aR,5S,5aR,6R,12aR)-4-(dimethylamino)-1,5,10,11,12a-

pentahydroxy-6-methyl-3,12-dioxo-3,4,4a,5,5a,6,12,12a-

octahydrotetracene-2-carboxamide 

Doxycycli

ne 

(Vibramyc

in) 

-6.7 -8 

50 (R)-2-(ethyl(4-((7-methyl-1,2-dihydroquinolin-4-

yl)amino)pentyl)amino)ethan-1-ol 

Hydroxych

loroquine 

-5.5 -6.6 
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51 (R)-N-((2R,4R,5R)-6-cyclohexyl-5-(2-(2,6-

dimethylphenoxy)acetamido)-4-hydroxy-1-phenylhexan-2-yl)-3-

methyl-2-(2-oxotetrahydropyrimidin-1(2H)-yl)butanamide 

Lopinavir -6 -7.2 

52 (2,3-dihydrothiazol-5-yl)methyl ((2S,3R,5S)-3-hydroxy-5-((2S)-2-

(3-((2-isopropyl-2,3-dihydrothiazol-4-yl)methyl)-3-

methylureido)-3-methylbutanamido)-1,6-diphenylhexan-2-

yl)carbamate 

Ritonavir -7.7 -8.7 

53 (3R)-3-cyclopentyl-3-(4-(2,3,7,7a-tetrahydro-1H-pyrrolo[2,3-

d]pyrimidin-4-yl)-2,5-dihydro-1H-pyrazol-1-yl)propanenitrile 

Ruxolitnib -7.1 -8 

A* C. Trachomatis (Binding affinity kcal/mol), B* SARS-CoV-2 main protease (Binding affinity kcal/mol) 

 

2.2 Compounds optimization and selection of 

descriptors  

The data set descriptors were obtained by 

optimizing the compounds in Gaussian 09 [31] with 

the B3LYP/6-31G (d,p) [32, 33] basic set.  In the 

program PaDEL freeware v2.21 [34], the 

descriptors were created using the improved 

structures of all compounds. An enormous number 

of descriptors were determined and the factors were 

pre-filtered by: (1) physically erasing every one of 

the missing qualities; (2) the correlation 

coefficients (R) between every descriptor and the 

pIC50 values were determined to prohibit the 

descriptors with low connection with biological 

activity. (3) barring if steady qualities > 80%; and 

(4) excluding if correlations > 95% using the 

QSARINS v2.2.4 program [35]. We partitioned the 

data set of 46 compounds into two sets. The test set 

was chosen utilizing an irregular determination 

strategy by setting a likelihood opportunity of 

around 30%. The dataset was divided into 33 and 

13 molecules in the training and test sets, 

respectively. Then, the genetic algorithm (GA) 

technique as executed in QSARINS v2.2.4 [35-37] 

was applied as a secondary screening to get the 

descriptors that generally added to the biological 

activity. Afterward, measurable boundaries like 

“SEC (standard error of calibration), PRESS 

(prediction error sum of squares), coefficient of 

determination (R^2), adjusted coefficient of 

determination (R_adj^2), Mean of Squared Errors 

of a model (MSE), Fischer’s value (F-test), 

Variance Inflation Factor (VIF), coefficient of 

determination of Leave-One-Out cross-validation 

(Q_LOO^2), coefficient of determination of 

external test (R_test^2), and Y-randomization 

parameters (R_Yscr^2 and Q_Yscr^2)” for 

modeling, internal and external validation measures 

were used to assess the fitness, steadiness, and 

prescient force of the QSAR model as per their 

conditions in Table 2. 

 

 
Table 2. Comparison of the statistical parameter with Golbraikh and Tropsha criteria [35-38] 

Criteria Parameter Equation Threshold 

Fitting criteria 𝑅2 
𝑅2 = 1 −

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

∑(𝑌𝑜𝑏𝑠 − �̅�𝑐𝑎𝑙)
2 

➢ 0.6 

𝑅𝑎𝑑𝑗
2  

𝑅𝑎𝑑𝑗
2 =  

(𝑁 − 1)(𝑅2 − 𝑃)

𝑁 − 𝑃 − 1
 

➢ 0.6 

𝑀𝑆𝐸 
𝑀𝑆𝐸 =

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

𝑁
 

𝐴 𝑙𝑜𝑤 𝑣𝑎𝑙𝑢𝑒 

𝐹 
𝐹 =

∑(𝑌𝑐𝑎𝑙 − �̅�𝑐𝑎𝑙)2 − 𝑁 − 𝑃 − 1

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2 × 𝑃
 

𝐴 ℎ𝑖𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 

Internal validation 

criteria 
𝑄𝐿𝑂𝑂

2  
𝑄𝐿𝑂𝑂

2 = 1 −
∑(𝑌𝑐𝑎𝑙 − 𝑌𝑜𝑏𝑠)2

∑(𝑌𝑜𝑏𝑠 − �̅�𝑜𝑏𝑠)2
 

➢ 0.5 

𝑅𝑌𝑠𝑐𝑟  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 100 𝑅𝑌𝑠𝑐𝑟  < 𝑅 

𝑅𝑌𝑠𝑐𝑟
2  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 100 𝑅𝑌𝑠𝑐𝑟

2  <  𝑅2 

𝑄𝑌𝑠𝑐𝑟
2  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 100 𝑄𝑌𝑠𝑐𝑟

2  <  𝑄𝐿𝑂𝑂
2  

𝑐𝑅𝑝
2 𝑐𝑅𝑝

2 = 𝑅√𝑅 − (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑌𝑠𝑐𝑟)2 ➢ 0.5 
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External validation 

criteria 
𝑅𝑃𝑟𝑒𝑑

2  
𝑅𝑃𝑟𝑒𝑑

2 = 1 −
∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑒𝑠𝑡)

2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − �̅�𝑜𝑏𝑠(𝑡𝑒𝑠𝑡))
2 

➢ 0.5 

�̅�𝑚(𝑡𝑒𝑠𝑡) 
�̅�𝑚(𝑡𝑒𝑠𝑡) =

|𝑟𝑚
2 + 𝑟𝑚

′2|

2
 

➢ 0.5 

∆𝑟𝑡𝑒𝑠𝑡
2  ∆𝑟𝑡𝑒𝑠𝑡

2 = |𝑟𝑚
2 + 𝑟𝑚

′2| < 0.3 

∆𝑟𝑜(𝑡𝑒𝑠𝑡)
2  ∆𝑟𝑜(𝑡𝑒𝑠𝑡)

2 = |𝑟𝑜
2 + 𝑟𝑜

′2| < 0.3 

𝑟2 − 𝑟𝑜
2

𝑟2
 

𝑟2 − 𝑟𝑜
2

𝑟2
 

< 0.1 

𝑟2 − 𝑟𝑜
′2

𝑟2
 

𝑟2 − 𝑟𝑜
′2

𝑟2
 

< 0.1 

𝐾 
𝐾 =

∑ 𝑌𝑜𝑏𝑠𝑌𝑐𝑎𝑙

∑ 𝑌𝑐𝑎𝑙
2  

0.85 ≤ 𝐾
≤ 1.15 

𝐾′ 
𝐾′ =

∑ 𝑌𝑜𝑏𝑠𝑌𝑐𝑎𝑙

∑ 𝑌𝑜𝑏𝑠
2  

0.85 ≤ 𝐾′

≤ 1.15 

𝑌𝑜𝑏𝑠 , 𝑌𝑐𝑎𝑙 , �̅�𝑜𝑏𝑠 , �̅�𝑐𝑎𝑙 , 𝑁, 𝑎𝑛𝑑 𝑃: refers to the observed, predicted, mean of the observed, mean of the 

predicted, number of compounds, and number of descriptors, respectively. 

 

2.3 Homology modeling 

The inclusion membrane protein IncA (C. 

trachomatis) and SARS-coronavirus-2 Mpro 

sequence used in this study were obtained from the 

National Center for Biotechnology Information 

(https://www.ncbi.nlm.nih.gov/) database in the 

Fasta format. 

2.3.1 Templates searching and modeled C. 

trachomatis and SARS-CoV-2 protein quality 

The amino acid sequence of inclusion membrane 

protein IncA (C. trachomatis) (Query ID: 

WP_057222102.1) [39] and Chain A, SARS-

coronavirus-2 Mpro (Query ID: 6YZ6_A) has been 

uploaded from further comparative modeling. The 

BLASTp [40] program was used to find the 

template protein with the highest self-image in the 

query sequence. These templates were downloaded 

from the PDB (https://www.rcsb.org/) database. 

Phylogenetic analysis is used to establish the 

evolutionary relationships between the query and 

template protein sequences. The Molecular 

Evolutionary Genetics Analysis (MEGA X) 

program was used for phylogenetic analysis [41]. 

The results of an analysis can be obtained in the 

form of a phylogram. The UPGMA method [42] 

was used to infer the phylogenetic analysis. The 

evolutionary distances were calculated using the 

Poisson correction method [43] and are measured 

in amino acid substitutions per site. The 

comparative models of C. trachomatis and SARS-

coronavirus-2 were built with MODELLER v10.2 

[44, 45]. The accuracy of the designed homology 

model was validated using various techniques on 

the SAVES server 

(http://nihserver.mbi.ucla.edu/SAVES/). The 

validation techniques, such as Verify3D [46, 47], 

which decides the similarity of an atomic model 

(3D) with its amino acid arrangement (1D), and 

Rampage to analyze the Ramachandran plot [48, 

49], ERRAT [50], and PROSA server to calculate 

Z-score [51], were carried out. 

 

2.4 Molecular docking preparations 

After valid 3D coordinates of the modeled receptors 

were obtained from homology modeling using 

MODELLER v10.2, and a few inherited problems 

to the modeled 3D receptors (for example, missing 

side-chain, loop, and hydrogens), The receptors 

shown were arranged using the Protein Planning 

Wizard module from the AutoDookTools v1.5.7 

suite. The AutoDookTools v1.5.7 suite is 

programmed to remove water molecules from the 

active site, fill in the missing side chain, add 

hydrogens, and assign charges. 

 

2.5 Active Site Prediction 

After preparing the protein with AutoDockTools 

v1.5.7, it is minimized in 500 steps using the 

steepest descendent algorithm, which is used by 

GROMOS96 43B1 parameters installed in 

DeepView v4.1.0. The active site residues of the 

modeled receptors are predicted using compute 

pocket (AutoSite 1.1) implemented in AGFR v1.2 

[52] to be recognized for docking research. These 

active site residues must be predicted, and the 

binding region is chosen for derivative docking 

based on the pocket AS score with the highest 

value. Here, the active/binding site of the modeled 
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receptors is anticipated and docked with 46 

thiazolino-2-pyridone amide derivatives plus 7 

controls/standard drugs for the modeled receptors' 

activity. Table 3 displays the AS score, radius of 

gyration, buriedness, and the position of the grid of 

each protein. Analysis of specific docking results 

was carried out using Discovery Studio visualizer 

2020. 

 

Table 3. Grid setting for specific docking. 

Protein AS Score RadGr Buriedness Grid 

Center                       Dimensions 

C. trachomatis 364.85 7.53 0.75 -39.001 

39.513 

31.111 

22.500 

32.250 

19.500 

SARS-CoV-2 430 6.60 0.81 10.392 

-0.600 

22.438 

23.250 

27.000 

18.000 

2.6 Pharmacokinetics properties 

The pharmacokinetics of the best-docked ligands 

were calculated by the webserver SwissADME 

server (www.swissadme.ch). The SwissADME 

server is a free online tool that predicts 

pharmacokinetics, human intestinal absorption 

(HIA), bioavailability, and blood-brain barrier 

(BBB) permeability with a quick, accurate, and 

user-friendly interface. 

 

2.7 Molecular Dynamics Simulations 

Following a successful docking protocol, nanoscale 

molecular dynamics (NAMD) v2.14 [53] was used 

to conduct MD simulations on the best complexes. 

The production run was conducted in an NPT 

ensemble for 1 ns with no constraints. For 10,000 

steps in the NVT ensemble, MD simulations of the 

two complexes (i.e., the C. trachomatis and SAR-

CoV-2 complexes) were run in a solvent 

environment. The temperature of the simulation 

system was set to 310 K. Energy minimization for 

the complexes was based on the RMSD variation of 

Cα, RMSF, SASA, and the RG plot. The visual 

molecular dynamics (VMD) software v1.9.3 [54] 

was used to display, analyze, and animate 

trajectories visually. The molecular mechanics 

generalized Born surface area (MM/GBSA) free 

binding energies of ligand-receptor complexes 

were calculated using MolAlCal software [55]. 

 

3. Results and discussion 

3.1 Structure-Activity Relationship for 

Thiazolino 2-pyridone amide Derivatives 

The following descriptors are chosen as the most 

suitable descriptors for developing the QSAR 

model through the multiple linear regression 

(MLR) techniques after performing the genetic 

approximation (GA) analyses: nAromBond, 

ATSC3v, MATS8m, and SdO. The correlation 

matrix found in Table S1 displays the following 

four descriptors along with the correlation 

coefficients between them. The generated QSAR 

model 1 showed a strong correlation between the 

chemical descriptors and bioactivity. The cross-

validation regression coefficient (Q LOO2 = 

0.7047) indicates that this QSAR model has a 70% 

prediction accuracy, while the regression 

coefficient (R2 = 0.7772) indicates that there is a 

78% correlation between the bioactivity and 

chemical descriptors in the training dataset. 

 

pIC50 = 0.0749 (nAromBond) – 0.0011 (ATSC3v) 

– 1.6109 (MATS8m) – 0.0272 (SdO) + 5.0927 

Model 1 

 

where “nAromBond = Number of aromatic bonds, 

ATSC3v = Centered Broto-Moreau autocorrelation 

– lag 3/weighted by van der Waals volumes, 

MATS8m = Moran autocorrelation - lag 8/weighted 

by mass, and SdO = Sum of atom-type E-State: 

=O.” 

Fitting criteria: 

R2 = 0.7772, R2
adj = 0.7453, R2-R2

adj = 0.0318, LOF 

= 0.0505, Kxx = 0.2779, Delta K = 0.0994, RMSE 

tr = 0.1702, MAE tr = 0.1191, RSS tr = 0.9556, 

CCC tr = 0.8746, s = 0.1847 F = 24.4147 

Internal validation criteria: 

Q2
LOO = 0.7047, R2-Q2

LOO = 0.0724, RMSE cv = 

0.1959, MAE cv = 0.1404, PRESS cv = 1.2662, 

CCC cv = 0.8353, Q2
LMO = 0.6487, R2

Yscr = 0.1254, 

Q2
Yscr = -0.2482, RMSE AV Yscr = 0.3367 

External validation criteria: 

RMSE ext = 0.3706, MAE ext = 0.2539, PRESS ext 

= 1.7854, Q2-F1 = 0.1383, Q2-F2 = 0.1116, Q2-F3 = 

-0.0568, CCC ext = 0.5221 

The Fisher test (F-test), the mean squared error 

(MSE), and the coefficient of determination (R2) of 

the 2D-QSAR model developed by using the GA-

MLR based on fitting criteria evaluation were 

precisely evaluated, and we obtained a lower root 

mean square error MSE = 0.1191 indicating that the 

model is more reliable. The cross-validation 

correlation coefficient Q LOO2, shown in Table S2, 
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indicates the model's robustness and accuracy. The 

P-value (lower than 0.05) shown in Table S2 

indicates that the model acquired is statistically 

significant at the 95% level. These descriptors' VIF 

values in the training set were calculated and found 

to be less than 10 (Table S2), demonstrating the 

independence of the identified model's fitness from 

the descriptors [56]. To inspect the general 

significance and commitment of the descriptor with 

pIC50 values. We work out the mean impact (MF) 

as per the following condition: 

 

𝑀𝐹𝑗 =
𝛽𝑗 ∑ 𝑑𝑖𝑗

𝑛
𝑖

∑ (𝛽𝑗 ∑ 𝑑𝑖𝑗
𝑛
𝑗 )𝑚

𝑗

  ___________________ (2) 

 

Where 𝑀𝐹𝑗 and 𝛽𝑗 address the mean effect of 

every descriptor j and the coefficient of the 

descriptor j, separately. 𝑑𝑖𝑗and m allude to the 

value of proposed descriptors for each compound 

and the number of descriptors. 

The mean effect recognizes important data of the 

descriptors model created for determining the 

activity of compounds and how strong is the model 

[57, 58]. The involvement of a descriptor in 

comparison to other descriptors in the model is 

indicated by the MF value (Table S2). The 

indicators suggest that the values of these 

descriptors will either increase or decrease, 

improving the anti-C. trachomatis inhibitory 

activities of the study molecules [59, 60]. A positive 

sign in the model for nAromBond (and more or less 

relevant descriptor). The activity (pIC50) and the 

descriptor (MF = 2.261) are positively correlated. It 

is presumptively true that an increase in aromatic 

bonds of 10% will increase the compound's 

inhibitory activity. On the other hand, a 44% 

reduction in ATSC3v values will result in a rise in 

compound (anti-C. trachomatis) activities. The 

inhibitory activities of the molecules are most 

strongly influenced by MATS8m with the highest 

MF value. It has been hypothesized that MATS8m, 

the Moran autocorrelation - lag 8/weighted by 

mass, which has a positive MF value, positively 

affects anti-C. trachomatis activity. 33% of this 

descriptor will lead to an increase in anti-C. 

trachomatis inhibitory activity. The 2D descriptor 

SdO represents the Sum of atom-type E-State: =O 

this descriptor contributes negatively to MF value 

(Table S2) which indicates the inhibitory activity of 

thiazolino 2-pyridone amide derivatives will 

increase if the Sum of atom-type E-State: =O is 

reduced by 14%. In summary of the mean effect 

(MF), The importance of the pIC50 values of the 

compounds will be outstanding because MATS8m 

is the most significant descriptor and has the best 

mean effect value. The descriptors are listed below 

in order of how they affect pIC50 values. ATSC3v 

> MATS8m > nAromBond > SdO. The comparison 

and consistent distribution of the experimentally 

determined pIC50 activity values and the values 

predicted by the GA-MLR model are displayed in 

Fig. S1. The experimental and predicted activity 

values are well correlated, as shown by the 

clustering of points along the line of best fit, 

demonstrating the robustness and dependability of 

the built model. The final model's inter-correlation 

between the descriptors and the bioactivities was 

plotted with Kxy versus Q2 LMO, and the LMO 

(leave many out) parameter values were shown 

around the model parameters in Fig. S2, indicating 

that the model was stable and reliable. The observed 

model was not randomly obtained, as shown by the 

VIF provided in Table S2 and Kxy vs. Q2 LMO in 

Fig. S2, and the structural dependence of the 

training set supported the reliability of the model. 

As shown in Table S3, the GA-MLR model's 

parameters, including the compounds' status, had a 

significant impact on how each studied compound's 

chemical data were converted into numerical 

values. Additionally, the XY (scatter) plot of 

noticed pIC50 against the residuals of both the 

training and test sets was displayed in Fig. S3. The 

sporadic appearance of these residuals on one or the 

other side of zero on the plot shows that the model 

is liberated from regular error. The estimations 

performed were rehashed with randomized 

exercises of the mixtures in the training set, to 

assess the heartiness of the GA-MLR model. Ten 

(10) iterative runs were performed to recreate 10 

MLR models indiscriminately. In this assessment, 

we produced MLR models by arbitrarily blending 

the dependent variable while keeping the 

independent variables unaltered [61]. R2 and Q 

LOO2 values for the new models are lower than for 

the original model. This shows that the original 

GA-MLR model is stable and that its strong 

statistical properties are not accidental. As 

indicated in the results of Table S4, all new models 

cannot match the original model. Furthermore, a 

value of CRp^2 = 0.72 criteria is superior to 0.5; 

indicating high confidence in the original GA-MLR 

model. In light of the examination of the outcomes, 

we can presume that the 2D-QSAR models we have 

created are extremely effective and well-equipped 

for anticipating new subordinates of thiazolino-2-

pyridone amide. The Y-scramble plot (Fig. S4) of 

Kxy versus R2Yscr was used to test the external 

validity, and Q2Yscr displayed a lower value 

compared to the values in the model. The leveraged 

approach evaluated the model's structural 

applicability domain and provided a cut-off hat 

value. The diagonal elements of the HAT matrix are 

used to calculate HAT values: 

 

𝐻 =  𝑋(𝑋𝑇𝑋)−1𝑋𝑇_______ (3) 
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Where the leverage value ((h*) can be calculated 

according to the following equation: 

 

ℎ∗ =
3𝑔′

𝑛
______________ (4) 

 

where g' is the number of model variables plus one, 

and n is the number of objects used to calculate the 

model. 

The standardized residuals in cross-validation 

greater than 2.5 standard deviations (δ) units can be 

used to confirm the response applicability domain. 

Both structural outliers (i.e., compounds with a high 

leverage value (H > h*)) and response outliers (i.e., 

compounds with cross-validated standardized 

residuals greater than 2.5 standard deviations (δ) 

units) have been defined using the fixed thresholds. 

The Williams plot for the developed QSAR models 

is presented in Fig. S5. According to the plot, it is 

observed that the leverage value (h*) dashed lines 

were found to be 0.455 for the developed QSAR 

models, which indicated the presence of structural 

(or influential) and response outliers. The William 

plot shows that all molecules are within the 

applicability domain (AD), except compound 37 

from the training set is considered an outlier 

(structural outlier) because it exceeds the critical 

leverage (h*), compounds 11, 13, and 15 are 

considered response outliers because they have a 

normalized residual outside the 2.5 δ units. As a 

result, the QSAR model correctly predicted the 42 

remaining compounds when they were tested in the 

applicability domain, even for these chemicals (37), 

whose h values are beyond h*, the predicted pIC50 

is close to their experimental values as seen in Table 

S3. The Insubria graph enables the identification of 

the compounds for which the model interpolates or 

extrapolates its predictions. The recheck of the 

applicability domain (William’s plot) of the built 

model is possible through the Insubria graph. The 

results of the Insubria graph study for the model are 

graphically reported in Fig. S6. The leverage for the 

prediction set is plotted against the predicted values 

in the graph. By using the Insubria graph, we were 

able to define the model's reliable prediction zone 

based on the structural similarity to the training 

compounds (leverage value) and the predicted 

biological activity value. If both of the following 

conditions hold— H < h* and Y_min < Y_pred < 

Y_max (Y_min and Y_max are the minimal and the 

maximal value of bioactivity in the training set)—

then the predicted results are believed to be 

accurate. Except for compounds 15, 37, 43, and 44, 

every compound from the prediction set was found 

to be within the applicability domain of the model. 

This demonstrates that the model obtained in this 

work has high applicability to design new 

thiazolino 2-pyridone amide derivatives, and we 

can apply them to screen and prioritize them for 

future experiments or for filling the data gap. 

 

3.1.1 Galbraith and Tropsha’s criteria 

The outcomes of model 1 were contrasted with the 

acceptable limit thresholds established by 

Golbraikh and Tropsha (Table 1) [38, 62], and they 

also met the requirements for standard validation as 

set forth by the OECD. The outcomes of model 1 

demonstrated the validity and suitability of our 

suggested model. 

 

3.2 Homology modeling results 

A comparative search against the NCBI database 

yielded two highly similar protein sequences: 

6E7E.pdb and 6E6A.pdb. The query cover of 

6E7E.pdb and 6E6A.pdb, predicted from the 

deduced amino acid sequences, is 58% each for C. 

trachomatis. To investigate the protein sequence 

evolutionary relationship with the query sequence 

(Query ID: WP_057222102.1) using MEGA X 

software.  The phylogenetic tree was obtained 

based on previously obtained multiple sequence 

alignment using the MEGA-X phylogeny option 

using the UPGMA method. By analyzing the tree 

(Fig. 2), we can take observations. However, 

6E7E.pdb and 6E6A.pdb showed the highest 

sequence similarity to the Inclusion membrane 

protein sequence. The cluster gave bootstrap values 

higher than 60. Among 2 Inclusion membrane 

protein sequences (6E7E.pdb and 6E6A.pdb), the 

query WP 057222102.1 inclusion membrane 

protein IncA C. trachomatis was found to be closely 

linked with 6E7E.pdb and 6E6A.pdb sequence 

(Fig. 2). 

 

3.2.1 Sequence analysis and domain prediction 

of C. Trachomatis 

Since both templates are closely related to the query 

sequence, the 6e6a.pdb crystal structure E-value 9e-

111 was selected as the best template. The 3D 

structure of the constructed PDB protein structure 

was generated using MODELLER v10.2. A total of 

5 models were generated by the MODELLER 

software (http://www.salilab.org/modeler), which 

was further evaluated by Structural Analysis and 

Verification Server (SAVES) 

(http://nihserver.mbi.ucla.edu/SAVES/) and the 

two last parameters were determined using Protein 

Structure Analysis (ProSA)-web server 

(https://prosa.services.came.sbg.ac.at/prosa.php) 

[51]. In this study, model 2 returned the highest 

DOPE score (Table 4). The matchmaker 6e6a.pdb, 

chain A (template) with WP_057222102.1, chain A 

(query), sequence alignment score = 796.7. The 

root means square deviation (RMSD) between 162 

pruned atom pairs is 0.224 angstroms (Å) (across 

all 163 pairs: 0.281) (Fig. 3). 
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The sequence alignment between the inclusion 

membrane protein IncA (WP_057222102.1) and 

triclinic crystal form of IncA G144A point mutant 

(PDB ID: 6E6A) receptor was produced using 

MODELLER v10.2 aligned program (Fig. 4). The 

constraints are typically met by presuming that 

aligned residues in the template and target proteins 

are aligned at similar distances and angles. A 

homology model of the inclusion membrane protein 

IncA is the process output. 

 
Figure 2. Phylogenetic tree of C. trachomatis protein and its selected homologs. 

 

Table 4. The top five protein models, along with their parameter scores, were retrieved from MODELLER. 

Filename molpdf DOPE score GA341 score 

ABCD.B99990001.pdb             917.60547    -24656.01758 1.00000 

ABCD.B99990002.pdb 887.83081 -24999.32617         1.00000 

ABCD.B99990003.pdb 947.85773 -24901.06055 1.00000 

ABCD.B99990004.pdb 1047.82397 -24697.75391 1.00000 

ABCD.B99990005.pdb 928.93420    -24878.64648 1.00000 

 

Figure 3. Model template alignment: ChimeraX v1.3 superimposed WP 057222102.1 on the template (PDB 

ID: 6e6a.pdb), and the RMSD was 0.224. The target is highlighted in gray, while the template structure is 

displayed in green. 

 

The PROCHECK server provided the 

Ramachandran plot 

(http://services.mbi.ucla.edu/SAVES/Ramachandr

an/) [63] for the comparative modeling protein. 

This plot's purpose is to validate the protein model 

that was found. The concealing on the plot 

addresses the various locales as displayed in Fig. 

S7. The haziest regions in red relate to the "center" 
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locales showing the most positive mixes of phi-psi 

values. Preferably, one would expect to have more 

than 90% of the buildups in these "center" locales. 

One of the better predictors of the quality of a 

stereo-chemical is the level of deposits in the 

"center" locations. According to Fig. S7, the 

produced model—the one with the most build-ups 

of residues in the permitted area and the fewest 

deposits in the rejected locale—was chosen as the 

best fit model for further investigation of the protein 

that was demonstrated. Since 97.2% of the deposits 

are placed in the ideal location on the plot, it follows 

that the local proteins' conformational components 

correspond to those of the similarly native protein. 

The number of residues present in the allowed 

region is 7 (2.8%) and the number of residues in 

generously allowed regions is 0 (0.0%) and residues 

in disallowed regions 0 (0.0%). The phi-psi torsion 

angles for each residue in the structure are 

displayed on the Ramachandran plot (except those 

at the chain termini). Triangles are used to 

distinguish glycine residues since they are not 

confined to the plot areas designated for the other 

side chain types. The ERRAT (overall quality 

factor) [50] program was used to calculate the non-

bonded interactions between different types of 

atoms, and the analysis indicated an overall quality 

factor of 85.052%. (Fig. S8). Yellow areas on the 

structure indicate areas that can be ruled out with a 

95% confidence level. A good protein structure is 

expected to have an error value of 5% or less. Red 

areas represent those that can be rejected at a 99% 

level. An acceptable protein environment is 

indicated by the analysis of the ERRAT graph. The 

loading quality of each residue was then tested, as 

determined by the Verify-3D [45] method 

(http://services.mbi.ucla.edu/Verify3D/), which 

reflects the profile obtained concerning the 

residues. According to Sahu and Shulkla's 

discussion of acceptable side-chain environments 

(Fig. S9), the compatibility score in the Verify-3D 

graph above zero corresponds to these 

environments. The Dope per residue score vs 

alignment position plot generated by MODELLER 

in Fig. 5 shows that the inclusion membrane protein 

IncA (query ID: WP_057222102.1)) energy graph 

(red color) lies exactly on one chain of the triclinic 

crystal form of IncA G144A point mutant template 

(PDB ID; 6E6A) energy graph peaks (green color) 

which show primary similarity and similitude. This 

implies that the model has overall self-consistency 

regarding the relationship between sequence and 

structure. 

 

 
Figure 5. Dope profiles of Chlamydia trachomatis model (shown in red color) and template 6E6A.pdb 

(shown in green color). 

 

To identify errors in theoretical and experimental 

models, the ProSA server was employed. ProSA 

assesses the model packing by calculating the 

likelihood of finding residues at a given distance 

and assesses the degree of solvation—the 

interaction between the model and the solvent-that 

took place. The quality and dependability of the 

generated model are determined and assessed based 

on the total of all these probabilities. It is used to 

look for potential errors in the 3D-modeled protein. 



Turkish Comp Theo Chem (TC&TC), 8(1), (2024), 10-39 

Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa 
 

22 

 

A Z-score and a plot of the input 3D model's residue 

energies are two features that the program shows. 

The Z-score assesses the general model quality and 

gauges how far the structure's total energy deviates 

from an energy distribution derived from all of its 

random conformations. The modeled protein's 

overall model quality is shown by the ProSA Z-

score of -4.42 (Fig. S10). The score demonstrates 

an exceptionally solid construction and is well 

within the scope of scores normally found for 

proteins of comparable size. The energy plot (Fig. 

S11) shows the nearby model quality by plotting 

knowledge-based energies as a component of 

amino acid sequence position. This demonstrates 

that the model built by the MODELLER is 

extremely reliable and deserving of consideration 

for further research. 

 

3.3 Sequence analysis and domain prediction of 

SARS-CoV-2 main protease 

The phylogenetic analysis of the query sequence 

and the templates were carried out using the 

UPGMA method and computed using MEGA X 

[65]. The studies revealed the evolutionary 

development of both the query sequence (PDB ID: 

6YZ6) amongst the various templates. Multiple 

sequence alignment using MUSCLE was used to 

create a phylogram, which showed that 7KFI and 

6YZ6 were strongly linked to a conserved 

theoretical protein from 3C-like proteinase of 

SARS-CoV-2 of 7CB7 and 6XA4 (Fig. 6). 

 

MODELLER v10.2 built an incredible homology 

model of SARS-CoV-2 given the grouping 

character between the chain of The main protease 

(Mpro) SARS-CoV-2 (PDB: 6YZ6) and the 

template protein sequences. The dendrogram tree 

generated by MODELLER as shown in Fig. 7 

confirmed the phylogenetic analysis above. The 

protein (PDB ID: 6XA4) has the least values, as a 

result, the 3D crystal structure of the SARS-CoV-2 

3C-like proteinase (PDB:6XA4) with a resolution 

of 1.65 angstroms was chosen as a template. It has 

an E-value of 0.0, and 100% query identity and 

percentage identity with the query SARS-CoV-2 

Mpro (PDB: 6YZ6) amino acids suggesting that 

they both have the same 3D structure. The 

template's sequence alignment (PDB ID: 6XA4) 

revealed the highest preservation of amino acid 

residues between dissimilar species in PDB ID: 

6YZ6 (Fig. 8).  As the least disruptions may have 

taken place throughout their phylogenetic origin, 

where it discovered their essential functional role, 

the solid preservation of core residues in the 

vicinity of the PDB ID: 6YZ6 domain region 

explains their evolutionary significance. 

 
Figure 6. Tree obtained with MEGE-X using the UPGMA method. 
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Figure 7. The weighted pair-group matrix of the template sequences 

 
Figure 8. Sequence alignment of the crystal structure of the SARS-COV-2 main protease. The symbol (*) 

refers to identical amino acids. 

 

The modeled protein structure was submitted to the 

SAVES website and Ramachandran plots were 

generated. The stereochemical quality of the 

modeled protein, including its main chain, bond 

lengths, and bond angles, is assessed using 

Ramachandran plots. A good model should have 

more than 90% of its residues in the most 

advantageous areas as discussed earlier. The 

Ramachandran plot analysis (Fig. S12) of the 

comparative protein structure model predicted 

found 94.7%, 4.2%, 0.8%, and 0.4% residues in the 

favorable allowed, additionally allowed, 

generously allowed, and disallowed regions 

accordingly. Likewise, the ERRAT score values 

obtained for the modeled protein structure were 

94.966% (Fig. S13). The modeled protein 

coordinates that determine the stereo-chemical 

qualities of predicted models were found to be 

stable and reliable. The profile score above zero in 

the VERIFY-3D graph (Fig. S14), corresponds to 

an acceptable environment of the model. The result 

shows that the modeled protein possesses the 

verification where at least 95% of the amino acids 

have scored ≥ 0.2 in the 3D/1D profile. The dope 
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score profile graphs generated by MODELLER in 

Fig. 9 show that the SARS-CoV-2 Mpro (PDB ID: 

6YZ6) energy graph (red color) lies exactly on one 

chain of SARS-CoV-2 3C-like proteinase template 

(PDB ID: 6XA4) energy graph peaks (green color) 

which show primary similarity and closeness. 

Matchmaker 6XA4.pdb, chain A with modeled 

protein structure (ABCD.B99990005.pdb), 

sequence alignment score = 1585.1. RMSD 

between 302 pruned atom pairs is 0.420 angstroms. 

Fig. 10 presented the superimposition of the query 

(PDB ID: 6YZ6) with the template (PDB ID: 

6XA4.pdb) by ChimeraX v1.3. The template 

structure is displayed in blue and target with grey 

color. The protein structure analysis (ProSA) of the 

3D model SARCoV-2 Chain A, Mpro gives a Z-

score of -7.27 indicating that the model is in the 

variety of acceptable protein structures that have 

been experimentally elucidated using X-ray 

crystallography (Fig. S15), The plot of residue 

energies, where positive values correlate to 

problematic or incorrect elements of the input 

structure [51]. Fig. S16 shows that majority of the 

computed values were negative, as shown by the 

plot of residue energies. The use of both of the 

proposed 3D models could be considered highly 

dependable, according to all of these validation 

techniques, which was strongly advised. 

 

3.4 Computational screening for Thiazolino 2-

pyridone amide derivatives. 

After achieving a comparable model of the 3D 

structure that is acceptable, C. trachomatis and 

SARS-CoV-2 Mpro, docking simulations were 

carried out next. These dockings were done to 

examine the interactions and binding affinities of 

each compound. The most popular method for 

screening the binding modes of the retained 

homology C. trachomatis and SARS-CoV-2 protein 

models is docking simulation. This study used 

AutoDock-vina [66], a feature of the 

EasyDockVina v2.2 program, to clarify the 

predicted binding pocket using a set of compounds 

of thiazolino-2-pyridone amide derivatives. 

 

3.4.1 Recognition of C. trachomatis protein 

binding anti-bacterial compounds with 

molecular docking 

To investigate the binding affinity of the 

synthesized compounds, we screened all 46 

selected compounds and seven (7) reference 

(control) compounds as presented in Table S1. The 

synthesized and the reference compounds were 

docked well in the modeled protein binding site and 

set up many van der Waals, electrostatic 

interactions, as well as hydrogen bonding, and 

hydrophobic interactions. The more negative 

binding affinity for the reference drug is Ritonavir 

(-7.7 kcal/mol) against the C. trachomatis modeled 

protein. In the Autodock-vina mode, the reference 

drug Ritonavir maintained a conventional hydrogen 

bond and carbon-hydrogen bond with the following 

residues: ASP 177 and GLN229 which have two 

carbon-hydrogen bond interactions. The residues 

had the following bond lengths: 3.83 Å, 4.06 Å, and 

5.92 Å, respectively. The amino acid residues 

ILE174, LEU233, and GLN229 play a crucial role 

in hydrophobic interactions (Fig. 11). The rest of 

the thiazolino 2-pyridone amide derivatives that 

were docked using the precision mode in 

Autodock-vina led to the identification of seven 

potential compounds exhibiting better binding than 

the reference drugs with a binding affinity of -8.0 to 

-8.2 kcal/mol. The interacting residues for these 

lead compounds are shown in Table S5 and the best 

two with conventional hydrogen docking pose are 

depicted in Fig. 12. Higher binding affinities, equal 

to -8.2 and -8.1 Kcal/mol, were demonstrated by the 

lead compounds 30 (pIC50 = 5.6021) and 

compound 31 (pIC50 = 5.000). The compounds (30 

and 31) have the best binding affinities with the 

modeled C. trachomatis protein compared to other 

compounds and the standard drugs, respectively. 

Fig. 12A shows the interactions of compound 30 

with the prevalence of hydrophobic interactions and 

one conventional hydrogen bonding. As we can see, 

the hydrophobic interactions with the important 

residues ILE174, THR236, and LEU233 have been 

exposed. Meanwhile, the residues GLN240 add 

value to the conventional hydrogen bond 

interaction. Most interacting residues with 

compound 31 and the modeled protein structure 

were observed to be GLU173, ILE174, THR236, 

LEU233, and GLY238 with electrostatic (pi-anion) 

and hydrophobic interaction (as seen in Fig. 12B). 

It was also indicated that compound 31 shows 

conventional hydrogen bonding between the 

modeled receptor (inclusion membrane protein 

IncA [Chlamydia trachomatis]) with residue 

GLN232 with a distance of 4.34 Å, between H-
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donor and acceptor atom. Based on these findings, 

the structure of compounds (30 and 31) can be 

adopted as a new potential reference in the 

development and design of new drugs against C. 

trachomatis diseases. 

 
Figure 9. Dope profiles of the SARS-CoV-2 model (displayed in red color) and 

template 6XA4.pdb (displayed in green color). 

 

 
Figure 10. Superimposition of PDB ID: 6YZ6 with the template (PDB ID: 6XA4.pdb) 

by ChimeraX v1.3, and RMSD is 0.224. SARS-CoV-2 model template alignment. 
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Figure 11. 3D and 2D interaction representation of the reference ligand Ritonavir in the 

catalytic site of the Chlamydia trachomatis protein structure. 

A   
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B   

Figure 12. 2D and 3D interaction representation of the best compounds with conventional hydrogen bond 

interactions (A) Compound 30 and (B) compound 31 in the catalytic site of chlamydia trachomatis protein 

structure. 

 
3.4.2 Recognition of SARS-CoV-2 Mpro binding 

antiviral compounds with molecular docking 

To identify the kinds of amino acid residues held to 

account for the molecular interaction at the catalytic 

site, the inhibitors' docking simulation was 

examined on the SARS-CoV-2 modeled receptor. 

The calculated binding affinities for each 

compound range from -6.3 to -8.7 kcal/mol, while 

Ritonavir, a reference drug, was determined to have 

a binding affinity of -8.7 kcal/mol (Table S1).  From 

Fig. 13, we can see that the referenced drug 

(Ritonavir) interacts with modeled SARS-CoV-2 

Mpro by forming 6 conventional hydrogen bonds, 

which are THR190 (3.58 Å), GLU166 (4.15 Å, 4.35 

Å, 5.48 Å), PHE140 (5.84 Å), and HIS163 (4.90 Å). 

The reference drugs also have one carbon-hydrogen 

bond (LEU141 (6.81 Å), 3 hydrophobic 

interactions, two miscellaneous interactions, and 

one unfavorable donor-donor interaction. The 

referenced drug (Ritonavir) interacted with the 

active sites MET49 (5.94 Å) and MET165 (4.94 Å) 

via a miscellaneous interaction and interacted with 

the active residue sites HIS41 (6.76 Å), ALA191 

(5.48 Å), and LEU141 (4.95 Å) via hydrophobic 

interactions. Moreover, Ritonavir interacted with 

residues ASP187, ARG188, GLN189, GLN192, 

SER139, HIS172, LEU167, PRO168, ASN142, 

CYS145, SER144, and GLY143 through van der 

Waals interactions with one unfavorable donor-

donor interaction with THR190. Also, compound 

36 interacted with SARS-CoV-2 with a-8.7 

Kcal/mol binding affinity score (Table S1). The 

connection between the modeled Mpro of SARS-

coronavirus and the ligand is shown in Fig. 14. 

Compound 36 interacts with modeled SARS-CoV-

2 Mpro by forming 4 conventional hydrogen bonds, 

one carbon-hydrogen bond, 2 hydrophobic bonds, 

and with no record of unfavorable dumps. we can 

see that compound 36 interacted with four residues 

THR26 (3.90 Å), GLY143 (3.62 Å), CYS145 (4.06 

Å), and SER144 (3.56 Å) through conventional 

hydrogen bonds, one carbon-hydrogen bond with 

MET165 (5.53 Å), one hydrophobic (Pi-Alkyl) 

interaction with PRO168 (6.40 Å), and one 

miscellaneous (Pi-Sulfur) interaction with CYS145 

(5.53 Å), respectively. Whereas twelve residues of 

the modeled protein of SARS-CoV-2 Mpro 

ARG188, GLN192, LEU167, THR190, GLN189, 

HIS164, GLU166, HIS163, LEU141, ASN142, 

THR24, and THR25 participated in the compound 

to protein van der Waals interactions. We can also 

notice that the distances between the structure of 



Turkish Comp Theo Chem (TC&TC), 8(1), (2024), 10-39 

Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa 
 

28 

 

compound 36 and the amino acid residues with 

which it interacts in the complex were shorter 

compared to those with which referenced drug 

(Ritonavir) interacts in the complex, especially with 

interactions that occurred through conventional and 

carbon-hydrogen bonds. Based on these 

observations, the structure of compound 36 may be 

more stable in complex than the referenced drug 

(Ritonavir). Based on these hypotheses, the 

structure of compound 36 can be adopted as a new 

potential reference in the development and design 

of new drug inhibitors of the SARS-coronavirus 

Mpro. 

 

 

 
Figure 13. 3D and 2D interaction representation of the reference ligand (Ritonavir) in the 

catalytic site of the SARS-coronavirus-2 Mpro. 
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Figure 14. 3D and 2D interaction representation of compound 36 in the catalytic site of 

the SARS-coronavirus-2 Mpro. 

 
3.5 Valuation of drug-like properties 

Pharmacokinetic properties, bioavailability score, 

water-solubility, drug-likeness, pharmacokinetics, 

and medicinal chemistry properties of the top-

ranked compounds (30, 31, 36, and reference drug 

(Ritonavir)) using the SwissADME server 

(www.swissadme.ch (accessed on 24 July 2022)) 

were carried out [67, 68]. The final technique to 
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identify molecules that adhere to the following 

rules: Lipinski's rule [69], Veber's rule [70], 

Ghose's rule [71], and Egan's rule [72] is ADME 

(absorption, distribution, metabolism, excretion, 

and toxicity). In order to create new anti-C. 

trachomatis and anti-SARS-CoV-2 medications, 

the top-ranked molecules will be sorted to 

determine which compound is the most effective. 

The various laws (Lipinski, Veber, Ghose, Muegge, 

and Egan) that we have discussed are based on how 

drugs behave in the body. Table S6 contains the 

findings of the analysis of the predicted 

pharmacokinetic properties. The compounds (30, 

31, 36, and Ritonavir) present MLogP (MLogP ≤ 

4.15) values in the range 2.01 to 4.25. The 

molecular weight (MW ≤ 500) of compounds (30 

and 36) was in the acceptable range, while 

compounds 31 and Ritonavir are out of the range. 

The hydrogen bond acceptors and hydrogen bond 

donors of all the selected compounds were in the 

acceptable range (HA ≤ 10, HB ≤ 5) except for the 

reference drug (Ritonavir), this shows that 

compounds (30 and 36) met all criteria of the 

Lipinski rule. With the exception of Ritonavir, 

which violated Veber's rule, the results of rotatable 

bond (NRB) and topological polar surface area 

(TPSA) values indicate that the compounds possess 

excellent bioavailability and become more versatile 

for proficient interaction with a particular binding 

pocket. When developing active substances as 

therapeutic agents, oral bioavailability is frequently 

a crucial factor to take into account. Understanding 

the molecular characteristics that restrict oral 

bioavailability is thus a key objective in drug 

research. Lipophilicity, molecular size, molecular 

polarity, insolubility, insaturation of molecular 

structure, and molecular flexibility are some of the 

most crucial factors taken into account when 

evaluating oral bioavailability. According to Fig. 

S17, compound 30 has all six parameters in the 

desired range out of the six that were taken into 

consideration (Fig. S17A), while compounds (31 

and 36) have insaturation parameters a bit out of the 

range (Fig. S17B and S17C). The reference drug 

has all the parameters except insaturation out of the 

desired range (Fig. S17D). Accordingly, these 

compounds (30, 31, and 36) are supposed to have 

suitable oral bioavailability. A quick screening of 

molecules to determine whether a compound has 

the potential to be used as an oral drug is called a 

bioavailability score. With the exception of the drug 

ritonavir, all of the compounds have high 

bioavailability scores of 0.55 (or 55%), indicating 

good bioavailability. In contrast to the Ritonavir 

drug, which has broken the rule of Lipinski, Veber, 

Ghose, Muegge, and Egan and displays a 

bioavailability score of 17%, indicating poor 

bioavailability, all the chosen compounds 

demonstrated zero PAINS and Brenk alert and can 

be used as lead compounds. Synthetic accessibility 

(SA) is one of the most important components of 

computer-aided drug design (CADD) activities 

because it aids in choosing the most promising 

molecule that was created and put through 

biological testing. The synthetic accessibility (SA) 

of the selected compounds is evaluated using the 

synthetic accessibility index. When the synthetic 

accessibility (SA) values are close to 1, very easy to 

synthesize, and if SA values are close to 10, very 

difficult and complicated [73]. Through the 

obtained results (Table S7), the values of synthetic 

accessibility (SA) are limited to 4.53 to 7.02. From 

this assessment, compounds (30 and 36) can be 

easily synthesized in the laboratory without 

complexity. The drug Ritonavir also had the highest 

SA value (7.02), indicating that it would be the most 

challenging to synthesize in a lab. When a 

medication is meant to be consumed orally, the 

drug's gastrointestinal (GI) absorption becomes 

crucial. This study predicted that the three (3) 

predicted compounds would be quickly absorbed 

from the GI tract. The reference drug Ritonavir has 

a low GI absorption. However, compounds (30 and 

36) are accounted for as high, and that implies these 

mixtures are profoundly caught up in the digestive 

tract human gastrointestinal absorption (HIA). 

Contrarily, the blood-brain barrier (BBB permeant) 

is a significant barrier to the delivery of drugs to the 

central nervous system (CNS). The BBB is 

inversely correlated with molecular weight roughly 

along the square route. The BBB is sufficiently 

permeable for drugs with higher molecular weight 

to affect the central nervous system (CNS) [74]. 

The three compounds that were chosen (Table S8) 

have a low probability of penetrating the BBB, 

according to the calculations, and may not have any 

effect on CNS function. It is noteworthy that after 

administration, most especially compounds (30 and 

36) are supposed to create no neurotoxicity, 

essentially not in that frame of mind, since they 
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won't cross the BBB (Fig. S18 and Table S8). 

Cytochrome P450 (CYP), a crucial enzyme for 

detoxification in metabolism, is a key player. All of 

the body's tissues contain CYP enzymes [75]. This 

enzyme oxidizes unwanted microorganisms to help 

with their removal. Numerous drugs can be both 

activated and inhibited by the cytochrome CYP 

enzyme. Drug metabolism may be affected by this 

enzyme inhibitor, which could result in the drug 

having an adverse effect [76]. Evaluation of a 

compound's capacity to inhibit cytochromes (CYP) 

is therefore essential. The most well-known liver 

cytochrome P450 isoforms CYP1A2, CYP2C19, 

CYP2C9, CYP2D6, and CYP3A4 play a crucial 

function in drug metabolism and the efficacious and 

carcinogenic concentrations of drugs in the body 

[77]. Even though only CYP1, CYP2, CYP3, and 

CYP4 are responsible for the metabolism of drugs, 

only the types (1A2, 2C9, 2C19, 2D6, and 3A4) are 

therefore accountable for metabolization for far 

more than 90% of drugs that pass the initial stage of 

metabolism [78]. The main players in drug 

metabolism are the two isoforms 2D6 and 3A4 [79]. 

The processing of organic molecules by CYP and 

P-GP may work in concert to enhance tissue and 

organism defense [80, 81]. An efflux drug 

transporter known as P-glycoprotein (P-GP) 

protects cells from the harmful effects of 

prescription drugs by removing toxins and foreign 

substances out from cells [82-85]. All proposed C. 

trachomatis and SARS-CoV-2 inhibitors are an 

inhibitor of P-GP (Table S7). Due to the 

significance of this issue, we used computational 

methods to try and predict how compounds (30 and 

36) will affect liver enzymes. The findings in Table 

S8 suggest that some of the cytochrome P450 

isoforms may inhibit one or more of the proposed 

compounds. These ligands are therefore anticipated 

to have less hepatotoxic effects. In order to verify 

the human intestinal absorption (HIA) and blood-

brain barrier (BBB) access as described in Table S8, 

the compounds' WLogP and TPSA values (Table 

S6) were plotted. The egg-shaped graph is divided 

into three areas a white area (HIA), a yolk (BBB 

access), and a grey area (no HIA or BBB access) 

(Fig. S18). The presence of the compounds (30, 31, 

and 36) in the white portion of the plot suggests that 

they most likely penetrated the gastrointestinal 

absorption (HIA). It is anticipated that the reference 

drug (Ritonavir) in the grey area will have 

insufficient brain penetration and intestinal 

absorption. Additionally, this boiled-egg method 

gives whether or not compounds (30, 31, 36, and 

Ritonavir) were P-glycoprotein substrates (PGP). 

P-glycoprotein substrates (PGP+) and P-

glycoprotein non-substrates (PGP-) are represented 

by the red and blue dots, respectively. As shown in 

Fig. S18, all the selected compounds represented by 

a blue dot are P-glycoprotein non-substrates (PGP-

), which conformed with the results in Table S8. 

The findings indicate that compounds (30) and (36) 

had good oral bioavailability and could be 

considered anti-C. trachomatis and anti-SARS-

CoV-2 drugs, respectively. These compounds met 

the pharmacokinetic requirements for drug-like 

compound behavior. The results presented in 

Tables S7 – S9 as well as Fig. S17 and Fig. S18 

indicate that the Lipinski, Veber, Egan, and 

Muegge rules are all satisfied by the compounds (30 

and 36), indicating that there are no issues with oral 

bioavailability for these substances. Additionally, 

these substances have demonstrated a high capacity 

for absorption. Based on this hypothesis, we can 

confirm these compounds (30 and 36) cause no oral 

bioavailability issues and have great medication 

like properties. Subsequently, the compounds (30 

and 36) are the favored possibility to be utilized as 

new C. trachomatis and SARS-CoV-2 inhibitors, 

respectively among the 46 thiazolino-2-pyridone 

amide derivatives molecules studied. 

3.6 Molecular dynamic simulation 

A crucial tool for predicting potential structural 

conformations between ligand and receptor or 

enzyme is a molecular dynamics simulation (MDS) 

study. For all of the complexes to the initial 

structure, RMSD, RMSF, SASA, and Rg values of 

C atoms were estimated in order to track the impact 

of the simulation on the conformational stability of 

the receptors. The outcomes were plotted as an 

element of the reproduction's time. The overall 

RMSD value of compound 30 complex is 2.13 Å.  

The RMSD changed significantly between 851 and 

997 ps before becoming more steady after 1 ns (Fig. 

S19A). Fig. S19B illustrates the RMSF (root-mean-

square fluctuations) of the complex structure of 

compound 30 produced during the MD simulation. 

For the purpose of describing the mobility of 

specific residues, these fluctuations were tabulated. 

The loop region of residue 172 exhibits a maximum 

fluctuation at about 7.5 nm, as shown in Fig. S19B. 
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Even though very few fluctuations were seen 

during the compound 30 complex interaction, the 

majority of these fluctuations were smaller than 2.5 

nm, demonstrating a strong binding between 

compound 30 and the inclusion membrane protein 

IncA. In the simulation process, the progression of 

the corresponding ligand had a greater impact on 

the protein. According to RMSF analysis, 

compound 30's binding to the target protein showed 

a marginally nonsignificant fluctuation, revealing 

that the ligand binding had no discernible effects on 

the protein's conformation. Solvent Accessible 

Surface Area (SASA) is the surface area in which 

ligands could indeed engage with solvent 

molecules. In Fig. S19C, which plots the average 

SASA values for the compound 30 complex against 

simulation time, fluctuations in the ligand-protein 

complex are seen between 450 and 700 ps. The 

transformation in the protein's formability 

following the ligand interaction is represented by 

the radius of gyration.  In the first 55 ps, the Rg 

values varied between 20.48 nm to 21.00 nm. 

Nevertheless, following this point and up until the 

simulation's final result, the values stayed largely 

stable in the 21.01 to 21.75 nm range. The average 

Rg values of 21.2 nm are calculated from the 

compound 30 complex. After experiencing some 

fairly noticeable fluctuations, the complex's radius 

of gyrating tends to stabilize at about 900 ps (Fig. 

S19D). The inclusion membrane protein IncA C. 

trachomatis can interact with compound 30 without 

changing its structural folding in the dynamic 

environment, according to the Rg results, which 

demonstrate that the ligand-protein systems achieve 

a level of compactness. The final frame of the 

compound 30 complex forms conventional and 

carbon H-bonds after a successful MDS; one of 

them is stronger than the other. According to Fig. 

S19E, compound 30 forms one H-bond with 

THR236 by contributing an electron pair with a 

bond length of 4.18 and another bond with the NH 

of LEU233 by contributing an electron pair with a 

bond length of 3.39. 

As can be seen from the data for the SARS-CoV-2 

Mpro complex in Fig. S20, all systems achieved 

equilibrium within the first few picoseconds of the 

simulation and remained stable thereafter. The 

SARS-CoV-2 Mpro complex (compound 36 

complex) has a total RMSD value of 4.01. The 

detailed representation of the trajectories clearly 

demonstrated that the systems had reached 

equilibrium and presented initial proof that systems 

are stable under physiological conditions (Fig. 

S20A). Figure S20B displays the RMSF of the C 

atoms in each residue of both proteins and 

complexes. The total RMSF value for compound 36 

complex was discovered to be less than 0.81, 

denoting the amino acids' good stability in an 

aqueous environment. Few residues, particularly 

terminal ones, demonstrated greater fluctuations, 

which is attributable to their hanging position and 

propensity for fluctuations. Fig. S20C shows the 

SASA of compound 36 complex. The data clearly 

show that SASA fluctuated during the simulation 

period. For example, they fluctuate from 100 to 200 

ps and 700 to 800 ps. The system becomes stable 

from 950 ps to 1 ns. The Rg of compound 36 

complex is presented in Fig. S20D. The data 

unambiguously demonstrates that Rg fluctuated 

over the course of the simulation before stabilizing 

at around 950 ps. The average Rg of compound 36 

complex was found to be 22.32 nm. The data a little 

farther confirms that all systems are stable in a 

physiological environment Fig. S20E shows new 

amino acids (GLU166 and MET165) that helped 

the compound 36 complex remain stable during the 

simulation, in contrast to some amino acids that 

were present in the docking complex (THR190, 

GLN189, HIS164, THR24, HIS163, LEU141, 

SER144, and THR26). However, contacts with 

GLY143, PRO168, CYS145, GLU166, MET165, 

and PRO168 stay all through the direction. 

Conventional and carbon-hydrogen bonding 

profiles involving specific amino acids in the 

binding site support the ligand's stability. These 

results from MDS demonstrated that compounds 30 

and 36 were properly docked in the active site and 

suggested that they formed stable complexes, 

which can be interpreted as satisfactory results. 

 

3.6.1 MM/GBSA binding energy 

We use the molecular mechanics-generalized Born 

surface area (MM-GBSA) method created by 

Miller et al. and Kollman et al. [86, 87] to determine 

the binding energy of complexes. The trajectories 

of MDS are used to calculate the binding energy. 

Equations 4 to 8 were used to determine the 

complex system's binding free energy for each 

snapshot. 
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𝛿𝐺𝑏𝑖𝑛𝑑 = 𝛿𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝛿𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝛿𝐺𝑙𝑖𝑔𝑎𝑛𝑑)= 

−𝑅𝑇𝑙𝑛𝐾𝑖    5 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆 ≈ ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆   6 

∆𝐸𝑀𝑀 = ∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤             7 

∆𝐺𝑠𝑜𝑙 = ∆𝐺𝑆𝐴 + ∆𝐺𝐺𝐵                                      8 

 

Where 𝛿𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 , 𝛿𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛, and 𝛿𝐺𝑙𝑖𝑔𝑎𝑛𝑑 are the 

free energies of the complex, protein, and ligand, 

respectively. ∆𝐸𝑀𝑀 and −𝑇∆𝑆 is the gas phase MM 

energy and conformational entropy, respectively. 

∆𝐸𝑀𝑀 contains electrostatic ∆𝐸𝑒𝑙𝑒 , van der Waals 

energy ∆𝐸𝑣𝑑𝑤  and ∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  of bond, angle, and 

dihedral energies. ∆𝐺𝑠𝑜𝑙 is the solvation-free energy 

which is the sum of the nonelectrostatic solvation 

component ∆𝐺𝑆𝐴 and electrostatic solvation energy 

∆𝐺𝐺𝐵. The binding energy is determined using 1000 

frames. The binding free energies, including the 

energy contribution for each model, are 

summarized in Table 4 based on our evaluation. 

 

Table 4. Calculating MM/GBSA binding energy of  compound (30 and 36) complexes 

IncA C. trachomatis structure with Compound 30 

complex protein ligand MM/GBSA 

Av. BOND = 275.1218 

Av. ANGLE = 879.9713 

Av. DIHED = 1,573.7779 

Av. IMPRP = 46.6093 

Av. ELECT = -5,947.4077 

Av. VDW = -540.1239 

Av. BOND = 267.0135 

Av. ANGLE = 660.0253 

Av. DIHED = 1,549.7024 

Av. IMPRP = 47.1906 

Av. ELECT = -5,876.0459 

Av. VDW = -538.7162 

Av. BOND = 10.2889 

Av. ANGLE = 225.0678 

Av. DIHED = 18.944 

Av. IMPRP = 0.0832 

Av ELECT = -76.1661 

Av. VDW = 40.7975 

∆E(internal) = -2.8355 

∆E(electrostatic) + 

∆G(sol) = 4.8043 

∆E(VDW) = -42.2051 

∆G binding = -40.2363  

+/-  0.3449 (kcal/mol) 

Mpro of SARS-CoV-2 with Compound 36 

Av. BOND: 431.6435 

Av. ANGLE: 1,325.3474 

Av. DIHED: 2,732.4421 

Av. IMPRP: 55.9942 

Av. ELECT: -7,082.2802 

Av. VDW: -1,260.549 

Av. BOND: 421.6344 

Av. ANGLE: 1,098.4201 

Av. DIHED: 2,687.3247 

Av. IMPRP: 55.1711 

Av. ELECT: -7,033.5957 

Av. VDW: -1,250.4808 

Av. BOND: 10.9402 

Av. ANGLE: 227.9729 

Av. DIHED: 41.5015 

Av. IMPRP: 0.1177 

Av. ELECT: -50.43 

Av. VDW: 34.8394 

∆E(internal) = 2.3445 

∆E(electrostatic) + 

∆G(sol) = 1.7456 

∆E(VDW) = -44.9076 

∆G binding = -40.8176  

+/-  0.5498 (kcal/mol) 

Av =Average; ELECT = Electrostatic; VDW =van der Waals; sol = solvation; ∆ =Delta 

The calculated binding free energies of compounds 

30 and 36 were -40.2363 and -40.8176, respectively 

(Table 4). For the two systems, the van der Waals 

interactions interactions (∆𝐸𝑣𝑑𝑤) played a major 

role in the total binding free energy (∆𝐺𝑏𝑖𝑛𝑑). The 

contribution of electrostatic interaction (∆𝐸𝑒𝑙𝑒) was 

nearly counteracted by the electrostatic solvation 

energy (∆𝐺𝐺𝐵). 

 

4. Conclusions 

In this work, we performed computational-Aided 

drug design and development on 46 thiazolino 2-

pyridone amide derivatives as candidates against 

Chlamydia trachomatis and SARS-CoV-2 Mpro. 

Various modeling methods were used for this study, 

such as QSAR, phylogenetic analysis/ homology 

modeling, docking simulation, ADMET, and 

molecular dynamics simulations. This study aims to 

identify the potential of thiazolino 2-pyridone 

amide derivatives to inhibit C. trachomatis and 

SARS-CoV-2 Mpro by acting on the protein 

binding domain of the C. trachomatis and SARS-

CoV-2 Mpro. The findings of this research study 

demonstrate that compounds 30 and 36 possess 

strong inhibitors of C.s trachomatis and SARS-

CoV-2, respectively. After series in silico screening 

compounds (30 and 36) are predicted to have one of 

the strongest binding affinities with the receptors 

and the ADME and molecular dynamics 

simulations results exhibit their drugability. The 

precise binding mechanism, however, is still a work 

in progress because it necessitated additional 

molecular dynamic simulation research. Moreover, 

the in vivo and in vitro effects of compound 30 

against the inclusion membrane protein IncA 

(Chlamydia trachomatis) and compound 36 against 

SARS-CoV-2 Mpro would be expected to affirm 

the system. The work can be extended further to 

predict its functions and other expectations. 
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