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ABSTRACT From decimal expansion of real numbers to complex behaviour in physical, biological and human-
made systems, deterministic chaos is ubiquitous. One of the simplest examples of a nonlinear dynamical
system that exhibits chaos is the well known 1-dimensional piecewise linear Tent map. The Tent map (and
their skewed cousins) are instances of a larger family of maps namely Generalized Lüroth Series (GLS) which
are studied for their rich number theoretic and ergodic properties. In this work, we discuss the unreasonable
effectiveness of the Tent map and their generalizations (GLS maps) in a number of applications in electronics,
communication and computer engineering. To list a few of these applications: (a) GLS-coding: a lossless
data compression algorithm for i.i.d sources is Shannon optimal and is in fact a generalization of the popular
Arithmetic Coding algorithm used in the image compression standard JPEG2000; (b) GLS maps are used as
neurons in the recently proposed Neurochaos Learning architecture which delivers state-of-the-art performance
in classification tasks; (c) GLS maps are ideal candidates for chaos-based computing since they can simulate
XOR, NAND and other gates and for dense storage of information for efficient search and retrieval; (d)
Noise-resistant versions of GLS maps are useful for signal multiplexing in the presence of noise and error
detection; (e) GLS maps are known to be useful in a number of cryptographic protocols - for joint compression
and encryption, and also in generating pseudo-random numbers. The unique properties and rich features of
the Tent Map (GLS maps) that enable these wide variety of engineering applications will be investigated. A list
of open problems are indicated as well.
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INTRODUCTION

Deterministic Chaos refers to the seemingly random-like com-
plicated (and often strange) behaviour of simple dynamical sys-
tems (Alligood et al. 2000; Devaney 2018). From decimal expansion
of real numbers to complex behaviour in physical, biological and
human-made systems, deterministic chaos is ubiquitous (Strogatz
2018). One of the simplest examples of a nonlinear dynamical sys-
tem that exhibits chaos is the well known 1-dimensional piecewise
linear Tent map (Alligood et al. 2000). The Tent map is topologically
conjugate to the Logistic Map (the other popular 1D chaotic map)
and finds numerous engineering applications in electronics, com-
munications, compression, coding, computing and cryptography.
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The Tent map and their skewed cousins (Skew Tent map) are
instances of a larger family of maps namely Generalized Lüroth Se-
ries (GLS) which are studied for their rich number theoretic and er-
godic properties (Dajani and Kraaikamp 2002; Barrera and Robert
2022). In this work, we discuss the unreasonable effectiveness of
the Tent map and their generalizations (GLS maps) in a number of
applications in electronics, communication and computer engineer-
ing. To list a few of these applications: (a) GLS-coding (Nagaraj
et al. 2009): a lossless data compression algorithm for independent
and identically distributed (i.i.d) sources is Shannon optimal and
is in fact a generalization of the popular Arithmetic Coding (Rissa-
nen and Langdon 1979) algorithm used in the image compression
standard JPEG2000; (b) GLS maps are used as neurons in a re-
cently proposed novel Neurochaos Learning (Balakrishnan et al. 2019;
Harikrishnan and Nagaraj 2021; Harikrishnan et al. 2022b) architec-
ture which delivers state-of-the-art performance in classification
tasks; (c) GLS maps are ideal candidates for chaos-based comput-
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ing since they can simulate XOR, NAND and other gates (Sinha
and Ditto 1998; Ditto et al. 2010; Jaimes-Reátegui et al. 2014) and for
dense storage of information for efficient search and retrieval (Mil-
iotis et al. 2008); (d) Noise-resistant versions of GLS maps are
useful for signal multiplexing in the presence of noise (Nagaraj
and Vaidya 2009) and error detection (Nagaraj 2019); (e) GLS maps
are shown to be useful in a number of cryptographic protocols (Na-
garaj 2012) - for joint source coding and encryption (Nagaraj et al.
2009; Wong et al. 2010) and also for generating pseudo-random
numbers (Palacios-Luengas et al. 2019; Addabbo et al. 2006); (f)
Skew-tent maps have been employed in chaos based communica-
tions (Hasler and Schimming 2000). The unique properties and
rich features of the Tent Map and its skewed cousins (GLS maps)
that enable these wide variety of engineering applications will be
discussed.

This paper is organized as follows. In the next section we
introduce the Tent map, Binary map and Generalized Lüroth Series
(GLS). The unique properties of GLS are enumerated. What makes
these GLS maps so attractive to a host of engineering applications?
In the following section, the unreasonable effectiveness of the
chaotic Tent map/GLS maps are discussed. We conclude with
some open issues and suggest a few pointers for exciting future
research.

TENT MAP, BINARY MAP AND GENERALIZED LÜROTH
SERIES (GLS)

In this section, we define the Tent map and other closely related
maps. We shall also describe the properties of these maps.

The Tent map (Figure 1(a)) is defined as T : [0, 1) → [0, 1):

T(x) =

 2x, 0 ≤ x < 0.5,

2 − 2x, 0.5 ≤ x < 1.
(1)

The Skew-Tent map (Figure 1(b)) is a generalization of the Tent
map and is defined as Tb : [0, 1) → [0, 1):

Tb(x) =


x
b , 0 ≤ x < b,

(1−x)
(1−b) , b ≤ x < 1,

(2)

where 0 < b < 1 is the skew parameter. Setting b = 0.5 in Eq. 2
gives us the Tent map T(x).

The Binary map (also known as Bernoulli Shift map, Figure 1(e))
is defined as T : [0, 1) → [0, 1):

Tbinary(x) =

 2x, 0 ≤ x < 0.5,

2x − 1, 0.5 ≤ x < 1.
(3)

A similar extension to Skew Binary map is also possible. In these
examples, the maps are piecewise linear onto [0, 1) with either a
positive slope or negative slope. Generalizing this to an arbitrary
finite number of intervals yields the 1D Generalized Lüroth Series
or GLS maps (Figure 1(f)). The GLS map is defined as TGLS :

[0, 1) → [0, 1):

TGLS(x) =



x
p1

, 0 ≤ x < p1,

x−p1
p2

, p1 ≤ x < p1 + p2.

. . .

x−∑N−1
1 pi

pN
, ∑N−1

1 pi ≤ x < 1,

(4)

where the set of intervals {a1, a2, . . . , aN} have lengths
{p1, p2, . . . , pN} respectively (note: ∑N

1 pi = 1). In each of the
intervals ai, we have a linear mapping with a positive slope, but
we could have chosen a line with negative slope instead. Thus,
there are 2N different GLS maps (piecewise linear) having the exact
same set of intervals with the same lengths. They only differ in
the sign of the slope of the linear mapping in one or more of the
intervals (without any intrinsic change in chaotic dynamics).

It is easy to see that the Tent map, Binary map and their skewed
cousins are all special instances of this family of 1D Generalized
Lüroth Series (GLS) maps which we have defined above. We have
to appropriately choose the set of intervals {ai} and their lengths
{pi}. Note that the set of intervals forms a Generating Markov
Partition (GMP) on [0, 1) for the GLS map.

Properties of GLS
GLS maps exhibit several interesting properties. We list a few of
them here:

1. Continuity: GLS maps are piecewise linear and could be ei-
ther continuous or not. This depends on the transition of
the linear mapping across adjacent intervals ai, aj - whether
there is a corner or not. Even if a GLS is continuous, it is not
differentiable at the corner points.

2. Lebesgue measure and invariant distribution: GLS maps pre-
serve the Lebesgue measure (Dajani and Kraaikamp 2002;
Boyarski and Gora 1998) and has the uniform distribution on
[0, 1) as the invariant distribution (Figure 1(d)).

3. Generating Markov Partition: the set of intervals
{a1, a2, . . . , aN} with lengths {p1, p2, . . . , pN} forms a
Generating Markov Partition (GMP).

4. Symbolic dynamics on GLS: given the GMP on the GLS, we
can associate symbols from the alphabet {‘0′, ‘1′, . . . , ‘N − 1′}
to the N intervals {a1, a2, . . . , aN} respectively. Every initial
value on the GLS yields a trajectory which can be associated
with a unique symbolic sequence consisting of symbols from this
alphabet (Dajani and Kraaikamp 2002; Nagaraj 2008).

5. Relationship between Lyapunov Exponent and Shannon En-
tropy: the lyapunov exponent λ of GLS map with the GMP
defined in Figure 1(f) is given by:

λGLS = −
N

∑
i=1

pi log(pi). (5)

The Shannon Entropy H of the symbolic sequence on the GLS
is given by:

HGLS = −
N

∑
i=1

pi log2(pi) bits/symbol. (6)
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(a) (b)

(c) (d)

(e) (f)

Figure 1 (a) Tent map, (b) Skew Tent Map, (c) Lyapunov exponents of the skew tent maps for different values of skew parameter b, (d) His-
togram of a trajectory on the Tent map for a randomly chosen initial value, (e) Binary map, (f) Generalized Lüroth Series (GLS).
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(a) (b)

Figure 2 (a) Symbolic sequences of different orders on the Tent map. These form a Gray Code, (b) Bifurcation diagram for the Skew Tent Map.
Absence of windows or attracting periodic orbits indicating Robust Chaos.

If the base of the logarithm is chosen as 2 in computation
of the lyapunov exponent in Eq. 5, then we have λGLS =
HGLS (Nagaraj 2008). We can interpret the lyapunov exponent
as the number of bits of information of the initial value that
is revealed at every iteration of the map. This equality plays
a very significant role in lossless data compression of i.i.d
sources (Nagaraj et al. 2009).

6. Periodic, quasi-periodic and chaotic behaviour: it is well
known that the Tent map, Binary map, their skewed versions
- all of these maps exhibit chaotic behaviour (Devaney 2018).
This is indicated both by a positive lyapunov exponent (Fig-
ure 1(c)) for every value of 0 < b < 1 and by the bifurcation
diagram that reveals the fact that the entire family of GLS
maps exhibit Robust Chaos (Banerjee et al. 1998; Glendinning
2017) - characterized by complete absence of attracting pe-
riodic orbits (Figure 2(b)), also known as windows. This is
a very desirable property for a number of applications such
as pseudorandom number generators (Nagaraj et al. 2008),
chaos based cryptographic protocols and joint compression
and encryption algorithms. As per Devaney’s definition of
chaos (Devaney 2018), GLS maps also have countably infi-
nite number of periodic and quasi-periodic orbits that are
dense, uncountably infinity of non-periodic trajectories and
also exhibit sensitive dependence on initial values (the Butter-
fly Effect). The topological entropy of GLS is positive.

7. Ergodicity, mixing properties - as already noted, GLS maps
preserve the Lebesque measure. They are also known to be
ergodic and exhibit mixing. Variations of GLS show different
degrees of mixing - weak and strong mixing. For more details,
the reader is referred to Dajani and Kraaikamp (2002).

8. Topological transitivity and Universal orbits: GLS maps
exhibit topological transitivity property defined as follows.

Topological transitivity: for every pair of non-empty open sets
A, B ∈ [0, 1), there exists a non-negative integer m such that

Tm(A) ∩ B ̸= ∅. Equivalently, there exists at least one initial
value in A which when iterated a finite number of times
(m ≥ 0 iterations) reaches B.

Universal orbits (also known as dense orbits ) are spe-
cial non-periodic trajectories which visit every possible
non-empty neighbourhoods of [0, 1). Equivalently, there
exists an initial value x0 ∈ [0, 1) such that the set
{x0, T(x0), T2(x0), . . . , Tk(x0), . . .} is dense in [0, 1). This
property is of utmost importance in Neurochaos Learning
(NL) (Balakrishnan et al. 2019).

9. Number theoretic properties - Dajani and Kraaikamp (2002)
discuss number theoretic properties of GLS and other varia-
tions of GLS (β expansions).

10. Implementation in software and hardware: given the piece-
wise linear nature of Tent map (and GLS), it enjoys a very
low computational complexity for software implementation.
There have been a number of hardware/electronic circuit re-
alizations of the Tent map (Valtierra et al. 2017; Kumar et al.
2018; Hernandez et al. 2003; Campos-Cantón et al. 2009).

11. Nonlinear GLS: Nagaraj et al. (2009) propose a non-linear ex-
tension to GLS which preserves the Lebesgue measure that
finds applications in joint compression and encryption tech-
niques.
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■ Table 1 Details of research works that have employed Tent/GLS maps (or their variations) in applications pertaining to electronics,
communication (coding, error correction/detection, encryption) and computer science and engineering. This is not an exhaustive list.

Reference Properties of GLS used Applications

Hasler et al., 2000 Chaotic synchronization Chaos shift keying using iterations of the skew
tent map, chaotic communication systems.

Dajani et al., 2002 Ergodicity, mixing Number theory.

Miliotis et al., 2008 "Be-headed" Tent map Efficient and flexible storage, very fast search,
amenable for parallel implementation.

Nagaraj et al., 2009 λGLS = HGLS GLS-coding: Shannon optimal lossless com-
pression for i.i.d sources. Generalization of
Arithmetic Coding that is used in JPEG2000.

Nagaraj et al., 2009 Noise-resistant GLS maps, symbolic se-
quence invariance

Multiplexing and de-multiplexing chaotic sig-
nals in the presence of noise.

Campos-Cantón et al., 2013 Chaos and ergodicity of the Tent map Reconfigurable logical cell using evolutionary
computation.

Wong et al., 2010 GLS maps with key-based switching Simultaneous arithmetic coding or GLS-
coding and encryption.

Nagaraj, 2012 Ergodicity/mixing Joint compression and encryption. One-Time
Pads that achieve unbreakable encryption
(Perfect Secrecy) are nothing but switched
GLS-coding.

Nagaraj, 2019 Cantor sets on GLS maps with a forbidden
symbol

Error detection, joint compression and error
control coding.

Palacios-Luengas et al., 2019 Ergodcity/mixing properties of Skew-Tent map Psuedo Random Number Generators.

Balakrishnan et al., 2019 GLS used as a neuron. Topological transitivity,
universal orbits, chaotic features

Brain-inspired machine learning (Neurochaos
Learning or NL) for classification. State-of-
the-art performance in low training sample
regime.

Balakrishnan et al., 2021 Stochastic resonance at a GLS neuron NL for classification tasks.

Balakrishnan et al., 2022 Topological transitivity, universal orbits,
chaotic features of trajectories on GLS

Efficient classification of SARS-CoV-2 viral
genome sequences using NL.

Balakrishnan et al., 2022 Causality preservation property of network of
GLS neurons

Causality and machine Learning using NL.
Deep learning fails to preserve causality.

Ajai et al., 2022 Heterogeneous network of GLS and Logistic
map neurons

Classification tasks, further boost in perfor-
mance of heterogeneous NL architecture
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UNREASONABLE EFFECTIVENESS OF TENT/GLS MAPS

Table 1 is an attempt to succinctly summarize some of the pub-
lished past research works that employ the Tent/GLS maps (or
their variations) for applications in electronics and communica-
tions, computer science and engineering. It is by no means an
exhaustive list of such published research. The specific maps used
and the properties of these maps that enable these applications are
also mentioned.

Why not Logistic map?
One may be wondering why we have not discussed the logistic
map which is also an equally popular 1D chaotic map. In fact,
logistic map is continuous and differentiable (unlike GLS maps
which can only be continuous at best). There are a number of
published research papers on properties and applications of the
logistic map as well.

One of the most important reasons why the Tent map and GLS
maps are preferable (over the Logistic map) in engineering appli-
cations is due to the piecewise linear nature of these maps. This
enables an easy implementation of these maps in hardware and
software. Furthermore, one of the important issues in the imple-
mentation of any dynamical system is finite numerical precision.
Given an arbitrarily long symbolic sequence from a GMP of a
GLS, it is possible to find the initial value to arbitrary precision.
This is made possible because of the connection between GLS and
Arithmetic Coding. Using ideas of finite precision implementation
(such as scaling and re-normalization) of Arithmetic Coding, we
can determine the initial value of a given arbitrarily long symbolic
sequence on the GLS. This is used in GLS-coding as well as in mul-
tiplexing and de-multiplexing of chaotic signals in the presence
of noise. Please see Nagaraj and Vaidya (2009) (Appendix) which
describes this algorithm in detail.

This is also the reason that other 1D/2D maps such as the Stan-
dard Map, Sine Map, Circle Map, Hénon Map etc. are not preferred
in practical engineering applications where finite precision effects
can lead to problems.

Symbolic dynamics on GLS
Figure 2(a) depicts the symbolic sequences on the Tent map upto
order 3. These sequences produces a Binary Gray code. A Gray
code has the unique property that successive codes differ only in
one location. A binary Gray code would have the property that
consecutive codewords differ by exactly one hamming distance.
Gray codes are widely employed in electromechanical switches to
prevent spurious outputs and also in digital communications to
enable error correction. This property can be extended to N-ary
Gray codes using GLS with N intervals. The requirement for Gray
codes is that the GLS should be continuous on the entire set [0, 1).

Nagaraj and Vaidya (2009) construct noise-resistant versions of
the Tent map (and Binary map) to enable efficient multiplexing and
de-multiplexing of chaotic signals in the presence of noise. They
employ the symbolic sequence invariance property and provide
a finite precision implementation of finding the initial condition
of an arbitrarily long symbolic sequence on the Tent/Binary map.
Their scheme is able to multiplex/de-multiplex up to 20 chaotic
signals in the presence of additive noise.

Compression, Coding and Cryptography Applications
GLS maps find applications in lossless data compression, joint
compression and error detection and in several cryptographic
schemes. The reason for the success of GLS maps in these kind
of applications is due to the unique property that λGLS = HGLS

(along with the property of chaos and ergodcity/mixing). To the
best of one’s knowledge, such a property is not true with any other
map. This allows a very efficient handshake between dynamical
properties with infotheoretic properties. The well known Kraft–
McMillan inequality and its converse for prefix-free codes and the
celebrated Huffman Coding are both related to symbolic dynamics
on GLS maps (Nagaraj 2009, 2011).

The Tent map (and GLS maps) preserves the Lebesgue measure,
has an uniform distribution as invariant, positive lyapunov expo-
nent for all values of the bifurcation parameter, positive topological
entropy and is ergodic. This is highly desirable for cryptographic
algorithms, methods and protocols. Block ciphers and stream ci-
phers are required to have the properties of confusion and diffusion.
These can be translated to strong mixing/ergodicity of the un-
derlying chaotic map (Alvarez and Li 2006). The fact that Skew
Tent map with the skew parameter b exhibits Robust Chaos for
all values of b is very desirable for hardware implementation of
cryptographic methods. Since there are no windows or attracting
periodic orbits for any value of b, this means that perturbations
to the parameter b due to noise in hardware implementations do
not result in low periodicity. This is the problem with most maps
that exhibit fragile chaos, i.e., the presence of windows or attracting
periodic orbits. The logistic family of maps with the bifurcation
parameter a: xn+1 = axn(1 − xn) exhibits fragile chaos which is
problematic in cryptography applications.

Researchers have also employed GLS maps for simultaneous
compression and encryption (Wong et al. 2010; Nagaraj et al. 2009;
Nagaraj 2008, 2019).

Chaos based computing applications
The power of chaotic maps is their ability to generate a wide variety
of patterns. This feature is available in even simple 1D maps that
exhibit chaos such as the Logistic map and Tent map. Sinha and
Ditto (1998) proposed, for the very first time, thresholded logistic
map to emulate logic gates, encode numbers and perform simple
arithmetic operations such as addition, multiplication and least
common multiplier of a given sequence of integers. Since the
publication of this pioneering work by Sinha and Ditto, several
other researchers have contributed to this rich field of chaos-based
computing. Ditto et al. (2010) proposes the Chaogate – a dynamical
universal computing device which can be rapidly morphed to
serve as any desired logic gate. Experimental realization of the
same using a chaotic circuit has also been accomplished (Murali
et al. 2005).

While the above research works focused on the Logistic map,
it is easily translatable to the Tent map since there exists a topo-
logical conjugacy between these two maps (Alligood et al. 2000).
There have been attempts also to use the Tent map for designing
a reconfigurable logical cell (Campos-Cantón et al. 2013). Miliotis
et al. (2008) employs the "be-headed" Tent map (or thresholded
Tent map) ingeniously to efficiently and flexibly store information.
They demonstrate how a single element can store M items (M
could potentially be very large) and a very fast search by means
of a single global shift operation is possible. Such a scheme is
amenable for parallel implementation of chaos-based computing
architectures.
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Machine Learning: Neurochaos Learning using GLS neurons
One of the recent applications of GLS maps is in the design and
construction of a novel neural network composed of GLS neurons
as the input layer. This learning architecture is dubbed Neurochaos
Learning or NL (Balakrishnan et al. 2019; Harikrishnan and Na-
garaj 2021; Harikrishnan et al. 2022b). NL draws inspiration from
the empirical fact that chaos is ubiquitous in the brain and found
to manifest at several spatiotemporal scales - at the level of sin-
gle neurons, coupled neurons and network of neurons (Korn and
Faure 2003). The performance of NL on publicly available datasets
for classification tasks in the domains of medical diagnosis, ban-
knote fraud detection, environmental applications and spoken-
digit classification is impressive and comparable to state-of-the-art
Machine Learning (ML) and Deep Learning (DL) algorithms. Sethi
et al. (2022) propose a hybrid learning architecture composed of
chaos-based features from GLS neurons (NL) fed to classical ML
algorithms such as Support Vector Machines, Logistic Regression,
AdaBoost, Decision Trees, Random Forest, k−Nearest Neighbours
and Naive Bayes classifiers. Such an approach provides a signifi-
cant boost to the performance of standalone ML algorithms thereby
indicating the efficacy of chaos-based features extracted from GLS
neurons.

GLS neurons are shown to satisfy a version of the Universal Ap-
proximation Theorem (UAT) (Harikrishnan et al. 2022b) which is very
desirable for learning algorithms since it allows for approximat-
ing complicated decision boundaries. The property of topological
transitivity combined with presence of universal/dense orbits and
ergodic/mixing properties of GLS makes it effective for machine
learning applications. Another surprising property of GLS neurons
is that an intermediate amount of noise added to the input is benefi-
cial for classification performance in NL architecture (Harikrishnan
and Nagaraj 2021). This is the well known Stochastic Resonance or
noise-enhanced signal processing property found in certain non-
linear systems. Ajai et al. (Sep. 2022) provide a heterogeneous
Neurochaos Learning architecture using both GLS neurons and
logistic map neurons to further enhance classification performance.
GLS neurons also help preserve causality unlike Deep Learning
architectures (Harikrishnan et al. 2022a).

CONCLUSION AND FUTURE WORKS

In this paper, we have explored the unique properties of the chaotic
Tent map and more generally of Generalized Lüroth Series (GLS)
maps. The Tent map, Binary map, Skew Tent maps are all examples
of 1D GLS maps. We have discussed which specific properties of
these maps contribute to their effectiveness in various engineer-
ing applications. To conclude, we shall list some pointers and
directions for further research:

1. Harikrishnan et al. (2022b) have proven a version of the Uni-
versal Approximation Theorem (UAT) using GLS maps as
neurons in the input layer of a novel learning architecture
(NL). Further explorations on various versions of UAT and
connections to standard Artificial Neural Networks (ANNs)
and NL is a research direction worth investigating.

2. Coupled GLS maps for Neurochaos Learning: currently NL
architecture consists of an input layer of 1D GLS maps which
are independent of each other. Going forward, it would be
interesting to explore addition of hidden layers to the network
that consists of GLS maps which are coupled to the previous
layers. Coupling between GLS neurons within each layer
also needs to be explored. Such a Deep Neurochaos Learning
architecture could further boost classification performance.

3. GLS maps have already proved their effectiveness in lossless
data compression, joint compression and error detection and
joint compression and encryption. However, incorporating
an efficient error correction property along with compression
and/or encryption has been elusive. This is an open problem.

4. GLS maps and other 1D chaotic maps (such as Logistic map)
have shown promise in chaos based computing schemes.
Have these matured to a stage where they can give serious
competition to classical computer architectures?

5. GLS and their variations, especially β expansions have rich
number theoretic properties. Is it possible to use these in
practical engineering applications?

6. It is well understood that digital implementation of dynamical
systems results in degradation of chaotic and ergodic proper-
ties (Li et al. 2005). Have we realized the full implications of
these in practical applications involving GLS maps? What cor-
rections are necessitated to combat the dynamical degradation
of digital piecewise chaotic maps?

7. Another open problem is an efficient software implementa-
tion of determining the initial value for an arbitrarily long
symbolic sequence on other 1D maps such as the Logistic
map (without running into numerical precision issues). As
mentioned earlier, such a method exists for the Tent map (GLS
maps) but no such efficient method is known for other maps
which are not piecewise linear.

To conclude, we foresee exciting novel applications of GLS
maps in new domains. The (un)reasonable effectiveness of GLS
maps (Tent map included) in engineering applications owe to a
unique set of properties which other maps do not enjoy.
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